
Exact and Approximation Algorithms for DNA Tag Set

Design∗

Ion I. Măndoiu Dragoş Trincă

Abstract

In this paper we propose new solution methods for designing tag sets for use in universal

DNA arrays. First, we give integer linear programming formulations for two previous for-

malizations of the tag set design problem. We show that these formulations can be solved to

optimality for problem instances of moderate size by using general purpose optimization pack-

ages, and also give more scalable algorithms based on an approximation scheme for packing

linear programs. Second, we note the benefits of periodic tags, and establish an interesting

connection between the tag design problem and the problem of packing the maximum number

of vertex-disjoint directed cycles in a given graph. We show that combining a simple greedy

cycle packing algorithm with a previously proposed alphabetic tree search strategy yields an

increase of over 40% in the number of tags compared to previous methods.

∗A preliminary version of this manuscript has appeared in Proc. 16th Annual Symposium on Combinatorial Pattern

Matching, pp. 383–393, 2005. Authors’ address: Computer Science and Engineering Department, University of

Connecticut, 371 Fairfield Rd., Unit 2155, Storrs, CT 06269-2155. E-mail: {ion.mandoiu,dragos.trinca}@uconn.edu.

1



Keywords: DNA tag arrays, SNP genotyping, cross-hybridization, graph algorithms, cycle pack-

ing.

1 Introduction

Recently developed universal DNA tag arrays (Brenner, 1997; Morris et al., 2002; Gerry et al.,

1999) offer a flexible and cost-effective alternative to custom-designed DNA arrays for perform-

ing a wide range of genomic analyses. A universal tag array consists of a set of DNA strings

called tags, designed such that each tag hybridizes strongly to its own antitag (Watson-Crick com-

plement), but to no other antitag. A typical assay based on universal tag arrays performs Sin-

gle Nucleotide Polymorphism (SNP) genotyping using the following steps (BenDor et al., 2004;

Hirschhorn et al., 2000): (1) A set of reporter oligonucleotide probes is synthesized by ligating

antitags to the 5′ end of primers complementing the genomic sequence immediately preceding

the SNP. (2) Reporter probes are hybridized in solution with the genomic DNA under study. (3)

Hybridization of the primer part (3′ end) of a reporter probe is detected by a single-base exten-

sion reaction using the polymerase enzyme and dideoxynucleotides fluorescently labeled with 4

different dyes. (4) Reporter probes are separated from the template DNA and hybridized to the

universal array. (5) Finally, fluorescence levels are used to determine the identity of the extending

dideoxynucleotides (and hence the corresponding SNP genotype) for each primer.

Tag set design involves balancing two conflicting requirements: on one hand we would like a

large number of tags to allow assaying a large number of biochemical reactions, on the other hand

we would like the tags to maintain hybridization specificity under a wide range of experimental

conditions. The antitag-to-tag hybridization specificity constraints have been previously formal-

2



ized in (Ben-Dor et al., 2000) using a hybridization model based on the nucleation complex theory

and the classical 2-4 rule for melting temperature computation. Ben-Dor et al. have also proposed

a near-optimal heuristic for this formalization of the problem. In this paper we give an integer

linear programming (ILP) formulation for this problem and its variant in which tags are required

to have equal length (Mandoiu et al., 2005) (Section 3), and propose faster heuristics based on an

approximation scheme for packing linear programs due to (Garg & Konemann, 1998) (Section 4).

Previous works on tag set design (Ben-Dor et al., 2000; Mandoiu et al., 2005) have required

that substrings that can act as nucleation complexes appear at most once within a selected tag.

This substring non-repetition constraint simplifies analysis – e.g., it is the key property enabling

the DeBruijn sequence based heuristic in (Ben-Dor et al., 2000)) – but is not required for correct

tag functionality, which only requires for potential nucleation complexes not to appear simultane-

ously in two different tags. To our knowledge, no previous work has assessed the impact of this

non-repetition constraint on tag set size. In Section 5 we give two algorithms for designing tag sets

while allowing nucleation complex repetitions within a tag. The first one is a simple modification

of the alphabetic tree search strategy in (Morris et al., 2002; Mandoiu et al., 2005). The second

algorithm stems from the observation that periodic tags, particularly those with short period, “con-

sume” the least number of minimal substrings that can form nucleation complexes, and thus should

be given priority in tag selection. We then establish an interesting connection between the problem

of finding the largest set of compatible periodic tags and the problem of packing the maximum

number of vertex-disjoint directed cycles in a given graph. We prove that the latter problem is

APX-hard even for regular directed graphs with in-degree and out-degree of 2, and propose a sim-

ple greedy cycle packing algorithm. Results in Section 6 show that combining the greedy cycle

packing algorithm with the alphabetic tree search strategy yields an increase of over 40% in the
3



number of tags compared to previous methods.

2 Problem Formulations and Previous Work

A main objective of universal array designers is to maximize the number of tags, which directly

determines the number of reactions that can be multiplexed using a single array. At the same

time, tag sets must satisfy a number of stability and non-interaction constraints (Brenneman &

Condon, 2002). The full set of constraints depends on factors such as the array manufacturing

technology and the intended application. In this section we formalize the most important stability

and non-interaction constraints using the hybridization model in (Ben-Dor et al., 2000).

Hybridization model. Hybridization affinity between two oligonucleotides is commonly char-

acterized using the melting temperature, defined as the temperature at which exactly half of the

duplexes are in hybridized state. However, accurate melting temperature estimation is compu-

tationally expensive, e.g., estimating the melting temperature between two non-complementary

oligonucleotides using the near-neighbor model of SantaLucia (SantaLucia, 1998) is an NP-hard

problem (Kaderali, 2001). A conservative hybridization model based on the observation that sta-

ble hybridization requires the formation of an initial nucleation complex between two perfectly

complementary substrings of the two oligonucleotides was formalized by (Ben-Dor et al., 2000;

BenDor et al., 2004). For nucleation complexes, hybridization affinity is modeled using the clas-

sical 2-4 rule (Wallace et al., 1979), according to which the melting temperature of the duplex

formed by an oligonucleotide with its complement is proportional to the sum between the number

of weak bases (i.e., A and T) and twice the number of strong bases (i.e., G and C).

4



Following (Ben-Dor et al., 2000), we define the weight w(x) of a DNA string x = a1a2 . . . ak

by w(x) =
∑k

i=1 w(ai), where w(A) = w(T) = 1 and w(C) = w(G) = 2. Throughout the paper

we assume the following c-token hybridization model: hybridization between two oligonucleotides

takes place only if one contains as substring the complement of a substring of weight c or more of

the other, where c is a given constant. The complement of a string x = a1a2 . . . ak over the DNA

alphabet {A,C,T,G} is defined as x̄ = b1b2 . . . bk, where bi is the Watson-Crick complement of

ak−i+1.

Hybridization stability. Current industry designs require a predetermined tag length l, e.g., Gen-

Flex universal tag arrays manufactured by Affymetrix use l = 20 (Affymetrix, Inc., 2001). The

model proposed in (Ben-Dor et al., 2000) allows tags of unequal length and instead require a min-

imum tag weight of h, for a given constant h. In this paper we consider both types of stability

constraints, and use the parameter α ∈ {l, h} to denote the specific model used for hybridization

stability.

Pairwise non-interaction constraints. A basic constraint in this category is that every antitag

must not hybridize to non-complementary tags (Ben-Dor et al., 2000). For a DNA string x and a

set of tags T , let NT (x) denote the number of tags in T that contain x as a substring. Using the

c-token hybridization model, this antitag-to-tag hybridization constraint is formalized as follows:

(C) For every feasible tag set T , NT (x) ≤ 1 for every DNA string x of weight c or more.

In many assays based on universal tag arrays it is also required to prevent antitag-to-antitag hy-

bridization, since the formation of antitag-to-antitag duplexes or antitag hair-pin structures prevents

reporter probes from performing their function in the solution-based hybridization steps (Brenne-

5



man & Condon, 2002; Mandoiu et al., 2005). The combined constraints on antitag hybridization

are formalized as follows

(C̄) For every feasible tag set T , NT (x) + NT (x̄) ≤ 1 for every DNA string x of weight c or

more.

In the following we use the parameter β ∈ {C, C̄} to specify the type of pairwise non-interaction

constraints.

Substring occurrences within a tag. Previous works on DNA tag set design (Ben-Dor et al.,

2000; Mandoiu et al., 2005) have imposed the following c-token uniqueness constraint in addition

to constraints (C) and (C̄): a DNA string of weight c or more can appear as a substring of a

feasible tag at most once. This uniqueness constraint simplifies analysis – e.g., it is the key property

enabling the DeBruijn sequence based heuristics in (Ben-Dor et al., 2000)) – but is not required for

ensuring correct assay functionality. In the following we will use the parameter γ ∈ {1, multiple}

to specify whether or not the c-token uniqueness constraint is enforced.

Problem formulation. For every α ∈ {l, h}, β ∈ {C, C̄}, and γ ∈ {1, multiple}, the maximum

tag set design problem with constraints α, β, γ, denoted MTSDP(α|β|γ), is the following: given

constants c and l/h, find a tag set of maximum cardinality satisfying constraints α, β, and γ.

Previous work on tag set design. The c-token model for oligonucleotide hybridization and the

MTSDP(h|C|1) problem are formalized in (Ben-Dor et al., 2000). Ben-Dor et al. also establish a

constructive upper bound on the optimal number of tags for this formulation, and give a nearly op-

timal tag selection algorithm based on DeBruijn sequences. Similar upper bounds are established

6



for the MTSDP(l|C|1) and MTSDP(∗|C̄|1) problems in (Mandoiu et al., 2005), which also extends

a simple alphabetic tree search strategy originally proposed in (Morris et al., 2002) to handle all

MTSDP(∗|∗|1) problem formulations. Tag selection with both tag-to-antitag and antitag-to-antitag

non-interaction constraints is also considered in (Kaderali et al., 2003) using the near-neighbor hy-

bridization model. The algorithm proposed in (Kaderali et al., 2003) generates random tags and

checks compatibility with previously selected tags until enough tags are selected. This simple ap-

proach works well for applications where the number of required tags is relatively small such as

SNP genotyping by multiplex single-base extension and flow cytometry using microsphere arrays,

but does not provide any guarantees on the number of generated tags.

For a comprehensive survey of hybridization models, results on associated formulations for

the tag set design problem, and further motivating applications in the area of DNA computing,

we direct the reader to (Brenneman & Condon, 2002). Algorithms for the related tag assignment

problem – in which the goal is to assign an antitag to each primer such that no unwanted (e.g.,

primer-to-tag) hybridization takes place – can be found in (BenDor et al., 2004; Kaderali et al.,

2003; Mandoiu et al., 2005).

3 Integer Linear Programming Formulations for

MTSDP(∗|C|1)

Before stating our integer linear program formulations, we introduce some additional notations.

Following (Ben-Dor et al., 2000), a DNA string x of weight c or more is called a c-token if all

its proper suffixes have weight strictly less than c. Clearly, it suffices to enforce constraints (C) or

7



(C̄) for all c-tokens x. Let N denote the number of c-tokens, and C = {c1, . . . , cN} denote the set

of all c-tokens. The results in (Ben-Dor et al., 2000) imply that N = Θ((1 +
√

3)c). Note that the

weight of a c-token can be either c or c + 1, the latter case being possible only if the c-token starts

with a strong base (G or C). We let C0 ⊆ C denote the set of c-tokens of weight c + 1 that end with

a weak base, i.e., c-tokens of the form S<c− 2>W, where W (S) denotes a weak (strong) base, and

<c− 2> denotes an arbitrary string of weight c− 2. We also let C2 ⊆ C denote the set of c-tokens

of weight c that end with a strong base, i.e., c-tokens of the form <c− 2>S.

Clearly, there is at most one c-token ending at every letter of a tag. It is easy to see that each

c-token x ∈ C0 contains a proper prefix which is itself a c-token, and therefore x cannot be the first

c-token of a tag, i.e., cannot be the c-token with the leftmost ending. All other c-tokens can appear

as first c-tokens. When a c-token in C \ (C0 ∪ C2) is the first in a tag, then it must be a prefix of the

tag. On the other hand, tokens in C2 can be first both in tags that they prefix and in tags in which

they are preceded by a weak base not covered by any c-token.

The ILP formulation for MTSDP(l|C|1) uses an auxiliary directed graph G = (V, E) with

V = {s, t} ∪ ⋃
1≤i≤N Vi, where Vi = {vk

i | |ci| ≤ k ≤ l}. G has a directed arc from vk
i to vk+1

j for

every triple i, j, k with |ci| ≤ k ≤ l− 1 for which cj can be obtained from ci by appending a single

nucleotide and removing the maximal prefix that still leaves a valid c-token. Finally, G has an arc

from s to every v ∈ Vfirst, where Vfirst = {v|ci|
i | ci ∈ C \ C0}∪{v|ci|+1

i | ci ∈ C2}, and an arc from

vl
i to t for every 1 ≤ i ≤ N . Notice that G has O(lN) vertices. Furthermore, since s has outdegree

less than 2N and every other vertex has outdegree at most 4, it follows that G has O(lN) arcs.

We claim that, for c ≤ l, MTSDP(l|C|1) can be reformulated as the problem of finding the

maximum number of s-t paths in G that collectively visit at most one vertex vk
i for every i. Indeed,

let P be an s-t path and vk
i be the vertex following s in P . If k = |ci|, we associate to P the tag

8



obtained by concatenating ci with the last letters of the c-tokens corresponding to the subsequently

visited vertices, until reaching t. Otherwise, we must have ci ∈ C2 and k = |ci| + 1. In this case

we associate to P the two tags obtained by concatenating either A or T with ci and with the last

letters of subsequently visited c-tokens. The claim follows by observing that at most one of the

tags associated with each path can be used in a feasible solution.

Our ILP formulation can be viewed as a generalized version of the maximum integer flow

problem in which unit capacity constraints are imposed on sets of vertices of G instead of individual

vertices. The formulation uses 0/1 variables xv and ye for every vertex v ∈ V \ {s, t}, respectively

arc e ∈ E. These variables are set to 1 if the corresponding vertex or arc is visited by an s-t path

corresponding to a selected tag. Let in(v) and out(v) denote the set of arcs entering, respectively

leaving vertex v. The integer program can then be written as follows:

maximize
∑

v∈Vfirst

xv (1)

subject to

xv =
∑

e∈in(v)

ye =
∑

e∈out(v)

ye, v ∈ V \ {s, t} (2)

∑

v∈Vi

xv ≤ 1, 1 ≤ i ≤ N (3)

xv, ye ∈ {0, 1}, v ∈ V \ {s, t}, e ∈ E (4)

Constraints (2) ensure that variables ye set to 1 correspond to a set of s-t paths, and that a variable

xv is set to 1 if and only if one of these paths passes through v. Antitag-to-tag hybridization

constraints (C) and c-token uniqueness are enforced by (3). Finally, the objective (1) corresponds

to maximizing the number of selected s-t paths, since every arc out of s goes to a vertex of Vfirst.

For a token ci = cja ∈ C0, where a ∈ {A,T}, let ĉi = cj ā. Since both ci and ĉi contain token

cj as a prefix, it follows that at most one of them can appear in T . Therefore, the following valid
9



inequality can be added to the ILP formulation (1)–(4) to improve its integrality gap (i.e., the gap

between the value of the optimum integer solution and that of the optimal fractional relaxation):

∑

v∈Vi∪Vj

xv ≤ 1, ci ∈ C0, cj = ĉi, i < j (5)

The formulation of MTSDP(h|C|1) has exactly the same objective and constraints for a slightly

modified graph G. Let us define the tail weight of a c-token ci, denoted tail(ci), as the weight of

the last letter of ci. Also, let hi = h if ci has a tail weight of 1 and hi = h + 1 if ci has a tail

weight of 2. We will require that every tag ending with token ci has total weight of at most hi –

it is easy to see that this constraint is not affecting the size of the optimum tag set. The modified

graph G has vertex set V = {s, t} ∪ ⋃
1≤i≤N Vi, where Vi = {vk

i | w(ci) ≤ k ≤ hi}. G contains

a directed arc from vk
i to v

k+tail(i)
j for every triple i, j, k with |ci| ≤ k ≤ hi − tail(ci) for which

cj can be obtained from ci by appending a single nucleotide and removing the maximal prefix that

still leaves a valid c-token. Finally, G contains arcs from s to every v ∈ Vfirst, where Vfirst is

now equal to {vw(ci)
i | ci ∈ C \ C0} ∪ {vw(ci)+1

i | ci ∈ C2}, plus arcs from every vk
i to t for every

1 ≤ i ≤ N and hi − tail(ci) < k ≤ hi.

4 Approximation Algorithms for MTSDP(∗|C|1)

The ILP formulation for MTSDP(l|C|1) (MTSDP(h|C|1)) has O(lN) (respectively O(hN)) vari-

ables and constraints, where N = Θ((1 +
√

3)c) is the number of c-tokens. For small values of c

these formulations can be solved to optimality by general purpose optimization packages. How-

ever, as shown in Section 6, even state-of-the-art solvers such as CPLEX require a prohibitive

amount of time for values of c greater than 8. In this section we describe a faster algorithm for

computing near-optimal tag sets.
10



The algorithm is based on an equivalent ILP formulation of MTSDP(∗|C|1) using “path” in-

stead of “arc” variables. Let P be the set of all s-t paths in the auxiliary graph G defined as in the

previous section. Using a 0/1 variable xp for every path p ∈ P , MTSDP(∗|C|1) can be formulated

as follows:

maximize
∑

p∈P
xp (6)

subject to

∑

p∈P
|p ∩ Vi|xp ≤ 1, 1 ≤ i ≤ N (7)

xp ∈ {0, 1}, p ∈ P (8)

The fractional relaxation of ILP (6)-(8) is obtained by replacing integrality constraints (8) with

xp ≥ 0, p ∈ P (9)

The optimum solution of the fractional relaxation can be efficiently approximated within any

desired accuracy using the algorithm in Figure 1, which is a specialization of the approximation

algorithm for packing linear programs in (Garg & Konemann, 1998). Briefly, the algorithm starts

by assigning a small weight yi = δ to every set Vi. Then, the algorithm repeatedly computes

minimum-weight s-t paths in G, where the weight of a node is given by the weight yi of the

corresponding set Vi. For every minimum-weight path p, the yi’s corresponding to visited sets Vi

are multiplied by a factor of (1 + ε |p∩Vi|
maxi |p∩Vi|

). Finally, the algorithm stops when the weight of

every s-t path is greater than or equal to 1.

Since the auxiliary graph G = (V, E) is directed and acyclic, the minimum weight path can

be computed in O(|V | + |E|) time. Therefore, using the fact that G has O(lN) vertices and arcs

for MTSDP(l|C|1), and O(hN) vertices and arcs for MTSDP(h|C|1), Theorem 3.1 of (Garg &

Konemann, 1998) gives:
11



Theorem 1 The algorithm in Figure 1 computes a (1 − ε)2-approximation to the fractional re-

laxation in O(lN 2d1
ε
log1+ε Ne) time for MTSDP(l|C|1), and in O(hN 2d1

ε
log1+ε Ne) time for

MTSDP(h|C|1).

The fractional solution computed by the Garg and Könemann algorithm is then used to con-

struct a feasible set of tags using a simple method that has been shown in (Dragan et al., 2002)

to work better in practice than classical randomized rounding (Raghavan & Thomson, 1987), par-

ticularly when starting from poor approximate solutions such as those obtained by running the

algorithm in Figure 1 with a large value of ε. We simply save the list of s-t paths selected as

minimum-weight paths by the Garg and Könemann algorithm (excluding minimum-weight paths

that visit some set Vi more than once, since such paths do not correspond to valid tags) and then,

traversing the list in reverse order, we sequentially pick tags that correspond to paths visiting only

sets Vi not yet appearing in the already picked tags. Finally, we mark all c-tokens of picked tags

as unavailable, and augment the set T of picked tags with the additional tags found by running the

alphabetic tree search algorithm in (Mandoiu et al., 2005).

Note that by running the alphabetic tree search algorithm at the end, we guarantee that the set

T of selected tags is maximal, i.e., there is no tag t such that T ∪ {t} remains feasible. Hence,

every tag of an optimal solution must share at least one c-token with tags in T . Since every tag of

T has at most l−c/2+1 c-tokens, it follows that the size of T is within a factor of l−c/2+1 of the

size of an optimum MTSDP(l|C|1) solution. Similarly, the approximation factor of the algorithm

when applied to MTSDP(h|C|1) is no more than h− c/2 + 2.

12



5 Algorithms for MTSDP(∗| ∗ |multiple)

In the following we describe two algorithms for MTSDP(l|C|multiple); both algorithms can be

easily adjusted to handle the other MTSDP(∗| ∗ |multiple) variants. The first algorithm (see Fig-

ure 2 for a detailed pseudocode) is similar to the alphabetic tree search algorithms proposed for

MTSDP(l|C|1) in (Mandoiu et al., 2005). The algorithm performs an alphabetical traversal of a

4-ary tree representing all 4l possible tags, skipping over subtrees rooted at internal vertices that

correspond to tag prefixes including unavailable c-tokens. The difference from the MTSDP(l|C|1)

algorithm in (Mandoiu et al., 2005) lies in the strategy used to mark c-tokens as unavailable. While

the algorithm in (Mandoiu et al., 2005) marks a c-token C as unavailable as soon as it incorporates

it in the current tag prefix (changing C’s status back to “available” when forced to backtrack past

C’s tail), the algorithm in Figure 2 marks a c-token as unavailable only when a complete tag is

found.

We call a tag t periodic if t is the length l prefix of an infinite string x∞, where x is a DNA string

with |x| < |t|. (Note that a periodic tag t is not necessarily the concatenation of an integer number

of copies of its period x, as in the standard definition of string periodicity (Lothaire, 1983).)

The following lemma shows that tag set design algorithms can restrict the search to two simple

classes of tags.

Lemma 1 For every c and l, there exists an optimal tag set T in which every tag has the uniqueness

property or is periodic. (Note that the two classes of tags are not disjoint, since there are periodic

tags satisfying the uniqueness property.)

Proof. Let T be an optimal tag set. Assume that T contains a tag t that does not have the

uniqueness property, and let ci1, . . . , cik be the sequence of c-tokens occurring in t, in left to right
13



order. Since t does not have the uniqueness property, there exist indices 1 ≤ j < j ′ ≤ ik such

that cij = cij′
. Let t′ be the periodic tag formed by taking the first l letters of the infinite string

with c-token sequence (cij , . . . , cij′−1
)∞. Since c-tokens cij , . . . , cij′−1

do not appear in the tags of

T \ {t}, it follows that (T \ {t}) ∪ {t′} is also optimal. Repeated application of this operation

yields the lemma. ut

Note that a periodic tag whose shortest period has length p contains as substrings exactly p

c-tokens, while tags with the uniqueness property contain between l − c + 1 and l − c/2 + 1 c-

tokens. Therefore, of the two classes of tags in Lemma 1, periodic tags (particularly those with

short periods) make better use of the limited number of available c-tokens.

Each periodic tag corresponds to a directed cycle in the graph Hc which has C as its vertex set,

and in which a token ci is connected by an arc to token cj iff ci and cj can appear consecutively in

a tag, i.e., iff cj is obtained from ci by appending a single nucleotide and removing the maximal

prefix that still leaves a valid c-token. Clearly, a vertex-disjoint packing of n cycles in Hc yields

a feasible solution for MTSDP(l|C|multiple) consisting of n tags, since we can extract at least

one tag of length l from each cycle, and tags extracted from different cycles do not have common

c-tokens. This motivates the following:

MAXIMUM VERTEX-DISJOINT DIRECTED CYCLE PACKING Problem: Given a directed graph

G, find a maximum number of vertex-disjoint directed cycles in G.

The next theorem shows that MAXIMUM VERTEX-DISJOINT DIRECTED CYCLE PACKING in

arbitrary graphs is unlikely to admit a polynomial approximation scheme. A stronger inapprox-

imability results was recently established for arbitrary graphs by (Salavatipour & Verstraëte, 2005),

who proved that there is no O(log1−ε n)-approximation for MAXIMUM VERTEX-DISJOINT DI-

14



RECTED CYCLE PACKING unless NP ⊆ DTIME(2polylogn). On the positive side, Salavatipour

and Verstraëte showed that MAXIMUM VERTEX-DISJOINT DIRECTED CYCLE PACKING can be

approximated within a factor of O(
√

n) via linear programming techniques, matching the best

approximation factor known for the arc-disjoint version of the problem (Krivelevich et al., 2005).

Theorem 2 MAXIMUM VERTEX-DISJOINT DIRECTED CYCLE PACKING is APX-hard even for

regular directed graphs with in-degree and out-degree of 2.

Proof. We use a reduction from the MAX-2-SAT-3 problem, similar to the one in (Caprara

et al., 2003). An instance φ of MAX-2-SAT-3 consists of a set {c1, . . . , cm} of disjunctive clauses

over a ground set {x1, . . . , xn} of variables. Each clause consists of at most 2 literals (variables or

negations of variable), and each variable appears in at most 3 clauses, counting both negated and

non-negated occurrences. The objective is to find a truth assignment that satisfies as many of the

clauses as possible. It is known that MAX-2-SAT-3 is APX-hard (Ausiello et al., 1999; Berman

& Karpinski, 1999).

Let mi denote the number of occurrences of variable xi in a given instance of MAX-2-SAT-3.

We construct, in polynomial time, a directed graph G(φ) as follows. For each variable xi we add

to G a directed cycle Ci of length 4mi, plus 2mi additional vertices alternatively labeled by xi and

x̄i, used to close a directed cycle of length 3 with each arc of Ci, as in Figure 3(a). For each unary

clause we pick a distinct vertex labeled by the negation of the respective literal and attach a loop to

it. Finally, for each 2-literal clause we pick 2 vertices labeled by the negations of its literals, again

without reusing labeled vertices between clauses, and use a new vertex to connect them via two

length-2 cycles as in Figure 3(b). Note that, for every i, at least 2
∑n

i=1 mi of the labeled vertices

remain incident to a single cycle; we will refer to these as “free” labeled vertices.
15



We claim that every truth assignment that makes k clauses of φ true can be converted in poly-

nomial time into a set of k+2
∑n

i=1 mi vertex disjoint cycles of G(φ), and vice-versa. Indeed, for a

given truth assignment, select (1) the 2mi length-3 cycles passing through nodes labeled by x̄i for

every variable xi that is set to true, (2) the 2mi length-3 cycles passing through nodes labeled by x̄i

for every variable xi that is set to false, and (3) the loop or length-2 cycle passing through a labeled

node corresponding to a false literal. It is easy to verify that these cycles are vertex-disjoint.

Conversely, let C be a set of k+2
∑n

i=1 mi vertex disjoint cycles of G(φ). If any of the cycles Ci

is in C, we replace it by the length-3 cycle passing through a free labeled vertex. Similarly, if any

of the cycles in C visits two of the arcs of a 3-cycle (or one of the arcs of a 2-cycle), we replace it by

the 3-cycle (respectively 2-cycle) itself. After this transformation we have a set of k + 2
∑n

i=1 mi

vertex-disjoint loops, 2-cycles, and 3-cycles. We say that a set of cycles is consistent if only one

of the labels xi, x̄i appear in C for every i. If C is consistent, we choose a truth assignment that

makes all literals corresponding to labels in C true. It is easy to see that at least k of the cycles in

C must be loops and 2-cycles, and clauses corresponding to these cycles are satisfied by the above

truth assignment.

Otherwise, we make C consistent by repeating the following transformation. Let i be an index

for which both xi and x̄i appear in C. Without loss of generality, assume that xi appears in only

one clause of φ (recall that, together, xi and x̄i can appear in at most 3 clauses). It follows that

there is a single loop or 2-cycle C ∈ C visiting a vertex labeled by x̄i – all other vertices labeled by

x̄i are free. Since the xi’s and x̄i’s alternate around Ci, the cycles going through vertices labeled

by x̄i can be replaced by at least the same number of 3-cycles going through vertices labeled by xi.

To complete the proof of the theorem, notice that the optimum number of satisfiable clauses,

kopt, is at least m/2, since we can repeatedly assign a variable such that at least half of the clauses
16



containing it are satisfied. Hence,
∑n

i=1 mi ≤ 2m ≤ 4kopt. If there exists a polynomial time

algorithm with an approximation factor of 1
1−ε

for MAXIMUM VERTEX-DISJOINT DIRECTED

CYCLE PACKING, we can run it on G(φ) to get a set C of at least k + 2
∑n

i=1 mi ≥ 1
1−ε

(kopt +

2
∑n

i=1 mi) vertex disjoint cycles, and then convert C as above into a truth assignment satisfying

k ≥ 1+8ε
1−ε

kopt clauses of φ. ut

We use a simple greedy algorithm to solve MAXIMUM VERTEX-DISJOINT DIRECTED CYCLE

PACKING for the graph Hc: we enumerate possible tag periods in pseudo-lexicographic order, and

check for each period if all c-tokens are available for the resulting tag. We refer to this algorithm

as the greedy cycle packing algorithm, since it is equivalent to packing cycles greedily in order of

length.

6 Experimental results

Tables 1 and 2 give empirical results for the MTSDP(l|C|1) and MTSDP(h|C|1) problems respec-

tively. We give the number of selected tags and runtimes for the following three algorithms:

• the tree search algorithm in (Mandoiu et al., 2005),

• the Garg-Könemann based algorithm described in Section 4 (denoted LP approx) ran with

ε = 0.5, and

• the CPLEX 9.0 commercial solver applied to ILP (1)–(4).

All compared algorithms were run using a single CPU of a dual 2.8 GHz Dell PowerEdge 2600

Linux server with 4Gb of main memory. Missing LP/ILP entries did not complete in 10 hours.

17



Optimum tag sets are found by CPLEX for small values of c. However, even computing the

optimum fractional relaxation of ILP (1)–(4) is impractical for c greater than 8. In contrast, the

Garg-Könemann based algorithm is much more scalable than CPLEX, and generally produces

better solutions than running the tree search algorithm alone, although we run it with a very large

value for ε.

To help assessing the quality of the compared algorithms when the optimum solution is

not available, we also include in Tables 1 and 2 the c-token count upper bound established

for MTSDP(l|C|1) in (Mandoiu et al., 2005) and the tail-weight upper bound established for

MTSDP(h|C|1) in (Ben-Dor et al., 2000), as well as the value of the fractional (LP) relaxation

of ILP (1)–(4). For all cases where the optimum ILP solution could be computed, the difference

between the optimal fractional and integer solution values is smaller than 1, indicating that the LP

solution is a very tight upper bound. Furthermore, ILP results confirm the high quality of the upper

bound established for MTSDP(h|C|1) in (Ben-Dor et al., 2000); the upper bound established in

(Mandoiu et al., 2005) for MTSDP(l|C|1) appears to be somehow weaker.

Tables 3 and 4 give the results obtained for MTSDP(∗|∗|multiple) by the alphabetic tree search

algorithm in Figure 2 respectively by the greedy cycle packing algorithm (in our implementation,

we impose an upper bound of 15 on the length of the cycles that we try to pack) followed by running

the alphabetic tree search algorithm with the c-tokens occurring in the selected cycles already

marked as unavailable. Performing cycle packing significantly improves the results compared to

running the alphabetic tree search algorithm alone; as shown in the tables, most of the resulting

tags are found in the cycle packing phase of the combined algorithm.

Across all instances, the combined algorithm increases the number of tags by at least 40%

compared to the best available MTSDP(∗| ∗ |1) algorithm –the improvement is much higher for
18



smaller values of c. Quite notably, although the number of tags is increased, the tag sets found by

the combined algorithm use a smaller total number of c-tokens. Thus, these tag sets are less likely

to cross-hybridize to the primers used in the reporter probes, enabling higher tag utilization rates

during tag assignment (Hundewale et al., 2005).

7 Conclusions

In this paper we proposed new solution methods for designing optimal and near-optimal tag sets

for universal DNA arrays. Most notably, we have shown that the use of periodic tags leads to

over 40% more tags compared to best previous methods. Our algorithms use simple combinatorial

ideas and greedy strategies that can be easily extended to handle more sophisticated hybridization

models such as the near-neighbor model of (SantaLucia, 1998), and can incorporate additional

practical design constraints, such as preventing the formation of hairpin secondary structures, or

disallowing specific nucleotide sequences such as runs of 4 identical nucleotides (Morris et al.,

2002).

In ongoing work we seek to extend our methods to emerging applications of universal tag

arrays in microfluidics-based labs-on-a-chip, as well as DNA-mediated assembly of nanoscale de-

vices such as carbon-nanotube-based field-effect transistors (Hazani et al., 2004). An interesting

open problem is to find tight upper bounds and exact methods for the MTSDP(∗| ∗ |multiple) for-

mulations. Settling the approximation complexity of MAXIMUM VERTEX-DISJOINT DIRECTED

CYCLE PACKING is another interesting problem.

19



Acknowledgments

This work has been supported in part by a Large Grant from the University of Connecticut’s Re-

search Foundation.

References

Affymetrix, Inc. (2001). Geneflex tag array technical note no. 1, available online at

http://www.affymetrix.com/support/technical/technotes/genflex technote.pdf.

Ausiello, G., Protasi, M., Marchetti-Spaccamela, A., Gambosi, G., Crescenzi, P., & Kann, V.

(1999). Complexity and approximation: Combinatorial optimization problems and their ap-

proximability properties. Springer-Verlag New York, Inc.

Ben-Dor, A., Karp, R., Schwikowski, B., & Yakhini, Z. (2000). Universal DNA tag systems: a

combinatorial design scheme. Journal of Computational Biology, 7, 503–519.

BenDor, A., Hartman, T., Schwikowski, B., Sharan, R., & Yakhini, Z. (2004). Towards optimally

multiplexed applications of universal arrays. Journal of Computational Biology, 11, 477-493.

Berman, P., & Karpinski, M. (1999). On some tighter inapproximability results. Proc. 26th Intl.

Colloquium on Automata, Languages and Programming (pp. 200–209).

Brenneman, A., & Condon, A. (2002). Strand design for biomolecular computation. Theor. Com-

put. Sci., 287, 39–58.

Brenner, S. (1997). Methods for sorting polynucleotides using oligonucleotide tags. US Patent

5,604,097.
20



Caprara, A., Panconesi, A., & Rizzi, R. (2003). Packing cycles in undirected graphs. Journal of

Algorithms, 48, 239–256.

Dragan, F., Kahng, A., Mandoiu, I., Muddu, S., & Zelikovsky, A. (2002). Provably good global

buffering by generalized multiterminal multicommodity flow approximation. IEEE Transactions

on Computer-Aided Design, 21, 263–274.

Garg, N., & Konemann, J. (1998). Faster and simpler algorithms for multicommodity flow and

other fractional packing problems. Proceedings of the 39th IEEE Annual Symposium on Foun-

dations of Computer Science (pp. 300–309).

Gerry, N., Witowski, N., Day, J., Hammer, R., Barany, G., & Barany, F. (1999). Universal DNA

microarray method for multiplex detection of low abundance point mutations. J. Mol. Biol., 292,

251–262.

Hazani, M., Shvarts, D., Peled, D., Sidorov, V., & Naaman, R. (2004). Self-assembled carbon-

nanotube-based field-effect transistors. Applied Physics Letters, 85, 5025–5027.

Hirschhorn, J., Sklar, P., Lindblad-Toh, K., Lim, Y.-M., Ruiz-Gutierrez, M., Bolk, S., Langhorst,

B., Schaffner, S., Winchester, E., & Lander, E. (2000). SBE-TAGS: An array-based method for

efficient single-nucleotide polymorphism genotyping. PNAS, 97, 12164–12169.

Hundewale, N., Mandoiu, I., Prajescu, C., & Zelikovsky, A. (2005). Integrated design flow for

universal DNA tag arrays. 9th Annual International Conference on Research in Computational

Molecular Biology (RECOMB) Poster Book (pp. 141–142).

Kaderali, L. (2001). Selecting target specific probes for DNA arrays. Master thesis, Köln Univer-

sity.
21



Kaderali, L., Deshpande, A., Nolan, J.P., & White, P.S. (2003). Primer-design for multiplexed

genotyping. Nucleic Acids Res., 31, 1796–1802.

Krivelevich, M., Nutov, Z., & Yuster, R. (2005). Approximation algorithms for cycle packing

problems. Proc. ACM-SIAM Annual Symposium on Discrete Algorithms (pp. 556–561).

Lothaire, M. (1983). Combinatorics on words, vol. 17 of Encylopedia of Mathematics and Its

Applications, xix+238. Addison-Wesley.

Morris, M., Shoemaker, D., Davis, R., & Mittmann, M. (2002). Selecting tag nucleic acids. U.S.

Patent 6,458,530 B1.

Mandoiu, I., Prajescu, C., & Trinca, D. (2005). Improved tag set design and multiplexing algo-

rithms for universal arrays. LNCS Transactions on Computational Systems Biology, II, 124–137.

Raghavan, P., & Thomson, C. (1987). Randomized rounding. Combinatorica, 7, 365–374.

Salavatipour, M., & Verstraëte, J. (2005). Disjoint cycles: Integrality gap, hardness, and ap-

proximation. Proc. 11th Conference on Integer Programming and Combinatorial Optimization

(IPCO), to appear (pp. 51–65).

SantaLucia, J. (1998). A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-

neighbor thermodynamics. Proc. Natl. Acad. Sci. USA, 95, 1460–1465.

Wallace, R., Shaffer, J., Murphy, R., Bonner, J., Hirose, T., & Itakura, K. (1979). Hybridization of

synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch.

Nucleic Acids Res., 6, 6353–6357.

22



Table 1: ILP results for MTSDP(l|C|1), i.e., tag set design with specified tag length l, antitag-to-tag

hybridization constraints, and a unique copy of each c-token allowed in a tag.

l c # Selected Tags Upper Bounds CPU Seconds

Tree search LP approx ILP LP c-token count Tree search LP approx LP ILP

4 7 7 8 8.57 9 0.00 0.27 0.13 0.71

5 23 25 28 28.00 29 0.00 0.32 2.27 5.85

6 67 79 85 85.60 96 0.00 0.57 11.40 98.25

10 7 196 232 259 259.67 328 0.00 3.11 86.70 586.67

8 655 793 853 853.33 1194 0.00 63.01 552.74 4321.66

9 2359 2703 – – 4896 0.01 841.64 – –

10 9072 10144 – – 26752 0.04 11019.64 – –

4 3 3 3 3.53 3 0.00 0.32 1.05 58.46

5 9 9 10 10.50 11 0.00 0.40 13.72 381.33

6 26 26 29 29.87 32 0.00 1.26 182.96 12448.61

20 7 75 75 – 88.00 93 0.00 4.79 2675.68 –

8 213 220 – 257.23 275 0.00 49.21 134525.81 –

9 600 641 – – 816 0.00 624.16 – –

10 1667 1854 – – 2432 0.04 7717.13 – –

23



Table 2: ILP results for MTSDP(h|C|1), i.e., tag set design with specified minimum tag weight h,

antitag-to-tag hybridization constraints, and a unique copy of each c-token allowed in a tag.

h c # Selected Tags Upper Bounds CPU Seconds

Tree search LP approx ILP LP tail-weight Tree search LP approx LP ILP

4 6 5 7 7.00 7 0.00 0.34 0.45 9.04

5 18 18 21 21.09 21 0.00 0.38 5.66 117.62

6 47 52 63 63.20 63 0.00 0.89 54.43 2665.39

15 7 149 155 192 192.00 192 0.00 5.49 544.95 3644.85

8 460 480 – 588.00 590 0.00 99.21 7153.87 –

9 1197 1608 – – 1842 0.00 1788.07 – –

10 3669 4947 – – 5872 0.07 24223.92 – –

4 3 3 3 3.30 3 0.00 0.46 1.88 132.78

5 8 8 9 9.67 9 0.00 0.60 34.66 1137.21

6 22 22 27 27.48 27 0.00 1.26 392.42 18987.09

28 7 64 63 – 78.55 78 0.00 8.89 7711.41 –

8 175 182 – 224.76 224 0.00 111.63 850642.82 –

9 531 515 – – 644 0.00 1606.85 – –

10 1428 1491 – – 1854 0.02 26728.47 – –

24



Table 3: Results for MTSDP(∗|C|multiple), i.e., tag set design with antitag-to-tag hybridization

constraints and multiple copies of a c-token allowed in a tag.

One c-token copy Multiple c-token copies

l/h c LP approx Tree search Cycle packing + Tree search

tags c-tokens tags c-tokens tags c-tokens % cyclic

4 3 51 14 59 17 40 100.0

5 9 146 31 165 40 140 100.0

6 26 402 53 433 72 293 98.6

l = 20 7 75 1096 124 1179 178 928 99.4

8 220 3014 281 3095 383 2411 97.1

9 641 8322 711 8230 961 7102 96.9

10 1854 22693 1835 21400 2344 19691 95.1

4 3 58 14 61 17 40 100.0

5 8 151 32 174 40 140 100.0

6 22 391 44 432 72 300 98.6

h ≥ 28 7 63 1083 118 1200 178 934 99.4

8 182 2996 239 3037 379 2405 96.6

9 515 8025 632 8622 943 6969 96.5

10 1491 22183 1570 22145 2260 19270 94.1

25



Table 4: Results for MTSDP(∗|C̄|multiple), i.e., tag set design with both antitag-to-tag and

antitag-to-antitag hybridization constraints and multiple copies of a c-token allowed in a tag.

One c-token copy Multiple c-token copies

l/h c Tree search Tree search Cycle packing + Tree search

tags c-tokens tags c-tokens tags c-tokens % cyclic

4 1 17 10 35 10 25 100.0

5 4 65 17 83 23 85 100.0

6 13 200 30 241 41 171 97.6

l = 20 7 37 537 68 585 97 512 99.0

8 107 1480 147 1619 202 1268 98.0

9 300 3939 362 4124 512 3799 96.3

10 844 10411 934 10869 1204 10089 95.8

4 1 22 10 36 10 25 100.0

5 4 74 17 84 23 85 100.0

6 12 213 29 238 41 178 97.6

h ≥ 28 7 32 559 64 586 97 518 99.0

8 90 1489 135 1632 199 1238 98.0

9 263 4158 329 4314 504 3760 95.8

10 714 10837 809 11250 1163 9937 93.6

26



Input: ε > 0

Output: Feasible solution (xp)p∈P to the fractional relaxation of ILP (6)-(8)

For every p ∈ P , xp ← 0

δ ← (1 + ε)((1 + ε)N)−1/ε

For every i ∈ {1, . . . , N}, yi ← δ

Find a minimum weight s-t path p in G, where weight(v) = yi for every v ∈ Vi, i ∈ {1, . . . , N}

While weight(p) < 1 do

M ← maxi |p ∩ Vi|

xp ← xp + 1
M

For every i, yi ← yi(1 + ε |p∩Vi|
M

)

Find a minimum weight s-t path p in G, where weight(v) = yi for every v ∈ Vi,

i ∈ {1, . . . , N}

EndWhile

For every p ∈ P , xp ← xp/
(
log1+ε

1+ε
δ

)

Figure 1: The Garg and Könemann algorithm.

27



Input: Positive integers c and l, c ≤ l

Output: Feasible MTSDP(l|C|multiple) solution T

Mark all c-tokens as available

For every i ∈ {1, 2, . . . , l}, Bi ← A

T ← ∅; Finished ← 0; pos ← 1

While Finished = 0 do

While the weight of B1B2 . . . Bpos < c do

pos ← pos + 1

EndWhile

If the c-token ending B1B2 . . . Bpos is available then

If pos = l then

T ← T ∪ {B1B2 . . . Bl}
Mark all the c-tokens of B1B2 . . .Bl as unavailable

pos ← [the position where the first c-token of B1B2 . . .Bl ends]

I ← {i | 1 ≤ i ≤ pos, Bi 6= G}
If I = ∅ then

Finished ← 1

Else

pos ← max{I}
Bi ← A for all i ∈ {pos + 1, . . . , l}
Bpos ← nextbase(Bpos)

EndIf

Else

pos ← pos + 1

EndIf

Else

I ← {i | 1 ≤ i ≤ pos, Bi 6= G}
If I = ∅ then

Finished ← 1

Else

pos ← max{I}
Bi ← A for all i ∈ {pos + 1, . . . , l}
Bpos ← nextbase(Bpos)

EndIf

EndIf

EndWhile

Figure 2: The alphabetic tree search algorithm for MTSDP(l|C|multiple). The nextbase(·) func-

tion is defined by nextbase(A) = T, nextbase(T) = C, and nextbase(C) = G.

28



… li lj

(a) (b)

xixi xixi

Ci

Figure 3: Vertices and arcs added to G(φ) for (a) variable xi, and (b) clause li ∨ lj .

29


