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1 Introduction

The genomic diversity of RNA viruses (such as Hepatitis C virus (HCV), Human im-
munodeficiency virus (HIV), SARS and influenza) is a subject of the great interest since
it is a plausible cause of vaccines failures and virus resistance to existing therapies. RNA
lacks ability to detect and repair mistakes during replication, many mutations are well
tolerated and passed down to descendants producing a family of co-existing related
variants of the original viral genome referred to as quasispecies [4, 14, 11]. Knowing
the sequences of the most virulent variants can help in the design of effective drugs
[3, 13] and vaccines [7, 5] by targeting particular viral genome in vivo. This paper is
devoted to the following problem.
Quasispecies Spectrum Reconstruction (QSR) Problem. Given a collection of 454
pyrosequencing reads taken from a sample quasispecies population, reconstruct the
quasispecies spectrum, i.e., the set of sequences and the relative frequency of each se-
quence in the sample population.

The QSR problem has been first addressed directly in [6, 15]. Eriksson et al. [6]
proposed a multi-step approach consisting of genotyping error correction via clustering,
haplotype reconstruction via chain decomposition, and haplotype frequency estimation
via EM method with validation on HIV data. In Westbrooks et al. [15], the focus is
on haplotype reconstruction via transitive reduction, overlap probability estimation and
network flows with application to simulated HCV data. Recently the results of applica-
tions of the software tool ShoRAH [16] to HIV virus have been published in [17]. A
novel combinatorial method have been also applied to HIV and HBV data with simi-
lar to ShorAH results [12]. Finally, in [10] we have proposed a novel algorithm Viral
Spectrum Assembler (ViSpA).

Our contributions include (1) a novel Haplotype Discovery algorithm HapDis which
adds to set of candidate strings a virtual string which emits all reads that do not fit well
to candidate strings, (2) combining ViSpA with HapDis allowing ViSpA preferably as-
semble reads attributed by HapDis to the virtual string.
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2 Haplotype Discovery

2.1 Maximum Likelihood Model

Maximum likelihood model includes a panel and an instance of sequencing machine
run consisting of read spectrum i.e. the set of reads and the relative frequency of each
read.

Let us define panel to be consisting of (1) a set of candidate strings (e.g. obtained
from existing databases or assembled from reads) that are believed to emit the reads
and (2) a weighted match between reads and strings, where weight is calculated based
on the mapping of the reads to the strings.

The possible gaps in the maximum likelihood model include (a) erroneous reads
(caused by genotyping errors), (b) an incorrect list of candidate strings (absence of
candidates caused by gaps in current databases and presence of chimeric candidates),
(c) an inaccurate read-to-string match and, finally, (d) a non-uniform emitting of reads
by strings. Since the genotyping quality is improving we focus on the incompleteness
of the panel, i.e. list of candidate strings.

Haplotype Discovery Problem. Given read spectrum and a panel, i.e. set of candidate
strings, weighted match between reads and strings, find strings missing from the panel.

We measure the model quality by the deviation between expected and observed read
frequencies as follows:

D =

∑
j |oj − ej |
|R|

,

where oj is observed read frequencies, ei - expected read frequencies and R is num-
ber of reads.

Expected read frequencies are calculated based on maximum likelihood frequencies
estimations of strings and weighted match between reads and strings as follows:

ej =
∑
i

hi,j∑
l hi,l

fML
j ,

where hi,j is weighted match based on mapping of read rj to string si, fML
j -

maximum-likelihood frequency of candidate string.

2.2 ML estimates of string frequencies

Maximum-likelihood estimates of string frequencies are calculated by the Expectation
Maximization algorithm.

First, we create a bipartite graph G = {S
⋃
R,E} such that each candidate string

is represented as a vertex s ∈ Q, and each read is represented as a vertex r ∈ R. With
each vertex s ∈ Q, we associate unknown frequency fs of the candidate string. And
with each vertex r ∈ R, we associate observed read frequency or. Then for each pair
si, rj , we add an edge (si, rj) weighted by probability of string si to emit read rj with
m genotyping errors:
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hsi,rj =

(
l

m

)
(1− ε)l−m εm,

where l is length of read sequence, and ε is the genotyping error rate.
EM algorithm starts with the set of N strings. For each string we denote by fs

its(unknown) frequency. After initializing frequencies fsq∈Q at random, the algorithm
repeatedly performs the next two steps until convergence:

– E-step: Compute the expected number n(j) of reads that come from string i under
the assumption that string frequencies f(j) are correct, based on weights hi,j

– M-step: For each i, set the new value of fs to to the portion of reads being originated
by string s among all observed reads in the sample

2.3 HapDis Algorithm

The main idea of the algorithm is to add to set of candidate strings a virtual string which
virtually emits reads that do not fit well to assembled sequences.

Initially all reads are connected to the virtual string with weight hi,j = 0. The
first iteration finds the ML frequency estimations of candidates strings, ML frequency
estimations of virtual string will be equal to 0, since all edges between virtual string
and reads hvs,j = 0. Then these estimation are used to compute expected frequency
of the reads according to formula Section 2.1. If the expected read frequency is less
than the observed one (under-estimated), then the lack of the read expression is added
to the weight of the read connection to the virtual string. For over-estimated reads, the
excess of read expression is subtracted from the corresponding weight (but keeping it
non-negative). The iterations are continued while the deviation between expected and
observed read frequencies is decreasing by more than ε.

Algorithm 1 HapDis algorithm
hi,j =

(
l
m

)
(1− ε)l−m εm,

add virtual string vs to the set of candidate strings
initialize weights hvs,j = 0
while D change ¿ ε do

calculate fML
j by EM algorithm

ej =
∑

i

hi,j∑
l hi,l

fML
j

D =
∑

j |oj−ej |
|R|

δ = oj − ej
if δ > 0 then
hvs,j+ = δ

else
hvs,j = max{0, hvs,j + δ}

end if
end while
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Based on weight between virtual string and all reads it is possible to find set of
reads that were not emitted by candidate strings. From this set of reads become possible
to reconstruct set of strings missing from the panel. Based on the frequency of virtual
string it is possible to decide if the panel is likely to be incomplete, i.e. if the virtual
string frequency is larger then certain threshold then it is likely that some strings are
missing from the panel. The total frequency of missing strings is estimated by frequency
of virtual string.

3 HapDis Enhancement of VISPA

Below is the flowchart for the proposed enhancement of ViSpA. The weights on read-
to-virtual-string connection obtained by HAPDIS estimate the probability of a read to
be emitted by an unassembled sequence. These probabilities are fed back to ViSpA and
reads with low probability (to belong to an unassembled sequence) will be assigned
high weight so that s-t-paths will try to avoid using them unless s-t-connection is cut.
So ViSpA will be modiofied accordingly. Newly assembled quasispecies (Qsps) are
added to the original library of candidates and HapDis will estimate the frequency of
unassembled sequences as well as estimate new read weights. The iterations of the big
loop will be repeated until certain stopping condition is satisfied, e.g., there are no new
quasispecies sequences or the virtual string has too small estimated frequency. Then
final EM will estimate ML frequencies and output the resulted viral spectrum.

Fig. 1. Enhancement of ViSpA
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