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ABSTRACT
Massively parallel whole transcriptome sequencing, commonly
referred to as RNA-Seq, has become the technology of choice
for performing gene expression profiling. However, recon-
struction of full-length novel transcripts from RNA-Seq data
remains challenging due to the short read length delivered
by most existing sequencing technologies. We propose a
novel statistical genome-guided method called ”Transcrip-
tome Reconstruction using Integer Programming” (TRIP)
that incorporates fragment length distribution into novel
transcript reconstruction from paired-end RNA-Seq reads.
TRIP creates a splice graph based on aligned RNA-Seq reads
and enumerates all maximal paths corresponding to puta-
tive transcripts. The problem of selecting true transcripts
is formulated as an integer program (IP) which minimizes
the set of selected transcripts yielding a good statistical fit
between the fragment length distribution (empirically de-
termined during library preparation) and fragment lengths
implied by mapped read pairs. Experimental results on both
real and synthetic datasets show that TRIP is more accu-
rate than methods ignoring fragment length distribution in-
formation. The software is available at:
http : //www.cs.gsu.edu/ serghei/?q = trip

1. INTRODUCTION
Massively parallel whole transcriptome sequencing, commonly
referred to as RNA-Seq, has become the technology of choice
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for performing gene and isoform specific expression profiling.
However, accurate normalization of RNA-Seq data critically
requires knowledge of expressed transcript sequences [13, 22,
14, 8]. Unfortunately, as shown by recent targeted RNA-Seq
studies [12], existing transcript libraries still miss large num-
bers of transcripts. The sequences of novel transcripts can be
reconstructed from deep RNA-Seq data, but this is compu-
tationally challenging due to sequencing errors, uneven cov-
erage of expressed transcripts, and the need to distinguish
between highly similar transcripts produced by alternative
splicing.

1.1 Related Work
A number of recent works have addressed the problem of
transcriptome reconstruction from RNA-Seq reads. These
methods fall into three categories: “genome-guided”,“genome-
independent”and“annotation-guided”[5]. “Genome-guided”
and ”annotation-guided” methods typically start by map-
ping sequencing reads onto the reference genome, reference
annotations, exon-exon junction libraries, or combinations
thereof. In case of mapping reads onto the reference genome,
one needs to use spliced alignment tools, such as TopHat
[20] or SpliceMap [2]. “Genome-guided” methods use the
spliced genome alignments to identify exons and trnascripts
that explains the alignments. These methods first map all
reads to the reference genome and then use spliced reads to
reconstruct transcriptome. Such methods, also called ”ab
initio”, have been proposed in [21, 9, 7]. Guttman et al. [7]
construct a splicing graph from the mapped reads and fil-
ter candidate transcripts using paired-end information, af-
ter performing spliced alignment of (paired) reads onto the
genome. The method of Trapnell et al. [21], referred to
as Cufflinks, constructs a read overlap graph and generates
candidate transcripts by finding a minimal size path cover
via a reduction to maximum matching in a weighted bi-
partite graph. Annotation-guided methods such as RABT
Assembly [17, 11, 4] explicitly use existing annotations for
the transcriptome reconstruction. A recent tool CLIIQ [10]
uses an integer linear programming solution that minimizes



e1 e
3

e
5

e2 e
4

e
6

Spse1
Epse1
Spse2

Epse2
Spse3

Epse3
Spse4

Epse4
Spse5

Epse5 Spse6
Epse6
Spse7

Epse7

Pseudo-

exons:

e1 e
5

pse1 pse2 pse3 pse4 pse5 pse6 pse7

Tr1:

Tr2:

Tr3:

Figure 1: Pseudo-exons(white boxes) : regions of a gene between consecutive transcriptional or splicing
events. An example of three transcripts Tri, i = 1, 2, 3 each sharing exons(blue boxes). Spsej and Epsej represent
the starting and ending position of pseudo-exon j, respectively.

the number of predicted isoforms explaining the RNA-Seq
reads while minimizing the difference between estimated and
observed expression levels of exons and junctions within the
predicted isoforms. Although the CLIIQ results are promis-
ing, the tool is not yet available for comparison.

Rather than mapping reads to the reference genome first,
genome-independent methods such as Trinity [6] or trans-
Abyss [18] directly assemble reads into the transcripts. A
commonly used approach for such methods is de Brujin
graph [16] utilizing ”k-mers” rather than reads for the graph
construction. Because these tools do not rely on known ref-
erence genome their results are worst than genome guided
transcriptome reconstruction tools.

1.2 Our Contributions
In this work, we propose a novel statistical “genome-guided”
method called“TranscriptomeReconstruction using Integer
Programming” (TRIP). The method incorporates informa-
tion about fragment length distribution of RNA-Seq paired
end reads to reconstruct novel transcripts. First, we in-
fer exon boundaries from spliced genome alignments of the
reads. Then, we create a splice graph based on inferred exon
boundaries. We enumerate all maximal paths in the splice
graph corresponding to putative transcripts. The problem
of selecting true transcripts is formulated as an integer pro-
gram (IP) which minimizes the set of selected transcripts
subject to a good statistical fit between the fragment length
distribution (empirically determined during library prepara-
tion) and fragment lengths implied by mapped read pairs.

Experimental results on both real and synthetic datasets
generated with various sequencing parameters and distribu-
tion assumptions show that TRIP has increased transcrip-
tome reconstruction accuracy compared to previous meth-
ods that ignore information about fragment length distribu-
tion.

The rest of the paper is organized as follows: Section 2 de-
scribes the TRIP method including read mapping, splice
graph construction and the IP formulation. The perfor-
mance of proposed approaches are evaluated and analysed
in Section 3. We conclude this work in Section 4.

2. TRANSCRIPTOME RECONSTRUCTION
USING INTEGER PROGRAMMING

TRIP is a novel statistical “genome-guided” method that
incorporates fragment length distribution into novel tran-
script reconstruction from paired-end RNA-Seq reads. The
method starts from a set of maximal paths corresponding to
putative transcripts and selects the subset of candidate tran-
script with the highest support from the RNA-Seq reads. We
formulate this problem as an integer program. The objective
is to select the smallest set of putative transcripts that yields
a good statistical fit between the fragment length distribu-
tion empirically determined during library preparation and
fragment lengths implied by mapping read pairs to selected
transcripts.

2.1 Read Mapping
As with many RNA-Seq analyses, the first step of TRIP is
to map the reads. We map reads onto the genome reference
using any of the available splice alignment tools (we use
TopHat [20] with default parameters in our experiments).
Note that a paired read consists of two reads flanking a
fragment whose length usually follows normal distribution.
The mean and variance of fragment length distribution are
usually known in advance or can be inferred from read align-
ments.

2.2 Construction of Splice Graph and Enu-
meration of Putative Transcripts

Typically, alternative variants occurs due alternative tran-
scriptional events and alternative splicing events [15] . Tran-
scriptional events include: alternative first exon, alternative
last exon. Splicing events include: exon skipping, intron re-
tention, alternative 5’ splice site(A5SS), and alternative 3’
splice site (A3SS). Transcriptional events may consist only of
non-overlapping exons. If exons partially overlap and both
serve as a first or last exons we will refer to such event as
A5SS or A3SS respectively.

To represent such alternative variants we suggest to process
the gene as a set of so called “pseudo-exons” based on al-
ternative variants obtained from aligned RNA-seq reads. A
pseudo-exon is a region of a gene between consecutive tran-
scriptional or splicing events, i.e. starting or ending of an
exon, as shown in Figure 1. Hence every gene has a set of



non-overlapping pseudo-exons, from which it is possible to
reconstruct a set of putative transcripts.

The notations used in Figure 1 represents the following:

ei : exon i ;
psej : pseudo-exon j ;
Spsej : start position of pseudo-exon j, 1 ≤ j ≤ 2n ;
Epsej : end position of pseudo-exon j, 1 ≤ j ≤ 2n ;
Tri : transcript i ;

A splice graph is a directed acyclic graph (see Fig. 2), whose
vertices represent pseudo-exons and edges represent pairs of
pseudo-exons immediately following one another in at least
one transcript (which is witnessed by at least one (spliced)
read). We enumerate all maximal paths in the splice graph
using a depth-first-search algorithm. These paths corre-
spond to putative transcripts and are the input for the TRIP
algorithm. A gene with n pseudo-exons may have 2n−1 pos-
sible candidate transcripts, each composed of a subset of the
n pseudo-exons.

pse5pse1 pse2 pse3 pse4 pse6 pse7

Genome

Single

reads

1 2 43 5 6 7

Figure 2: Splice graph. The red horizontal lines rep-
resent single reads. Reads interrupted by dashed
lines are spliced reads. Each vertex of the splice
graph corresponds to a pseudo-exon and each di-
rected edge corresponds to a (splice) junction be-
tween two pseudo-exons.

Next section introduces an integer program producing mini-
mal number of transcripts sufficiently well covering observed
paired reads.

2.3 Integer Program Formulation
We will use the following notations in the Integer Program
(IP ) formulation :

N Total number of reads ;
Jl l-th splice junction;
pj paired-end read, 1 ≤ j ≤ N ;
tk k-th candidate transcript , 1 ≤ k ≤ K;
si Expected portion of reads mapped within i stan-

dard deviations (s1 ≈ 68%, s2 ≈ 95%, s3 ≈
99.7%);

ϵ allowed deviation from the rule (ϵ = 0.05)
Ti(pj) Set of candidate transcripts where p can be

mapped with a fragment length between i−1 and
i standard deviations, 1 ≤ i ≤ 3;

T4(pj) Set of candidates transcripts where pj can be
mapped with a fragment length within more than
3 standard deviations;

For a given instance of the transcriptome reconstruction
problem, we formulate the integer program.

∑
tk∈T

y(t) → min

Subject to
(1)

∑
tk∈Ti(p)

y(t) ≥ xi(p),∀p, i = 1, 4

(2) N(si − ϵ) ≤
∑

j xi(pj) ≤ N(si + ϵ), i = 1, 4

(3)
∑

i xi(p) ≤ 1,∀p

(4)
∑

tk∈Jl

y(t) ≥ 1,∀Jl

where the boolean variables are:

y(tk) = 1 if candidate transcript tk is selected, and 0 oth-
erwise;

xi(pj) = 1 if the read pj is mapped between i − 1 and i
standard deviations, and 0 otherwise;

The IP objective is to minimize the number of candidate
transcripts subject to the constraints (1) through (4).

Constraint (1) implies that for each paired-end read p ∈
n(si), at least one transcript t ∈ Ti(pj) is selected. Con-
straint (2) restricts the the number of paired-end reads mapped
within every category of standard deviation. Constraint (3)
ensures that each paired-end read pj is mapped no more
than with one category of standard deviation. Finally, con-
straint (4) requires that every splice junction to be present
in the set of selected transcripts at least once.

3. EXPERIMENTAL RESULTS
3.1 Simulation Setup and Matching Criteria
Simulation Setup. We tested TRIP on simulated human
RNA-Seq data. The human genome sequence (hg18, NCBI
build 36) was downloaded from UCSC together with the the
KnownGenes transcripts annotation table. Genes were de-
fined as clusters of known transcripts defined by the GNFAt-
las2 table. The dataset contains a total of 66803 transcripts
pertaining to 19372 genes. The transcripts length distribu-
tion is shown in Figure 3(a) and the number of transcripts
per genes is shown in Figure 3.



Error-free paired-end reads of length 100 base pairs were
randomly generated per gene by sampling fragments from
known transcripts at coverage 100X per transcript. Ex-
pression levels of transcripts inside gene cluster follows uni-
form distribution. To address library preparation process
for RNA-Seq experiment we simulate fragment lengths from
a normal probability distribution with a mean of 500 and
standard deviation 50 and 500.

We also include in the comparison variants of our meth-
ods that are given the transcription start sites (TSS) and
transcription end sites (TES) to assess the benefits of com-
plementing RNA-Seq data with TSS/TES data generated
by specialized protocols such as the PolyA-Seq protocol in
[3].
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Figure 3: Distribution of transcript lengths (a) and
gene cluster sizes (b) in the UCSC dataset

Matching Criteria. All reconstructed transcripts are matched
against annotated transcripts. Two transcripts match iff in-
ternal pseudo-exon boundaries coordinates (i.e., all pseudo-
exons coordinates except the beginning of the first pseudo-
exon and the end of the last pseudo-exon) are identical. Sim-
ilar matching criteria is suggested in [21] and [9].

Following [1], we use Sensitivity, Positive Predictive Value
(PPV) and F-Score to evaluate the performance of differ-
ent methods. Sensitivity is defined as the proportion of an-
notated transcript sequences that match reconstructed se-
quences, i.e.,

Sens =
TP

TP + FN

PPV is defined the proportion of reconstructed sequences
that match annotated transcript sequences, i.e.,

PPV =
TP

TP + FP

and the F-Score is defined as the harmonic mean of Sensitivity
and PPV , i.e.,

F-Score = 2× PPV × Sens

PPV + Sens

3.2 Comparison of Methods on Simulated Data
In this section, we use the sensitivity, PPV, and F-score de-
fined above to compare the TRIP method to the most recent
version of Cufflinks (version 2.0.0 downloaded from website:
http://cufflinks.cbcb.umd.edu/). We run Cufflinks with the
following options: -m (the expected (mean) fragment length)
and -s (the standard deviation for the distribution on frag-
ment lengths). For this study, comparison with IsoLasso
[9] was omitted. Due to technical problems, results were
consistently incomparable to other methods. The integer
program for TRIP is solved by IBM ILOG CPLEX (version
12.2.0.0). We also add a method that reports all candidate
transcripts in order to illustrate the effectiveness of selec-
tion produced by the integer program (IP) in TRIP. It is
also very important how much information is used when
candidate transcripts are identified.

If annotated alternative transcription start sites (TSS) and
transcription end sites (TES) can be used (these can be com-
putationally inferred using read statistics and motifs or gen-
erated by specialized protocols such as the PolyA-Seq proto-
col in [3]) then the candidate transcript set is more accurate
and the resulted method is referred as TRIP with TSS/TES.
Otherwise, when TRIP does not rely on this information, the
method is referred as TRIP.

Figures 4(a)-4(c) compare the performance of 4 methods
(Cufflinks, Candidate Transcripts, TRIP with and without
TSS/TES) on simulated data with respect to number of
transcripts per gene. Note that sensitivity (see Fig. 4(a))
for single-transcript genes is 100% for all methods and with
the growth in number of transcripts per gene, TRIP’s sensi-
tivity gradually improves over Cufflinks while sensitivity of
Candidate Transcripts stays almost 100%. The advantage
of TRIP over Cufflinks can be explained by extra statisti-
cal constraints in the IP that are not taken into account by
Cufflinks.

Fig. 4(b) shows that Cufflinks has an advantage over TRIP
in the portion of correctly predicted transcripts but overall
comparison using F-score (see Fig. 4(c)) shows that TRIP
improves over Cufflinks.

3.3 Influence of Sequencing Parameters
Although high-throughput technologies allow users to make
trade-offs between read length and the number of gener-
ated reads, very little has been done to determine optimal
parameters for fragment length. Additionally, novel Next
Generation Sequencing (NGS) technologies such as Ion Tor-
rent may allow to learn exact fragment length. For the case
when fragment length is known, we have modified TRIP’s
IP referring to this new method as TRIP-L.

In this section we compare methods TRIP-L, TRIP and
Cufflinks for the mean fragment length 500bp and variance
of either 50bp or 500bp, to check how the variance affects
the prediction quality. Figures 5(a)-5(c) compare sensitivity,
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Figure 6: Overall Sensitivity, PPV and F-Score on
simulated dataset with different sequencing param-
eters and distribution assumptions.

PPV and F-score of five methods (TRIP-L 500,500; TRIP-
L 500,50; TRIP 500,50; Cufflinks 500,500; Cufflinks 500,50)
on simulated data. The results show that as before TRIP
has a better sensitivity and F-score while TRIP-L further
improves them. Also higher variation in fragment length
actually improves performance of all methods.

3.4 Results on Real RNA-Seq Data
We tested TRIP on real RNA-Seq data that we sequenced
from a CD1 mouse retina RNA samples. We selected a spe-
cific gene that has 33 annotated transcripts in Ensembl. The
gene was picked and validated experimentally due to inter-
est in its biological function. We plan to have experimental
validation at a larger scale in the future. The read align-
ments falling within the genomic locus of the selected gene
were used to construct a splicing graph; then candidate tran-
scripts were selected using TRIP. The dataset used consists
of 46906 alignments for 22346 read pairs with read length
of 68. TRIP was able to infer 5 out of 10 transcripts that
we confirmed using qPCR. For comparison, we ran the same
experiment using cufflinks, and it was able to infer 3 out of
10.

4. CONCLUSIONS
In this paper we introduce a novel method for transcrip-
tome reconstruction from paired-end RNA-Seq reads based
on Integer Programming. Our method critically exploits the
distribution of fragment lengths, and can take advantage of
additional experimental data such as TSS/TES and individ-
ual fragment lengths estimated, e.g., from ION Torrent [19]
flowgram data. Preliminary experimental results on both
real and synthetic datasets generated with various sequenc-
ing parameters and distribution assumptions show that our
IP approach is scalable and has increased transcriptome re-
construction accuracy compared to previous methods that
ignore information about fragment length distribution.
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Figure 4: Comparison between methods for groups of genes with n transcripts (n=1,...,>7) on simulated
dataset with mean fragment length 500, standard deviation 50 and read length of 100x2: (a) Sensitivity (b)
Positive Predictive Value (PPV) and (c) F-Score.
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Figure 5: Comparison between methods for groups of genes with n transcripts (n=1,...,>7) on simulated
dataset with different sequencing parameters and distribution assumptions: (a) Sensitivity (b) Positive Pre-
dictive Value (PPV) and (c) F-Score.


