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Abstract
In this paper, we propose a novel, intuitive and flex-

ible approach for transcriptome reconstruction from sin-
gle RNA-Seq reads, called “ Maximum Likelihood Inte-
ger Programming ” (MLIP) method. MLIP creates a splice
graph based on aligned RNA-Seq reads and enumerates all
maximal paths corresponding to putative transcripts. The
problem of selecting true transcripts is formulated as an
integer program which minimizes the number of selected
candidate transcripts. Our method purpose is to predict the
minimum number of transcripts explaining the set of in-
put reads with the highest quantification accuracy. This is
achieved by coupling a integer programming formulation
with an expectation maximization model for transcript ex-
pression estimation. MLIP has the advantage of offering
different levels of stringency that would gear the results to-
wards higher precision or higher sensitivity, according to
the user preference. We test MLIP method on simulated
and real data, and we show that MLIP outperforms both
Cufflinks and IsoLasso.

1 Introduction

Massively parallel whole transcriptome sequencing,
commonly referred to as RNA-Seq, and its ability to gen-
erate full transcriptome data at the single transcript level,
provides a powerful tool for gene and isoform specific ex-
pression profiling. As a result, RNA-Seq has become the
technology of choice for performing transcriptome analy-

sis, rapidly replacing array-based technologies. Most cur-
rent research, using RNA-Seq, employs methods that de-
pend on existing transcriptome annotations. Unfortunately,
as shown by recent targeted RNA-Seq studies [1], existing
transcript libraries still miss large numbers of transcripts.
The incompleteness of annotation libraries poses a serious
limitation to using this powerful technology since accurate
normalization of RNA-Seq data critically requires knowl-
edge of expressed transcript sequences [2, 3, 4, 5]. As a re-
sult, transcript discovery from RNA-Seq has been the focus
of many research in recent years. The sequences of novel
transcripts can be reconstructed from deep RNA-Seq data,
but this is computationally challenging due to sequencing
errors, uneven coverage of expressed transcripts, and the
need to distinguish between highly similar transcripts pro-
duced by alternative splicing.

2 Related Work

A number of recent works have addressed the prob-
lem of transcriptome reconstruction from RNA-Seq reads.
These methods fall into three categories: “genome-
guided”, “genome-independent” and “annotation-guided”
methods [6]. Genome-independent methods such as Trin-
ity [7] or transAbyss [8] directly assemble reads into tran-
scripts. A commonly used approach for such methods is de
Brujin graph [9] utilizing ”k-mers”. The use of genome-
independent methods becomes essential when there is no
trusted genome reference that can be used to guide recon-



struction. On the other end of the spectrum, annotation
guided methods [10, 11, 12] make use of available infor-
mation in existing transcript annotations to aid in the dis-
covery of novel transcripts. RNA-Seq reads can be mapped
onto reference genome, reference annotations, exon-exon
junction libraries, or combinations thereof, and the result-
ing alignments are used to reconstruct transcripts.

Many transcriptome reconstruction methods fall in
the genome-guided category. They typically start by map-
ping sequencing reads onto the reference genome,using
spliced alignment tools, such as TopHat [13] or SpliceMap
[14]. The spliced alignments are used to identify exons and
transcripts that explain the alignments. While some meth-
ods aim to achieve the highest sensitivity, others work to
predict the smallest set of transcripts explaining the given
input reads. Furthermore, some methods aim to recon-
struct the set of transcripts that would insure the highest
quantification accuracy. Scripture [15] construct a splic-
ing graph from the mapped reads and reconstructs isoforms
corresponding to all possible paths in this graph. It then
uses paired-end information to filter out some transcripts.
Although scripture achieves very high sensitivity, it may
predict a lot of incorrect isoforms. The method of Trap-
nell et al. [16, 17], referred to as Cufflinks, constructs a
read overlap graph and generates candidate transcripts by
finding a minimal size path cover via a reduction to max-
imum matching in a weighted bipartite graph. TRIP [18]
uses an integer programming model where the objective is
to select the smallest set of putative transcripts that yields
a good statistical fit between the fragment length distribu-
tion empirically determined during library preparation and
fragment lengths implied by mapping read pairs to selected
transcripts. Cufflinks, Scripture, and TRIP do not target
the quantification accuracy. IsoLasso [19] uses the LASSO
[20] algorithm, and it aims to achieve a balance between
quantification accuracy and predicting the minimum num-
ber of isoforms. It formulates the problem as a quadratic
programming one, with additional constraints to ensure that
all exons and junctions supported by the reads are included
in the predicted isoforms. CLIIQ [21] uses an integer linear
programming solution that minimizes the number of pre-
dicted isoforms explaining the RNA-Seq reads while mini-
mizing the difference between estimated and observed ex-
pression levels of exons and junctions within the predicted
isoforms.

In this paper, we present a genome guided method
for transcriptome reconstruction from RNA-Seq reads. Our
method aims to predict the minimum number of transcripts
explaining the set of input reads with the highest quantifica-
tion accuracy. This is achieved by coupling a integer pro-
gramming formulation with an expectation maximization
model for isoform expression estimation.

Recent advances in Next Generation Sequencing
(NGS) technologies made it possible to produce longer
single-end reads with the length comparable to length of

fragment for paired-end technology[22] . The primary goal
of our study is to developed a method for longer single-end
reads. In future we plan to extend out method to support
paired-end reads. We test our method on simulated and real
data and compare with two of the available genome guided
methods, Cufflinks and IsoLasso.

3 Methods

The maximum likelihood integer programming
(MLIP) method starts from a set of putative transcripts and
selects the subset of this transcripts with the highest sup-
port from the RNA-Seq reads. We formulate this prob-
lem as an integer program. The objective is to select the
smallest set of putative transcripts that sufficiently explain
the RNA-Seq data. Further, maximum likelihood estima-
tor is applied to all possible combinations of putative tran-
scripts of minimum size determined by integer program.
Our method offers different level of stringency from low to
high. Low stringency gives priority to sensitivity of recon-
struction over precision of reconstruction, high stringency
gives priority to precision over sensitivity. The default pa-
rameter of the MLIP method is medium stringency that
achieves balance between sensitivity and precision of re-
construction

3.1 Model description

We use a splice graph (SG) to represent alternatively
spliced isoforms for every gene in a sample. A SG is a
directed acyclic graph where each vertex in the graph rep-
resents a segment of a gene. Two segments are connected
by an edge if they are adjacent in at least one transcript.
To partition a gene into a set of non-overlapping segments,
information about alternative variants is used. Typically,
alternative variants occurs due alternative transcriptional
events and alternative splicing events [23] . Transcriptional
events include: alternative first exon, alternative last exon.
Splicing events include: exon skipping, intron retention, al-
ternative 5’ splice site (A5SS), and alternative 3’ splice site
(A3SS). Transcriptional events may consist only of non-
overlapping exons. If exons partially overlap and they serve
as a first or last exons we will refer to such event as A5SS
or A3SS respectively.

Figure 1-A shows an example of a gene with 4 differ-
ent exons, and 3 transcripts produced by alternative splic-
ing. To represent such alternative variants we suggest
to process the gene as a set of so called “pseudo-exons”
based on alternative variants obtained from aligned RNA-
seq reads. A pseudo-exon is a region of a gene between
consecutive transcriptional or splicing events, i.e. starting
or ending of an exon, as shown in figure 1-B. Hence ev-
ery gene has a set of non-overlapping pseudo-exons, from



which it is possible to reconstruct a set of putative tran-
scripts.
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Figure 1: Model Description. A - Pseudo-exons. Pseudo-
exons(green boxes) : regions of a gene between consec-
utive transcriptional or splicing events; B - Splice graph.
The red horizontal lines represent single-end reads. Reads
interrupted by dashed lines are spliced reads. Each vertex
of the splice graph corresponds to a pseudo-exon and each
directed edge corresponds to a (spliced) junction between
two pseudo-exons; C - Candidate Transcripts. Candi-
date transcripts corresponds to maximal paths in the splice
graph, which are enumerated using a depth-first-search al-
gorithm.

SG is a directed acyclic graph (see figure 1-B), whose
vertices represent pseudo-exons and edges represent pairs
of pseudo-exons immediately following one another in at
least one transcript (which is witnessed by at least one
spliced read, as depicted in figure 1-B with red lines).

First we infer exon-exon junction from mapped reads,
this information is used to build the SG. Then we enumer-
ate all maximal paths in the SG using a depth-first-search
algorithm. These paths correspond to putative transcripts
and are the input for the MLIP algorithm. A gene with n
pseudo-exons may have up to 2n − 1 possible candidate
transcripts, each composed of a subset of the n pseudo-
exons. Actual number of candidate transcripts depends
on number of exons, this way splitting exons into pseudo-
exons has no effect on number of candidate transcripts.

Information about poly-A site (PAS) can be inte-
grated in the SG which improves accuracy of candidate
transcript set. The PAS represents transcription end site
of the transcript. Theoretically, any vertex in the splicing
graph can serve as PAS, which will lead to increased num-
ber of false candidates transcripts. For this reason we com-
putationally infer PAS from the data. Alternatively, one

can use existing annotation for PAS or specialized proto-
cols such as the PolyA-Seq protocol [24].

3.2 Maximum Likelihood Integer Programming
Solution

Here we introduce 2-step approach for novel tran-
script reconstruction from single-end RNA-Seq reads.
First, we introduce the integer program (IP ) formulation,
which has an objective to minimize number of transcripts
sufficiently well covering observed reads. Since such for-
mulation can lead to many identical optimal solutions we
will use the additional step to select maximum likelihood
solution based on deviation between observed and expected
read frequencies. As with many RNA-Seq analyses, the
preliminary step of our approach is to map the reads. We
map reads onto the genome reference using any of the
available splice alignment tools (we use TopHat[13] with
default parameters in our experiments).

3.2.1 1st step : Integer Program Formulation

We will use the following notations in our IP formulation:

N total number of candidate ;
R total number of reads ;
Jl l-th spliced junction;
Pl l-th poly-A site(PAS);
r single-read, 1 ≤ j ≤ R ;
t candidate transcript , 1 ≤ k ≤ K;
T set of candidate transcripts
T (r) set of candidate transcripts where read r can be

mapped
For a given instance of the transcriptome reconstruc-

tion problem, we formulate the IP . The boolean variables
used in IP formulation are:

x(r → t) 1 iff read r is mapped into transcript t and 0 oth-
erwise;

y(t) 1 if candidate transcript t is selected, and 0 other-
wise;

x(r) 1 if the read r is mapped , and 0 otherwise;

The IP objective is to minimize the number of candi-
date transcripts subject to the constraints (1)-(5):∑

t∈T

y(t)→ min

Subject to:
(1) For any r, at least one transcript t is selected:
y(t) ≥ x(r → t),∀r, ∀t

(2) Read r can be mapped only to one transcript:∑
t∈T (r)

x(r → t) = x(r),∀r



(3) Selected transcripts cover almost all reads:∑
r∈R

x(r) ≥ N(1− ε)

(4) Each junction is covered by at least one selected
transcript:

∑
t∈Jl

y(tk) ≥ 1,∀Jl

(5) Each PAS is covered by at least one selected
transcript:

∑
tk∈Pl

y(tk) ≥ 1,∀Pl

We use CPLEX [25] to solve the IP , the rest of im-
plementation is done using Boost C++ Libraries and bash
scripting language.

3.2.2 2nd step : Maximum Likelihood Solution

In the second step we enumerate all possible subsets of can-
didate transcripts of size N , where N is determined by
solving transcriptome reconstruction IP , that satisfy the
following condition: every spliced junction and PAS to
be present in the subset of transcripts at least once. Further,
for every such subset we estimate the most likely transcript
frequencies and corresponding expected read frequencies.
The algorithm chooses subset with the smallest deviation
between observed and expected read frequencies.

The model is represented by bipartite graph G =
{T

⋃
R,E} in which each transcript is represented as a

vertex t ∈ T , and each read is represented as a vertex
r ∈ R. With each vertex t ∈ T , we associate frequency
f of the transcript. And with each vertex r ∈ R, we asso-
ciate observed read frequency or. Then for each pair t, r,
we add an edge (t, r) weighted by probability of transcript
t to emit read r.

Given the model we will estimate maximum likeli-
hood frequencies of the transcripts using our previous ap-
proach, refer as IsoEM [4]. Regardless of initial condi-
tions IsoEM algorithm always converge to maximum like-
lihood solution (see [26]).The algorithm starts with the set
of T transcripts. After uniform initialization of frequencies
ft, t ∈ T , the algorithm repeatedly performs the next two
steps until convergence:

• E-step: Compute the expected number n(tk) of reads
that come from transcript tk under the assumption
that transcript frequencies f(t) are correct, based on
weights htk,rj

• M-step: For each tk, set the new value of ft to the por-
tion of reads being originated by transcript t among all
observed reads in the sample

We suggest to measure the model quality, i.e. how
well the model explains the reads, by the deviation between
expected and observed read frequencies as follows:

D =

∑
j |oj − ej |
|R|

, (1)

where |R| is number of reads, oj is the observed read fre-
quency of the read rj and ej is the expected read frequen-
cies of the read rj calculated as follows:

ej =
∑
rj

htk,rj∑
rj
htk,rj

fML
t (2)

where htk,rj is weighted match based on mapping of read
rj to the transcript tk and fML

t is the maximum-likelihood
frequency of the transcript tk.

The flowchart of MLIP is depicted in figure 2.
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Figure 2: Flowchart for MLIP method. Input : Splice
graph. Output : subset of candidate transcripts with the
smallest deviation between observed and expected read fre-
quencies.

Figure 3 illustrates how MLIP works on a given syn-
thetic gene with 3 transcripts and 7 different exons (see fig-
ure 3-A). First we use mapped reads to construct the splice
graph from which we generate T possible candidate tran-
scripts, as shown in figure 3-B. Further we run our IP ap-
proach to obtain N minimum number of transcripts that
explain all reads. We enumerate all feasible subsets of can-
didate transcripts, having cardinalityN . The subsets which
doesn’t cover all junctions and PAS will be excluded from
consideration. The subset with the smallest deviation be-
tween expected and observed read frequencies is selected
by the PAP algorithm.

3.2.3 Stringency of Reconstruction

Different level of stringency corresponds to different strate-
gies of transcriptome reconstruction. High stringency has
the goal to optimize precision of reconstruction, with some
loss in sensitivity. On the other hand, low stringency corre-
sponds to increase in sensitivity and some decrease in pre-
diction. Medium stringency strikes balance between sensi-
tivity and precision of reconstruction. The medium strin-
gency is chosen as a default setting for the proposed MLIP
method.

Below, we will describe how different stringency lev-
els are computed. For the default medium level we will
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Figure 3: A. Synthetic gene with 3 transcripts and 7 dif-
ferent exons. B. Mapped reads are used to construct the
splice graph from which we generate T possible candi-
date transcripts. C. MLIP. Run IP approach to obtain N
minimum number of transcripts that explain all reads. We
enumerate N feasible subsets of candidate transcripts.The
subsets which doesn’t cover all junctions and PAS will be
excluded from consideration. The subset with the smallest
deviation between expected and observed read frequencies
is selected by the PAP algorithm.

use the subset of candidate transcripts selected based on
the smallest deviation between observed and expected read
frequency. For the low stringency level, our method selects
the subset of transcripts that will correspond to the union
of the solution obtained by solving the IP and the solution
supported by the smallest deviation. High stringency level
will correspond to the intersection of above solutions.

4 Experimental Results

4.1 Simulation Setup and Matching Criteria

Simulation Setup. We first evaluated performance
of our MLIP solution on simulated human RNA-Seq data.
The human genome sequence (hg18, NCBI build 36) was
downloaded from UCSC together with the the Known-
Genes transcripts annotation table. Genes were defined as
clusters of known transcripts defined by the GNFAtlas2 ta-
ble.

In our simulation experiment, we simulate reads to-
gether with splice read alignment to the genome, splice
read alignment is provided for all methods. We varied the
length of single-end reads, which were randomly generated
per gene by sampling fragments from known transcripts

maintaining 100x coverage per transcript. In order to com-
pare different next generation sequencing (NGS) platforms,
including the most recent one able to produce longer reads,
all the methods were run on datasets with various read
length, i.e. 50bp, 100bp, 200bp, and 400bp. Expression
levels of transcripts inside gene cluster follows uniform
and geometric distribution. To address library prepara-
tion process for RNA-Seq experiment we simulate frag-
ment lengths from a normal probability distribution with
different mean and 10% standard deviation.

Matching Criteria. All reconstructed transcripts are
matched against annotated transcripts. Two transcripts
match iff internal pseudo-exon boundaries coordinates (i.e.,
all pseudo-exons coordinates except the beginning of the
first pseudo-exon and the end of the last pseudo-exon) are
identical. Similar matching criteria is suggested in [16] and
[27].

We use Sensitivity, Precision and F-Score to eval-
uate the performance of different methods. Sensitivity is
defined as the proportion of reconstructed sequences that
match annotated transcript sequences, i.e.,

Sens =
TP

TP + FN

where TP (True Positive) represents the number of cor-
rectly reconstructed transcripts and FN (False Negative) is
the number of incorrectly reconstructed transcripts.

Precision is defined the proportion of annotated tran-
script sequences among reconstructed sequences, i.e.,

Prec =
TP

TP + FP

and the F-Score is defined as the harmonic mean of
Sensitivity and Precision, i.e.,

F-Score = 2× Prec× Sens
Prec+ Sens

4.2 Comparison of Methods on Simulated Data

In this section, we use sensitivity, precision, and F-
score defined above to compare the MLIP method to the
other genome guided transcriptome reconstruction tools.
The most recent versions of Cufflinks (version 2.0.0) from
[16] and IsoLasso (v 2.6.0) from [27] are used for compar-
ison with the default parameters. We explore the influence
of read length, fragment length, and coverage on recon-
struction accuracy.

Figure 4 reports the transcriptome reconstruction ac-
curacy for reads of length 400bp, simulated assuming both
uniform and geometric distribution for transcript expres-
sion levels. MLIP significantly overperforms the other
methods, achieving an F-score over 79% for all datasets.
For all methods the accuracy difference between datasets
generated assuming uniform and geometric distribution of



transcript expression levels is small, with the latter one typ-
ically having a slightly worse accuracy. Thus, in the inter-
est of space we present remaining results for datasets gen-
erated using uniform distribution.

Isoform 

Distribution
Methods

Number of 

reconstructed 

transcripts

Number of 

identified 

annotated 

transcripts

Sensitivity (%) Precision (%) F-Score (%)

Cufflinks 18582 12909 51.06 69.47 58.86

 !IP 23706 18698 76.69 78.87 77.77

IsoLasso 21441 15693 63.52 73.19 68.02

Cufflinks 17377 12449 50.21 71.64 59.04

 !IP 22931 18293 76.05 79.77 77.86

IsoLasso 20816 15308 62.83 73.54 67.76

Uniform

Geometric

Figure 4: Transcriptome reconstruction results for uni-
form and geometric fragment length distribution. Sensitiv-
ity, precision and F-Score for transcriptome reconstruction
from reads of length 400bp, mean fragment length 450bp
and standard deviation 45bp simulated assuming uniform,
respectively geometric expression of transcripts.

Intuitively, it seems more difficult to reconstruct the
alternative splicing transcripts in genes with higher num-
ber of alternative variants. There is a strong correlation be-
tween number of alternative variants and number of anno-
tated transcripts. Also high number of alternative variants
leads to high number of candidate transcripts, which make
difficult the selection process. To explore the behavior of
the methods depending on number of annotated transcripts
we divided all genes into categories according to the num-
ber of annotated transcripts and calculated the sensitivity,
precision and F-Score of the methods for every such cate-
gory.

Figures 5(a)-5(c) compare the performance of 5 meth-
ods (Cufflinks, IsoLasso, MLIP - medium stringency set-
tings, MLIP − L - low stringency settings, MLIP − H
- high stringency settings) for read length 100bp and frag-
ment length 250bp. Genes are divided into 4 categories ac-
cording to number of annotated transcripts per gene. In this
experiment, we present results for the three different strin-
gency settings for MLIP i.e. low, medium, and high. For
the medium stringency (default settings), MLIP achieves
better results in both sensitivity and precision. As for F-
score, the best results are produced by low and medium
stringency versions of MLIP, with different trade-off be-
tween sensitivity and precision.

Figure 6 compares sensitivity, precision and F-score
of Cufflinks, IsoLasso, and MLIP for different combi-
nations of read and fragment lengths: (50bp,250bp),
(100bp,250bp), (100bp,500bp), (200bp,250bp),
(400bp,450bp). The results show that MLIP provide
5-15% improvement in sensitivity and 1-10% improve-
ment in precision.

In order to explore influence of coverage on precision
and sensitivity of reconstruction we simulated 2 datasets
with 100X and 20X coverage. Figure 7 shows how accu-
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Figure 5: Transcriptome reconstruction results with re-
spect to number of transcripts per gene. Comparison be-
tween 5 methods (Cufflinks, IsoLasso, MLIP - medium
stringency settings, MLIP − L - low stringency settings,
MLIP −H - high stringency settings) for groups of genes
with n transcripts(n=1,..., ≥ 5) on simulated dataset with
mean fragment length 250bp, standard deviation 25bp and
read length of 100bp.

racy of transcriptome reconstruction depends on the cov-
erage. For all methods higher coverage (100X vs. 20X)
doesn’t provide significant improvement in precision and
sensitivity.

4.3 Comparison of Methods on real RNA-Seq
dataset

We tested MLIP on real RNA-Seq data that we se-
quenced from a CD1 mouse retina RNA samples. We se-
lected a specific gene that has 33 annotated transcripts in
Ensembl. The dataset used consists of 46906 alignments
for 44692 single reads of length 68 bp. The read alignments
falling within the genomic locus of the selected gene were
used to construct a splicing graph; then MLIP with default



Cufflinks 18483 14179 67.36 76.71 71.73

 !IP 20036 15894 75.53 79.33 77.38

IsoLasso 19422 15287 70.66 78.71 74.47

Cufflinks 17981 14073 69.30 78.27 73.51

 !IP 19405 15539 76.72 80.08 78.36

IsoLasso 16864 12802 62.60 75.91 68.62

Cufflinks 18958 14757 67.19 77.84 72.12

 !IP 20481 16326 74.73 79.71 77.14

IsoLasso 17979 13428 60.29 74.69 66.72

Cufflinks 20435 15637 66.57 76.52 71.20

 !IP 21823 17265 74.89 79.11 76.95

IsoLasso 19846 13654 58.88 68.80 63.46

Cufflinks 18582 12909 51.06 69.47 58.86

 !IP 23706 18698 76.69 78.87 77.77

IsoLasso 21441 15693 63.52 73.19 68.02
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Figure 6: Transcriptome reconstruction results for vari-
ous read and fragment lengths. Sensitivity, precision and
F-score for different combinations of read and fragment
lengths: (50bp,250bp), (100bp,250bp), (100bp,500bp),
(200bp,250bp), (400bp,450bp).

settings(medium stringency) was used to select candidate
transcripts. MLIP method was able to infer 5 out of 10 tran-
scripts confirmed by qPCR while cufflinks reconstructed 3
out of 10 and IsoLasso 1 out of 10 transcripts.

5 Future Work

As a part of our future work, we plan to extend MLIP
to support paired-end reads. Also we plan to compute the
deviation not only for minimum number of transcripts N
reported by IP, but also for N + 1. This will allow us to
address cases when set of transcripts in a gene cannot be
explained by a set of minimum transcripts.

6 Conclusions

In this paper we propose and implemented MLIP, a
novel, intuitive and flexible method for transcriptome re-
construction from single RNA-Seq reads. Our method has
the advantage of offering different levels of stringency that
would gear the results towards higher precision or higher
sensitivity, according to the user preference. Preliminary
experimental results on both real and synthetic datasets
generated with various sequencing parameters and distri-
bution assumptions show that our MLIP approach is scal-
able and has increased transcriptome reconstruction accu-
racy compared to previous approaches.
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100bp and 400bp simulated assuming 20X coverage, re-
spectively 100X coverage per transcript. For read length
100bp fragment length of 250 with 10% standard deviation
was used. For read length 400bp fragment length of 450
with 10% standard deviation was used.

“Software for Robust Transcript Discovery and Quantifi-
cation”, NSF award IIS-0916401,NSF award IIS-0916948,
Agriculture and Food Research Initiative Competitive
Grant no. 201167016-30331 from the USDA National In-
stitute of Food and Agriculture and Second Century Initia-
tive Bioinformatics University Doctoral Fellowship.
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