# Estimation of Viral Population Structure from Amplicon-Based Reads

Nicholas Mancuso

Department of Computer Science Georgia State University

June 8, 2012



Nicholas Mancuso

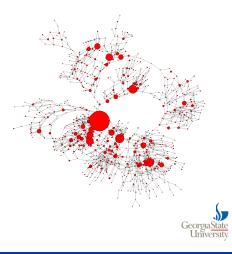
#### Overview

Viral Quasispecies

High Throughput Sequencing

Formal Problem Definition

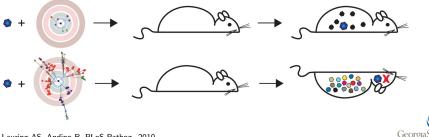
Models and Workflow


Experiment Setup & Results



Nicholas Mancuso

## Viral Quasispecies


- RNA virus replication relies on RNA polymerase
- High mutation rate  $(\approx 10^{-4})$
- Recombination events occur
- HIV, HCV, Influenza



### Viral Quasispecies

Populations may differ in

- Virulence
- Escape immune response
- Resistance to antiviral therapies

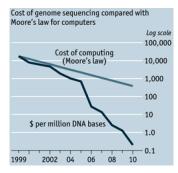


Lauring AS, Andino R. PLoS Pathog. 2010

Viral Quasispecies Assembly

### Hepatitis C

HCV infects 2.2% of the world's population


- No vaccine
- Current interferon and ribavirin therapy effective in 50%-60% of patients
- Therapy is expensive and uncomfortable

Skums et. al., CAME 2011

- Prediction method for interferon outcome
- Highly dependent on accuracy of viral population structure



# High Throughput Sequencing



http://www.economist.com/node/16349358



Illumina HiSeq 2000 Up to 6 billion PE reads/run

35 - 100bp read length

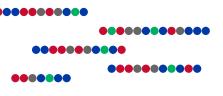


Ion Proton Sequencer Up to 10 billion reads/run

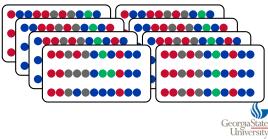
 $20-200 \mathrm{bp}\ \mathrm{read}\ \mathrm{length}$ 



Roche/454 FLX Titanium 1 million reads/run


400 - 600bp read length



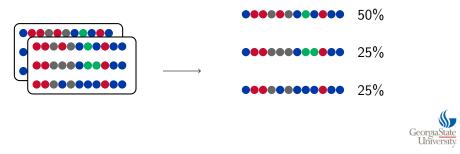

SOLID 4 1.4-2.4 billion PE reads/run 35 – 50bp read length GeorgiaState University

### Shotgun and Amplicon Reads

 Shotgun reads have start positions distributed uniformly



 Amplicon reads have start/end positions determined by allele-specific primers




Viral Quasispecies Assembly

### Viral Quasispecies Reconstruction Problem

#### Problem

Given a collection of amplicon reads generated from a viral sample, assemble the quasispecies, i.e., the set of sequences and respective frequencies of the sample population.



### Viral Quasispecies Reconstruction

#### Local Reconstruction

- Focus on primer-flanked region
- ▶ KEC, QuasiRecomb, *k*GEM

#### Global Reconstruction

- Focus on larger genomic regions
- Typically use read-graph approach to "stitch" locally reconstructed regions together
- ShoRAH, ViSpA, QuRe

VirA is a tool for global quasispecies reconstruction



# Global Viral Reconstruction Challenges

#### **Conserved Regions**

Relatively few mutations in long regions obfuscate true population

#### Sequencing Errors

- Homopolymer errors
- Base call errors
- Insertion errors
- Deletion errors



#### Library Preparations & Workflow



### VirA Workflow

- 1. Align reads to reference
- 2. Align allele-specific (target) primers to reference
- 3. Infer amplicon intervals from primers
- 4. Locally reconstruct in each amplicon
- 5. Globally reconstruct over read-overlap graph



# Amplicon Inference

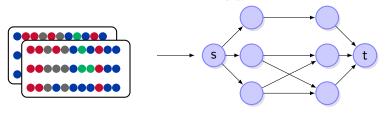
Infer amplicons from flanked regions

- Each pair forms interval
- Impose ordering over intervals
- Read belongs in interval if covers significant sub-interval & overlaps with neighboring intervals



## Local Reconstruction/Error Correction

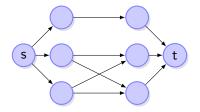
Correct errors with kGEM

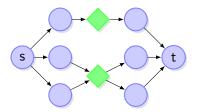

- Cluster reads by hamming distance
- Produce local consensuses
- Estimate consensus frequencies
- Estimate allele frequencies
- Repeat until convergence



### Read Graph

K amplicons represented by  $K\mbox{-staged}$  read graph


- Vertices  $\Leftrightarrow$  distinct reads
- ► Edges ⇔ reads with consistent overlap
- Vertices have count function c(v)






Nicholas Mancuso

#### Graph Transformation







Nicholas Mancuso

GSU Computer Science Dept

#### Maximum-Bandwidth Paths

- Find simple path containing most possible flow
- Repeat until graph is saturated
- Modified Dijkstra's algorithm
- Mancuso et al, In Silico 2012

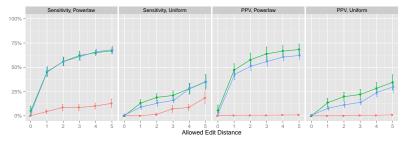




Nicholas Mancuso

### Multi-commodity Flow Formulation

- Finding maximum-bandwidth paths
- Multi-commodity flow k = upper bound on variants
- Minimizes total flow while covering all reads
- ILP on CPLEX
- Skums et al, BMC Bioinformatics 2013




### Experimental Setup

- 1734bp HCV E1E2 region
- 43 sequences  $\rightarrow$  10 datasets of 10 variants
- ► Abundance followed powerlaw (α = 2) and uniform distributions
- 7-12 amplicons to cover region
- Reads generated with Grinder version 0.5
- Compared with QuRe [Prosperi et al]



#### Results



Method - QuRe - VirA - VirA-MCF



Nicholas Mancuso

#### Conclusions and Future Work

- Global quasispecies reconstruction is difficult
- VirA
- http://alan.cs.gsu.edu/vira



Thanks



#### University of Connecticut

Dr. Ion Măndoiu



Centers for Disease Control and Prevention Dr. Pavel Skums

Dr. Yuri Khudyakov



#### Georgia State University

Dr. Alex Zelikovsky Alex Artyomenko Bassam Tork Rest of NGS group







Viral Quasispecies Assembly

### Q and A

# Thank you! Questions?



Nicholas Mancuso

GSU Computer Science Dept