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Abstract

Background

High throughput RNA sequencing (RNA-Seq) can generate whole transcriptome infor-

mation at the single transcript level providing a powerful tool with multiple interrelated

applications including transcriptome reconstruction and quantification. The sequences of

novel transcripts can be reconstructed from deep RNA-Seq data, but this is computation-

ally challenging due to sequencing errors, uneven coverage of expressed transcripts, and

the need to distinguish between highly similar transcripts produced by alternative splic-

ing. Another challenge in transcriptomic analysis comes from the ambiguities in mapping

reads to transcripts.
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Results

We present MaLTA, a method for simultaneous transcriptome assembly and quantification

from Ion Torrent RNA-Seq data. Our approach explores transcriptome structure and in-

corporates a maximum likelihood model into the assembly and quantification procedure.

A new version of IsoEM algorithm suitable for Ion Torrent RNA-Seq reads is used to ac-

curately estimate transcript expression levels. The MaLTA-IsoEM tool is publicly available

at: http://www.cs.gsu.edu/ serghei/?q=malta

Conclusions

Experimental results on both synthetic and real datasets show that Ion Torrent RNA-Seq

data can be successfully used for transcriptome analyses. Experimental results suggest

increased transcriptome assembly and quantification accuracy of MaLTA-IsoEM solution

compared to existing state-of-the-art approaches.

Background
Massively parallel whole transcriptome sequencing, commonly referred to as RNA-Seq, and its

ability to generate full transcriptome data at the single transcript level, provides a powerful tool

with multiple interrelated applications, including transcriptome assembly [1–4], gene and tran-

script expression level estimation [5–8], also known as transcriptome quantification, studying

trans- and cis-regulatory effects [9], studying parent-of-origin effects [9–11], and calling expressed

variants [12].

RNA-Seq has become the technology of choice for performing transcriptome analysis, rapidly

replacing array-based technologies [13]. The Ion Torrent technology offers the fastest sequenc-

ing protocol for RNA-Seq experiments able to sequence whole transcriptome in few hours [14].

Most current research using RNA-Seq employs methods that depend on existing transcriptome

annotations. Unfortunately, as shown by recent targeted RNA-Seq studies [15], existing transcript

libraries still miss large numbers of transcripts. The incompleteness of annotation libraries poses

a serious limitation to using this powerful technology since accurate normalization of RNA-Seq

data critically requires knowledge of expressed transcript sequences [5–8]. Another challenge in
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transcriptomic analysis comes from the ambiguities in read/tag mapping to transcripts. Ubiquitous

regulatory mechanisms such as the use of alternative transcription start and polyadenylation sites,

alternative splicing, and RNA editing result in multiple messenger RNA (mRNA) isoforms being

generated from a single genomic locus. Most prevalently, alternative splicing is estimated to take

place for over 90% of the multi-exon human genes across diverse cell types [8], with as much as

68% of multi-exon genes expressing multiple isoforms in a clonal cell line of colorectal cancer

origin [16]. The ability to reconstruct full length transcript sequences and accurately estimate their

expression levels is widely believed to be critical for unraveling gene functions and transcription

regulation mechanisms [17].

Here, we focus on two main problems in transcriptome analysis, namely, transcriptome as-

sembly and quantification. Transcriptome assembly, also known as novel transcript discovery or

reconstruction, is the problem of assembly the full length transcript sequences from the RNA

sequencing data. Assembly can be done de novo or it can be assisted by existing genome and tran-

scriptome annotations. Transcriptome quantification is the problem of estimating the expression

level of each transcript. In the remainder of this section we give a brief description of the common

protocols used for mRNA sequencing.

RNA-Seq protocol

RNA-Seq uses next generation sequencing technologies, such as SOLiD [18], 454 [19], Illu-

mina [20], or Ion Torrent [21]. Figure 1 depicts the main steps in an RNA-Seq experiment, ending

with the first step of analysis which is typically mapping the data to a reference. The mRNA ex-

tracted from a sample is converted to cDNA using reverse transcription and sheared into fragments.

Fragments with lengths within a certain range are selected, and ligated with sequencing adapters.

This is usually followed by an amplification step after which one or both ends of the cDNA frag-

ments are sequenced to produce either single or paired-end reads. cDNA synthesis and adapter

ligation can be done in a strand-specific manner, in which case the strand of each read is known;

this is commonly referred to as directional sequencing. In the more common non-directional RNA-

Seq protocols strand specificity is not maintained. The specifics of the sequencing protocols vary

from one technology to the other. In particular, the length of produced reads varies depending on

the technology, with newer high-throughput technologies typically producing longer reads.
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Related work

Transcriptome assembly and quantification from RNA-Seq data has been the focus of much re-

search in recent years. The sequences of novel transcripts together with their expression levels

can be inferred from deep RNA-Seq data, but this is computationally challenging due to the short

length of the reads, high percentage of sequencing errors, uneven coverage of expressed transcripts,

and the need to distinguish between highly similar transcripts produced by alternative splicing. A

number of methods address the problem of transcriptome assembly and quantification from RNA

sequencing data. Methods for transcriptome assembly fall into three categories: “genome-guided”,

“genome-independent” and “annotation-guided” methods [22]. Genome-independent methods

such as Trinity [23] or transAbyss [24] directly assemble reads into transcripts. A commonly

used approach for such methods is de Brujin graph [25] utilizing ”k-mers”. The use of genome-

independent methods becomes essential when there is no trusted genome reference that can be

used to guide assembly. On the other end of the spectrum, annotation guided methods [26–28]

make use of available information in existing transcript annotations to aid in the discovery of novel

transcripts. RNA-Seq reads can be mapped onto reference genome, reference annotations, exon-

exon junction libraries, or combinations thereof, and the resulting alignments are used to assemble

transcripts.

Many transcriptome reconstruction methods fall in the genome-guided category. They typi-

cally start by mapping sequencing reads onto the reference genome,using spliced alignment tools,

such as TopHat [29] or SpliceMap [30]. The spliced alignments are used to identify putative exons,

splice junctions and transcripts that explain the alignments. While some methods aim to achieve

the highest sensitivity, others work to predict the smallest set of transcripts explaining the given

input reads. Furthermore, some methods aim to reconstruct the set of transcripts that would insure

the highest quantification accuracy. Scripture [1] construct a splice graph from the mapped reads

and reconstructs transcripts corresponding to all possible paths in this graph. It then uses paired-

end information to filter out some transcripts. Although scripture achieves very high sensitivity,

it may predict a lot of incorrect isoforms. The method of Trapnell et al. [4, 31], referred to as

Cufflinks, constructs a read overlap graph and reconstruct transcripts using a minimal size path

cover via a reduction to maximum matching in a weighted bipartite graph. TRIP [3] uses an inte-

ger programming model where the objective is to select the smallest set of putative transcripts that
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yields a good statistical fit between the fragment length distribution empirically determined during

library preparation and fragment lengths implied by mapping read pairs to selected transcripts.

IsoLasso [32] uses the LASSO [33] algorithm, and it aims to achieve a balance between quantifi-

cation accuracy and predicting the minimum number of transcripts. It formulates the problem as

a quadratic programming one, with additional constraints to ensure that all exons and junctions

supported by the reads are included in the predicted isoforms. CLIIQ [34] uses an integer linear

programming solution that minimizes the number of predicted isoforms explaining the RNA-Seq

reads while minimizing the difference between estimated and observed expression levels of exons

and junctions within the predicted isoforms. Traph [35], proposed a method based on network

flows for a multiassembly problem arising from transcript identification and quantification with

RNA-Seq. Another method, CLASS [36] uses local read coverage patterns of RNA-seq reads and

contiguity constraints from read pairs and spliced reads to predict transcripts from RNA-Seq data.

iReckon [37] is a method for simultaneous determination of the transcripts and estimation of their

abundances. This probabilistic approach incorporates multiple biological and technical phenom-

ena, including novel isoforms, intron retention, unspliced pre-mRNA, PCR amplification biases,

and multi-mapped reads. iReckon utilizes regularized Expectation-Maximization to accurately

estimate the abundances of known and novel transcripts.

Methods
Spliced alignment

Alignment of RNA-Seq reads onto the reference genome, reference annotations, exon-exon junc-

tion libraries, or combinations thereof is the first step of RNA-Seq analyses, unless none of these

are available in which case it is recommended to use de novo assembly methods [23, 24]. The

best mapping strategy depends on the purpose of RNA-Seq analysis. If the focus of the study is to

estimate transcripts and gene expression levels rather then discover new transcripts then it is rec-

ommended to map reads directly onto the set of annotated transcripts using a fast tool for ungapped

read alignment. To be able to discover new transcriptional variants one should map the reads onto

the reference genome. Recently, many bioinformatics tools, called spliced read aligners, have

been developed to map RNA-Seq reads onto a reference genome [29, 30]. Alternatively, RNA-

Seq reads can be mapped onto the genome using a local alignment tool such as the Ion Torrent

mapper, TMAP. Both spliced alignments and local alignments can be used to detect novel tran-
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scriptional and splicing events including exon boundaries, exon-exon junctions, gene boundaries,

transcriptional start (TSS) and transcription end sites (TES).

In our experiments we used TopHat [29] with default parameters. For assessing transcriptome

quantification accuracy Ion Torrent reads from cancer datasets were mapped on the External RNA

Controls Consortium (ERCC) RNA spike-in controls reference [38] with added polyA tails of

200bp using TMAP. Reads for the MAQC datasets were mapped onto Ensembl known transcripts

with added polyA tails of 200bp, also using TMAP.

Splice graph and putative transcripts

Typically, a gene can express multiple mRNA transcripts due to alternative transcriptional or splic-

ing events including alternative first exon, alternative last exon, exon skipping, intron retention,

alternative 5’ splice site (A5SS), and alternative 3’ splice site (A3SS) [39]. To represent such al-

ternative transcripts, a gene is processed as a set of so called ‘pseudo-exons’ based on alternative

variants obtained from aligned RNA-Seq reads. A pseudo-exon is a region of a gene between con-

secutive transcriptional or splicing events, i.e., starting or ending of an exon, as shown in Figure 2.

Hence, every gene consists of a set of non-overlapping pseudo-exons. This gene representation lets

us easily enumerate all possible transcripts of a gene. To generate the set of putative transcripts,

we first create a splice graph based on pseudo-exon boundaries and splice junctions.

The splice graph is a directed acyclic graph (Figure 3) whose vertices represent pseudo-exons

and edges represent pairs of pseudo-exons immediately following one another in at least one tran-

script (which is witnessed by at least one spliced read). Both splice junctions and pseudo-exon

boundaries are inferred from read alignments. To construct the splice graph, MaLTA infers splice

junctions from gapped alignments of RNA-seq reads. Next, inferred splice junctions are used to

partition the reference genome into a set of non-overlapping segments, which are classified as (a)

intron, (b) pseudo-exon, or (c) combination of both. It is easy to classify a segment as pseudo-exon

if it is entirely covered, and as intron in case it is entirely uncovered. In case of partial coverage

we require 80% of the segment to be covered to be classified as pseudo-exon, otherwise it is clas-

sified as (a) or (c). Segments containing a combination of introns and exons most likely contain

gene boundaries. In this case we identify islands of coverage inside the segment. A segment may

contain several coverage islands which correspond to single exon genes.

After constructing the splice graph, MaLTA enumerates all maximal paths using a depth-first-
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search algorithm. These paths correspond to putative transcripts. Note that a gene with n pseudo-

exons may have as many as 2n − 1 possible candidate transcripts, each composed of a subset of

the n pseudo-exons. The next subsection presents a maximum likehood transcriptome assembly

and quantification algorithm that selects a minimal subset of candidate transcripts that best fits

the observed RNA-Seq reads. The key ingredient is an expectation-maximization algorithm for

estimating expression levels of candidate transcripts.

Maximum likehood transcriptome assembly

Existing transcriptome methods( [3,4]) use read pairing information and fragment length distribu-

tion to accurately assemble set of transcripts expressed in a sample. This information is not avail-

able for current Ion Torrent technology, which can makes it challenging to assemble transcripts.

The Ion Torrent PGM platform is able to produce single reads with read length in 50-300bp range.

Our approach is to simultaneously explore the transcriptome structure and perform transcriptome

quantification using a maximum likelihood model. MaLTA starts from the set of putative tran-

scripts and selects the subset of this transcripts with the highest support from the RNA-Seq data.

Maximum likelihood estimates of putative transcripts are computed using an Expectation Maxi-

mization (EM) algorithm which takes into account alternative splicing and read mapping ambigui-

ties. EM algorithms are currently the state-of-the-art approach to transcriptome quantification from

RNA-Seq read, and have been proven to outperform count-based approaches. Several independent

implementations of EM algorithm exist in the literature ( [7, 40]).

We developed a new version of IsoEM [7] suitable for Ion Torrent RNA-Seq reads. IsoEM

is an expectation-maximization algorithm for transcript frequency estimation. It overcomes the

problem of reads mapping to multiple transcripts using iterative framework which simultaneously

estimates transcript frequencies and imputes the missing origin of the reads. A key feature of

IsoEM, is that it exploits information provided by the distribution of insert sizes, which is tightly

controlled during sequencing library preparation under current RNA-Seq protocols. In [7], we

showed that modeling insert sizes is highly beneficial for transcript expression level estimation

even for RNA-Seq data consisting of single reads, as in the case of Ion Torrent. Modeling insert

sizes contributes to increased estimation accuracy by disambiguating the transcript of origin for

the reads. In IsoEM, insert lengths are combined with base quality scores, and, if available, strand

information to probabilistically allocate reads to transcripts during the expectation step of the al-
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gorithm. Since most Ion Torrent sequencing errors are insertions and deletions, we developed a

version of IsoEM capable of handling insertions and deletions in read alignments.

The main idea of the MaLTA approach is to cover all trancriptional and splicing variants

presented in the sample with the minimum set of putative transcripts. We use the new version

of IsoEM algorithm described above to estimate expression levels of putative transcripts. Since

IsoEM is run with all possible candidate transcripts, the number of transcripts that are predicted to

have non-zero frequency can still be very large. Instead of selecting all transcripts with non zero

frequency, we would like to select a small set of transcripts that explain all observed splicing events

and have highest support from the sequencing data. To realize this idea we use a greedy algorithm

which traverses the list of candidate transcripts sorted in descending order by expression level, and

selects a candidate transcript only if it contains a transcriptional or splicing event not explained by

the previously selected transcripts.

Results and discussions
We evaluated the accuracy of MaLTA-IsoEM approach on both simulated and real human RNA-

Seq data. The human genome sequence (hg18, NCBI build 36) was downloaded from UCSC

together with the the KnownGenes transcripts annotation table. Genes were defined as clusters of

known transcripts defined by the GNFAtlas2 table. In our simulation experiments, we simulate

reads together with splice alignments to the genome; these alignments are provided to all com-

pared methods. We varied the length of single-end reads, which were randomly generated per

gene by sampling fragments from known transcripts. All the methods were compared on datasets

with various read length, i.e., 50bp, 100bp, 200bp, and 400bp. Expression levels of transcripts

inside each gene cluster followed uniform and geometric distributions. To address library prepa-

ration process of RNA-Seq experiment we simulated fragment lengths from a normal probability

distribution with different means and 10% standard deviation.

All reconstructed transcripts were matched against annotated transcripts. As in [4] and [32],

two transcripts were assumed to match if and only if internal exon boundaries coordinates (i.e.

all exons coordinates except the beginning of the first exon and the end of the last exon) were

identical. We use sensitivity and positive predictive value (PPV) to evaluate the performance of

different assembly methods. Sensitivity is defined as the proportion of assembled transcripts that
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match annotated transcripts, i.e., sensitivity = TP/(TP +FN). Positive predictive value (PPV)

is defined as the proportion of annotated transcript sequences among assembled sequences, i.e.,

PPV = TP/(TP + FP ).

Transcriptome quantification accuracy was evaluated by comparing RNA-Seq estimates with

TaqMan qRT-PCR measurements [41] or External RNA Controls Consortium (ERCC) RNA spike-

in controls [38]. The coefficient of determination (R2) between the (qRT-PCR/ERCC) and Frag-

ment Per Kilobase of exon length per Million reads (FPKM) estimates was used as accuracy mea-

sure.

Comparison on simulated RNA-Seq data

In this section, we use sensitivity and PPV defined above to compare the MaLTA to other tran-

scriptome assembly tools. The most recent versions of Cufflinks (version 2.1.1) [4] and IsoLasso

(v 2.6.0) [2] with the default parameters are used for performance comparison. We explore the

influence of read and fragment length on performance of assembly methods.

Table 1 reports sensitivity and PPV of transcriptome assembly for reads of length 400bp, sim-

ulated assuming both uniform and geometric expression of transcripts. MaLTA significantly over-

performs the other methods, achieving both sensitivity and PPV over 75% for all datasets. For all

methods the difference in accuracy between datasets generated assuming uniform and geometric

distribution is small, with the latter one typically having a slightly worse accuracy. Thus, in the

interest of space we present remaining results for datasets generated using uniform distribution.

There is a strong correlation between number of splicing events within the gene and number

of annotated transcripts. A high number of splicing events leads to increased number of candidate

transcripts, which makes the selection process more difficult. To explore the behavior of the meth-

ods depending on number of transcripts per gene we divided all genes into categories according

to the number of annotated transcripts and calculated the sensitivity and PPV within each such

category.

Figures 4(a)-4(b) compare the performance of three methods (Cufflinks, IsoLasso, MaLTA)

on simulated data with respect to the number of transcripts per gene. Note that sensitivity and

PPV (Figure 4) for single-transcript genes achieves 100% for all methods and is excluded from

consideration. MaLTA achieves equivalent or better results in both sensitivity and PPV for all

categories.
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Table 2 compares assembly accuracy of Cufflinks, IsoLasso, and MaLTA for different combina-

tions of read and fragment lengths: (50bp,250bp), (100bp,250bp), (100bp,500bp), (200bp,250bp),

(400bp,450bp). The results show that MaLTA provide 5-15% improvement in sensitivity and 1-

10% improvement in PPV.

Comparison on Ion Torrent cancer and MAQC RNA-Seq datasets

For this study, we compared MaLTA and Cufflinks on 3 cancer datasets downloaded from the Ion

Community website: GOG-382 (HepG2 - hepatocellular carcinoma), DID-416 (K562 - myeloge-

nous leukemia) and DID-413 (MCF-7 - breast ductal carcinoma). Comparison with IsoLasso on

the real datasets is omitted due to technical problems (IsoLasso results were consistently incom-

parable to other methods). Reads were mapped to hg18 reference genome using TopHat2 (with

default parameters) which is able to produce splice alignment used by transcriptome assembly

tools (Table 3).

Although UCSC annotations are known to be incomplete, we expect a significant proportion

of assembled transcripts to be consistent with these annotations. Thus, the performance of tran-

scriptome assembly was evaluated by the total number of assembled transcripts matching UCSC

annotations. Table 4 gives the results obtained by MaLTA and Cufflinks on DID-413, DID-416 and

GOG-382 datasets. Both methods assemble highest number of transcripts confirmed by reference

annotations for GOG-382 dataset. Cufflinks and MaLTA respectively were able to assemble 13,887

and 16,143 transcripts, of which 1,557 and 4,395 are known annotated transcripts. A large num-

ber of identified annotated transcripts were confirmed by both methods (Figure 5). The GOG-382

dataset contains the highest number of annotated transcripts confirmed by both methods; among

identified annotated transcripts 1,291 transcripts were confirmed by both methods.

To evaluate transcriptome quantification accuracy of the methods we ran IsoEM and Cufflinks

on Ion Torrent RNA-Seq data generated from two commercially available reference RNA sam-

ples that have been well-characterized by quantitative real time PCR (qRT-PCR) as part of the

MicroArray Quality Control Consortium (MAQC); namely the Ambion Human Brain Reference

RNA, Catalog #6050), henceforth referred to as HBRR and the Stratagene Universal Human Ref-

erence RNA (Catalog #740000), henceforth referred to as UHRR. We used five HBRR datasets

and five UHRR datasets for the comparison. To assess accuracy, gene expression estimates ob-

tained from RNA-Seq data were compared against those obtained from TaqMan qRT-PCR mea-
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surements (GEO accession GPL4097) collected as part of the MAQC project. As described in [41],

each TaqMan Assay was run in four replicates for each measured gene. POLR2A (ENSEMBL id

ENSG00000181222) was chosen as the reference gene and each replicate CT was subtracted from

the average POLR2A CT to give the log2 difference (delta CT). For delta CT calculations, a CT

value of 35 was used for any replicate that had CT > 35. The normalized expression value for

gene g was computed as 2(CT of POLR2A)-(CT of g), and the average of the qPCR expression

values in the four replicates was used as the ground truth. Mapping gene names to Ensembl gene

IDs using the HUGO Gene Nomenclature Committee (HGNC) database resulted in TaqMan qPCR

expression levels for 832 Ensembl genes. Tables 5 and 6 show statistics for the size, number of

mapped reads, and accuracy of gene expression levels estimated by IsoEM for each of the 10

datasets as well as the combined reads for each sample. Figure 6 presents a comparison between

IsoEM and Cufflinks results. IsoEM estimates correlate better with qPCR measurements compared

to Cufflinks. Additionally, IsoEM estimates have less variability across different Ion Torrent runs.

We also compared IsoEM and Cufflinks on two of the cancer Ion Torrent datasets, GOG-382

and DID-413. Methods were evaluated by calculating correlation between estimated FPKMs for

External RNA Controls Consortium (ERCC) spike-in controls [38] with the known frequencies of

these RNA controls in the samples (ERCC mix1 was spiked in for both runs). Table 7 presents the

results of this comparison, showing higher R2 for IsoEM in both cases.

Conclusion
In this paper we described the MaLTA-IsoEM method for simultaneous transcriptome assembly

and quantification from Ion Torrent RNA-Seq data. Our approach explores transcriptome structure

and incorporates maximum likelihood model into assembly and quantification procedure. Results

on real cancer and MAQC RNA-Seq datasets show that Ion Torrent RNA-Seq data can be suc-

cessfully used for transcriptome analysis. Transcriptome assembly and quantification accuracy

was confirmed by comparison to annotated transcripts and comparison to TaqMan qRT-PCR mea-

surements and External RNA Controls Consortium RNA spike-in controls. Experimental results

on both real and synthetic datasets generated with various sequencing parameters and distribution

assumptions suggest increased transcriptome assembly and quantification accuracy of MaLTA-

IsoEM compared to existing state-of-the-art approaches.
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Figures
Figure 1. A schematic representation of the RNA sequencing protocol.
Figure 2. Pseudo-exons.

An example of three transcripts, Tr1, Tr2 and Tr3. Each transcript is represented as a set of exons.

Pseudo-exons are regions of a gene between consecutive transcriptional or splicing events. Spsej

and Epsej represent the starting and ending position of pseudo-exon j, respectively.

Figure 3. Splice graph.

The red horizontal lines represent single reads. Reads interrupted by dashed lines are spliced reads.

Each vertex of the splice graph corresponds to a pseudo-exon and each directed edge corresponds

to a (splice) junction between two pseudo-exons. Red vertices of the slice graph serve as transcrip-

tion start sites (TSS). Blue vertices - transcription end sites (TES).

Figure 4. Sensitivity and PPV comparison between methods for groups of genes
with n transcripts on simulated datasets with mean fragment length 250bp, 10%
standard deviation, and read length of 100bp.
Figure 5. Consistency of transcriptome assembly.

Number of identified annotated transcripts confirmed by both methods for GOG-382,DID-416 and

DID-413 datasets.

Figure 6. Correlation of estimates obtained by both IsoEM and Cufflinks with qPCR
measurments for HBRR and UHRR datasets.

The red color represents the 2nd quartile and the green color represents the 3rd quartile.
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Transcript
expression Methods

# assembled
transcripts

# confirmed
annotated
transcripts

Sensitivity (%) PPV (%)

Uniform
Cufflinks 18,582 12,909 51.06 69.47
MaLTA 23,706 18,698 76.69 78.87
IsoLasso 21,441 15,693 63.52 73.19

Geometric
Cufflinks 17,377 12,449 50.21 71.64
MaLTA 22,931 18,293 76.05 79.77
IsoLasso 20,816 15,308 62.83 73.54

Table 1: Sensitivity and PPV comparison between methods on datasets simulated assuming uni-
form, respectively geometric expression of transcripts, with reads length 400bp, mean fragment
length 450bp and 10% standard deviation.

Read
Frag-
ment

length
Methods

# assembled
transcripts

# confirmed
annotated
transcripts

Sensitivity (%) PPV (%)

50 250
Cufflinks 18,483 14,179 67.36 76.71
MaLTA 20,036 15,894 75.53 79.33
IsoLasso 19,422 15,287 70.66 78.71

100

250
Cufflinks 17,981 14,073 69.30 78.27
MaLTA 19,405 15,539 76.72 80.08
IsoLasso 16,864 12,802 62.60 75.91

500
Cufflinks 18,958 14,757 67.19 77.84
MaLTA 20,481 16,326 74.73 79.71
IsoLasso 17,979 13,428 60.29 74.69

200 250
Cufflinks 20,435 15,637 66.57 76.52
MaLTA 21,823 17,265 74.89 79.11
IsoLasso 19,422 15,287 70.66 78.71

400 450
Cufflinks 18,483 14,179 67.36 76.71
MaLTA 20,036 15,894 75.53 79.33
IsoLasso 19,422 15,287 70.66 78.71

Table 2: Sensitivity and PPV comparison between methods for different combinations of read
and fragment lengths: (50bp, 250bp), (100bp, 250bp), (100bp, 500bp), (200bp, 250bp), (400bp,
450bp).
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Dataset Type of cancer # reads
# mapped

reads Mean read length (bp)

GOG-382 hepatocellular carcinoma 4,964,525 1,284,796 94
DID-416 myelogenous leukemia 5,024,097 1,115,392 89
DID-413 breast ductal carcinoma 3,134,849 690,870 108

Table 3: Read mapping statistics and read length for Ion Torrent HeLa datasets. Reads are mapped
to hg18 reference genome using TopHat2 with default parameters.

DID-413 DID-416 GOG-382

# assembled
transcripts

# confirmed
annotated
transcripts

# assembled
transcripts

# confirmed
annotated
transcripts

# assembled
transcripts

# confirmed
annotated
transcripts

MaLTA 15,109 4,000 9,908 2,807 16,143 4,395
Cufflinks 12,100 1,228 7,419 759 13,887 1,557

Table 4: Performance comparison of transcriptome assembly between Cufflinks and MaLTA for
Ion Torrent HeLa datasets. Assembled transcripts are matched against UCSC hg18 reference an-
notations.

Run # reads
# mapped

reads R2

POZ-125 268 1,601,962 1,103,357 0.489
DID-144 283 1,990,213 1,368,073 0.487
POZ-126 269 1,800,034 1,291,935 0.469
GOG-140 284 2,052,587 1,452,006 0.499
POZ-127 270 2,263,519 1,615,623 0.484

All runs 9,708,315 6,830,990 0.485

Table 5: Read mapping statistics and correlation between gene expression levels estimated by
IsoEM and qPCR measurement for Ion Torrent UHRR dataset.
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Run # reads
# mapped

reads R2

LUC-140 265 1,588,375 1,142,306 0.728
POZ-124 266 1,495,151 1,066,809 0.729
DID-143 282 1,703,169 1,215,093 0.732
GOG-139 281 1,621,848 1,208,950 0.736
LUC-141 267 1,390,667 1,039,816 0.747

All runs 7,799,210 5,672,974 0.756

Table 6: Read mapping statistics and correlation between gene expression levels estimated by
IsoEM and qPCR measurement for Ion Torrent HBRR dataset.

Dataset IsoEM Cufflinks
GOG-482 0.723 0.683
DID-413 0.890 0.870

Table 7: Correlation (R2) between known frequencies of spiked in ERCC controls and gene ex-
pression levels estimated by IsoEM and Cufflinks for Ion Torrent HeLa datasets.
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