
Recent Advances in Multicommodity Flow Algorithms for Global Routing

Ion Măndoiu∗

CSE Department, University of Connecticut
371 Fairfield Road, Unit 1155, Storrs, CT 06269, USA

E-mail: ion@engr.uconn.edu

Abstract

Interconnect planning and synthesis in general, and global rout-
ing in particular, are becoming critical to meeting chip perfor-
mance targets in deep-submicron technologies. In addition to
handling traditional objectives such as congestion, wirelength
and timing, a new and very important requirement for current
global routers is the integration with other interconnect opti-
mizations, most importantly with buffer insertion and sizing.

In this paper, we review and enhance a powerful integrated
approach introduced in [4] for congestion and timing-driven
global routing, buffer insertion, pin assignment, and buffer/wire
sizing. We extend the method to capture polarity constraints
induced by inverter insertion, and present simpler and more ef-
ficient gadget constructions for buffer/wire sizing and enforcing
delay constraints. Furthermore, we present experimental results
detailing the scalability and limitations of proposed methods.

1 Introduction

Due to delay scaling effects in deep-submicron technologies, in-
terconnect planning and synthesis are becoming critical to meet-
ing chip performance targets with reduced design turnaround
time [1]. In particular, the global routing phase of the design
cycle is receiving renewed interest, as it must efficiently handle
increasingly more complex constraints for increasingly larger
designs (see [14] for a recent survey).

In addition to handling traditional objectives such as con-
gestion, wirelength and timing, a critical requirement for cur-
rent global routers is the integration with other interconnect op-
timizations, most importantly with buffer insertion and sizing.
Indeed, it is estimated that top-level on-chip interconnect will
require up to 106 repeaters when we reach the 50nm technol-
ogy node. Since these repeaters are large and have a significant
impact on global routing congestion, buffer insertion and sizing
can no longer be done after global routing completes.

In this paper, we review and enhance a powerful integrated
approach introduced in [4] for congestion and timing-driven
global routing, buffer insertion, pin assignment, and buffer/wire
sizing. Our approach is based on a multicommodity flow formu-
lation for the buffered global routing problem. Multicommodity
flow based global routing has been an active research area since
the seminal work of Raghavan and Thomson [16]. Although the

∗Work performed while the author was with the Electrical and Computer Engi-
neering Department at the University of California, San Diego.

global routing problem is NP-hard (even highly restricted ver-
sions of it, see [19]), [16] has shown that the optimum solution
can be approximated arbitrarily close in time polynomial in the
number of nets and the inverse of the accuracy. To date, pre-
dictability of solution quality continues to be a distinct advan-
tage of multicommodity flow based methods over all other ap-
proaches to global routing, including popular rip-up-and-reroute
approaches [14].

The original method of Raghavan and Thomson relies on
randomized rounding of an optimum fractional multicommodity
flow. Subsequent works [8, 15] have improved runtime scalabil-
ity by using the approximation algorithm for multicommodity
flows by [17]. Yet, only the recent breakthrough improvements
due to Garg and Könemann [13] and Fleischer [12] have ren-
dered multicommodity flow based global routing practical for
full chip designs [3]. As [3], our algorithm is built upon the effi-
cient multicommodity flow approximation scheme of [13, 12].

In next section we review the multicommodity flow approach
as applied to buffered global routing in [4], highlighting the gad-
get graph construction used to capture valid buffered routes in
the context of a (set capacitated) multicommodity flow formula-
tion. The main contribution of the paper is represented by sim-
pler and more efficient gadget constructions for capturing polar-
ity constraints induced by inverter insertion, buffer and wire siz-
ing, and delay constraints (Section 4). Unlike the constructions
in [4], none of the simplified constructions requires changes to
the algorithm for multicommodity flow approximation. We con-
clude the paper with experimental results detailing the scalabil-
ity and limitations of the proposed methods and with directions
for future research.

2 Problem Formulation

In this section we give an integrated formulation for the global
routing and the bounded wireload buffer insertion problems. Po-
larity constraints induced by the use of inverting buffers, buffer
and wire sizing, and timing constraints are individually dis-
cussed in Section 4.

As in [3], we capture wire and buffer congestion using a tile
graph G = (V, E) which has an edge between any two adja-
cent tiles (see Figure 1), together with buffer and wire capacity
functions b : V → IN and w : E → IN, respectively. For
each tile v ∈ V , the buffer capacity b(v) is the number of buffer
sites located in v. Similarly, for each edge e = (u, v) ∈ E, the
wire capacity w(e) is the number of routing channels available
between tiles u and v.

b1

t1

t 2

s1

s2

Figure 1: Tile graph with two 2-pin nets.

Let N1, N2, . . . , Nk be the given nets, where each net Ni is
specified by a source si and a sink ti. For each net Ni, we seek
an si–ti path Pi in G buffered using only available buffer sites
such that the source vertex and the buffers drive each at most U
units of wire, where U is a given upper-bound (the example in
Figure 1 has U = 5). Formally, a feasible buffered routing for
net Ni is a path Pi = (v0, v1, . . . , vli) in G together with a set
of buffers Bi ⊆ {v0, . . . , vli} such that:

• v0 = si and vli = ti;

• w(vi−1, vi) ≥ 1 for every i = 1, . . . , li;

• b(vi) ≥ 1 for every vi ∈ Bi; and

• The length along Pi between v0 and the first buffer in Bi,
between consecutive buffers, and between the last buffer
and vli , are all at most U .

Given feasible buffered routings (Pi, Bi) for each net Ni,
the relative buffer and wire congestion are defined by

µ = max
v∈V

|{i : v ∈ Bi}|

b(v)

and

ν = max
e∈E

|{i : e ∈ Pi}|

w(e)

respectively. The buffered paths (Pi, Bi), i = 1, . . . , k, are
simultaneously routable if and only if both µ ≤ 1 and ν ≤ 1.
Using a linear combination of total wirelength and buffer count
as solution quality measure, we get the following formulation:

Integrated Global Routing and Bounded Wireload Buffer
Insertion Problem1

Given:

• Grid-graph G = (V, E), with buffer and wire capacities
b : V → IN, respectively w : E → IN;

• 2-pin nets N1, . . . , Nk, each net Ni with a source pin si

and a sink pin ti; and

• Wireload upper-bound U > 0

Find: feasible buffered routings (Pi, Bi) for each net Ni with
relative buffer congestion µ ≤ 1 and relative wire congestion
ν ≤ 1, minimizing α

∑k

i=1
|Bi| + β

∑k

i=1
|Pi|, where α, β ≥

0 are given constants.
1The problem is called Floorplan Evaluation Problem in [4], but the formula-

tion is useful in post-placement scenarios as well.

5v

0

3v

2v

1v

v

v

u

1

0

u

3

2

4

u5

u4

u

u

Cap=w(u,v)

Cap=b(v)Cap=b(u)

Figure 2: The basic gadget replacing edge (u, v) of the tile graph
for buffer wireload upperbound U = 5.

3 Solution Based on Multicommodity Flow Approximation

The high-level steps in the multicommodity flow based approach
in [4] are the following:

1. Build an auxiliary graph in which every directed path from
a net source to the net’s sink captures a feasible wire route
between them together with locations for the buffers to be
inserted on this route such that buffer load constraints are
satisfied. The auxiliary graph is obtained automatically
from the tile graph using a gadget construction.

2. Use the auxiliary graph to formulate the floorplan evalua-
tion problem as an integer linear program (ILP). To for-
mally express the ILP, we use a 0/1 variable for each
source-sink path, and require that exactly one path be cho-
sen for each source-sink pair. The objective is to minimize
the wire and buffer congestion subject to a given upper-
bound on the total wirelength.

3. Find a near-optimal solution to the fractional relaxation of
the above integer program using the general framework
for multicommodity flow approximation of [13, 12]. Al-
though the integer program has exponential size (there are
exponentially many variables corresponding to source-sink
paths in the auxiliary graph), the algorithm still runs in
polynomial time by representing explicitly only non-zero
variables.

4. Finally, use randomized rounding [16] to convert the frac-
tional multicommodity flow to an integer one.

To facilitate understanding of the constructions given in Sec-
tion 4, we discuss here in detail the construction of the auxiliary
directed graph H which captures feasible buffered routings (see
Figure 2). Recall that, for every feasible buffered routing in the
tile graph G = (V (G), E(G), b, w), the wireload of the source
and of each buffer must be at most U . The graph H has U + 1
vertices v0, v1, . . . , vU for each vertex v ∈ V (G). The index
of each copy corresponds to the remaining wireload budget, i.e.,
the number of units of wire that can still be driven by the last in-
serted buffer (or by the net’s source). Buffer insertions are repre-
sented in the gadget graph by directed arcs of the form (vj , vU):
following such an arc resets the remaining wireload budget up
to the maximum value of U . Each undirected edge (u, v) in the
tile graph gives rise to directed arcs (uj , vj−1) and (vj , uj−1),

j = 1, . . . , U , in the gadget graph. Notice that the copy num-
ber decreases by 1 for each of these arcs, corresponding to a
decrease of 1 unit in the remaining wireload budget. In addi-
tion, we add to H individual vertices to represent net sources
and sinks. Each source vertex is connected by a directed arc into
the U -th copy of the node representing the enclosing tile. Fur-
thermore, all copies of the nodes representing enclosing tiles are
connected by directed arcs into the respective sink vertices.

Formally, the graph H has vertex set

V (H) = {si, ti | 1 ≤ i ≤ k} ∪ {vj | v ∈ V (G), 0 ≤ j ≤ U}

and arc set

E(H) = Esrc ∪ Esink ∪
(

⋃

(u,v)∈E(G)

Eu,v

)

∪
(

⋃

v∈V (G)

Ev

)

where

Esrc = {(si, v
U) | tile v contains si, 1 ≤ i ≤ k}

Esink = {(vj , ti) | tile v contains ti, 0 ≤ j ≤ U, 1 ≤ i ≤ k}
Eu,v = {(uj , vj−1), (vj , uj−1) | 1 ≤ j ≤ U}
Ev = {(vj , vU) | 0 ≤ j < U}

Each directed path in the gadget graph H corresponds to a
buffered routing in the tile graph, obtained by ignoring copy in-
dices for tile vertices and replacing each“buffer” arc (vj , vU)
with a buffer inserted in tile v. Clearly, the construction ensures
that the wireload of each buffer is at most U since a directed path
in H can visit at most U vertices before following a buffer arc.

Let Pi denote the set of all simple si–ti paths in H . To get
an ILP formulation, we introduce a 0/1 variable xp for every
path p ∈ P := ∪k

1Pi. The variable xp is set to 1 if the buffered
routing corresponding to p ∈ Pi is used to connect net Ni, and to
0 otherwise. With this notation, the integrated global routing and
bounded wireload buffer insertion problem can be formulated as
follows:

min
∑

p∈P

(

α
∑

v∈V (G)

|p ∩ Ev| + β
∑

(u,v)∈E(G)

|p ∩ Eu,v|
)

xp (1)

subject to
∑

p∈P
|p ∩ Ev| xp ≤ 1 b(v), v ∈ V (G)

∑

p∈P
|p ∩ Eu,v|xp ≤ 1 w(u, v), (u, v) ∈ E(G)

∑

p∈Pi

xp = 1, i = 1, . . . , k

xp ∈ {0, 1}, p ∈ P

ILP (1) is similar to the “path” formulation of the classi-
cal minimum cost integer multicommodity flow problem [2].
The only difference is that capacity constraints on the edges
and vertices of the tile graph G become capacity constraints for
sets of edges of the gadget graph H (see Figure 2). We note
that the floorplan evaluation problem can be represented more
compactly by using a polynomial number of edge-flow vari-
ables instead of the exponential number of path-flow variables
xp. However, we use formulation (1) since it leads to stronger
fractional relaxations [9]. The exponential number of variables
is not impeding the efficiency of the approximation algorithm,
which, during its execution, represents explicitly only a polyno-
mial number of paths with non-zero flow.

Instead of solving the relaxation of ILP (1) directly [4] intro-
duces an upper bound D on the wire and buffer area and consid-
ers the following related linear program (LP):

min λ (2)

subject to

∑

p∈P

(

α
∑

v∈V (G)

|p ∩ Ev| + β
∑

(u,v)∈E(G)

|p ∩ Eu,v|
)

xp ≤ λ D

∑

p∈P
|p ∩ Ev|xp ≤ λ b(v), v ∈ V (G)

∑

p∈P
|p ∩ Eu,v| xp ≤ λw(u, v), (u, v) ∈ E(G)

∑

p∈Pi

xp = 1, i = 1, . . . , k

xp ≥ 0, p ∈ P

Let λ∗ be the optimum objective value for LP (2). Solv-
ing the fractional relaxation of ILP (1) is equivalent to find-
ing the minimum D for which λ∗ ≤ 1. This can be done
by a binary search which requires solving the LP (2) for each
probed value of D. A lower bound on the optimal value of
D can be derived by ignoring all buffer and wire capacity
constraints, i.e., by computing for each net Ni buffered paths
p ∈ Pi minimizing α

∑

v∈V (G)

|p ∩ Ev| + β
∑

(u,v)∈E(G)

|p ∩ Eu,v|.

A trivial upper bound is the total routing area available, i.e.,
Dmax = α

∑

v∈V (G)

b(v) + β
∑

(u,v)∈E(G)

w(u, v). In particular, un-

feasibility of the fractional relaxation of ILP (1) is equivalent to
λ∗ being greater than 1 when D = Dmax, and can therefore be
detected by an approximation algorithm for (2).

In the interest of space we omit the details of the algorithm
for approximating the optimum solution to LP (2), and direct the
interested reader to [4].

4 Extensions

In this section we show how to extend the multicommodity flow
approach to handle polarity constraints imposed by the use of
inverting buffers, buffer and wire sizing, and prescribed delay
upperbounds (for the extension to pin assignment see [4, 5]). Po-
larity constraints have not been considered in [4], while the con-
structions presented here for buffer/wire sizing and for enforcing
delay upperbounds are simpler and more efficient than the orig-
inal constructions in [4]. In particular, unlike the constructions
in [4], the constructions given here involve only changes to the
gadget graph, leaving the approximation algorithm used to solve
LP (2) unchanged.

4.1 Polarity Constraints

The basic problem formulation in Section 2 considers only a
non-inverting buffer type. In practice, inverting buffers are often
preferred since they occupy a smaller area for the same driving
strength. Although the use of inverting buffers introduces addi-
tional polarity constraints, which may require a larger number
of buffers to be inserted, inverting buffers are likely to lead to
better overall resource utilization. Algorithms for bounded ca-
pacitive load inverting (and non-inverting) buffer insertion have
been recently discussed in [7]. The focus of [7] is on single net

u2
odd

u1
odd

u2
odd

v2
even

v1
even

v0
even

u2 v2 u2
even

v2
odd

u0

u1 v1 u1
even

u0
even

v0

v1
odd

v2
odd

Figure 3: Gadget for polarity constraints with buffer load upperbound U = 2.

u0

u1

v0

v1

u2

u3

u4

v2

v3

v4

u0

u1

v0

v1

u2

u3

u4

v2

v3

v4

(a) (b)

Figure 4: (a) Gadget for buffer sizing with two available buffer
sizes, one with wireload upperbound U = 4 and one with
wireload upperbound U = 2. Solid arcs (ui, u4), respectively
(vi, v4), correspond to the insertion of a buffer capable of driv-
ing 4 units of wire, while dashed arcs (ui, u2) and (vi, v2) cor-
respond to the insertion of a smaller buffer capable of driving 2
units of wire. (b) Gadget for wire sizing with two available wire
widths, standard width and “half” width (i.e., wire with double
per unit capacitive load). Solid arcs (ui, vi−1) and (vi, ui−1)
correspond to standard width connections between tiles u and v,
while dashed arcs (ui, vi−2) and (vi, ui−2) correspond to half-
width connections.

buffering, with arbitrary positions for the buffers. Here, our goal
is to minimize the overall number of buffers required by the nets,
and to ensure that buffers are inserted only in the available sites.

Consideration of polarity constraints is achieved by modify-
ing the basic gadget graph given in Section 2 as follows (see
Figure 3). Each node of the basic gadget is replaced by an
“even” and “odd” copy, i.e., vi is propagated into vi

even and
vi

odd. Tile-to-tile arcs are replaced by two arcs connecting copies
with the same polarity, e.g., the arc (ui, vi−1) gives rise to
(ui

even, vi−1
even) and (ui

odd, v
i−1
odd). If a path uses such an arc, then

it does not change polarity. Instead, each buffer arc changes po-
larity, i.e., (vi, vU) gives rise to (vi

even, vU
odd) and (vi

odd, v
U
even).

The gadget also allows two inverting buffers to be inserted in
the same tile for the purpose of meeting polarity constraints.
This is achieved by providing bidirectional arcs connecting the
U -th even and odd copies of a tile v, i.e., (uU

even, uU
odd) and

(vU
odd, vU

even). Finally, source vertices si are connected by di-
rected arcs into the even U -th copy of enclosing tiles, and only
copies of the desired polarity are connected by arcs to sink ver-
tices ti.

4.2 Buffer and Wire Sizing

Buffer and wire sizing are well-known techniques for timing op-
timization in the final stages of the design cycle [10]. However,

buffer and wire sizing can be equally effective for reducing con-
gestion and/or wiring resources. In this section we show how to
incorporate buffer and wire sizing in the multicommodity flow
framework. The key enablers to these extensions are again ap-
propriate modifications of the gadget graph.

The gadget for buffer sizing is illustrated in Figure 4(a) for
two available buffer sizes, one with wireload upperbound U = 4
and one with wireload upperbound U = 2. The general con-
struction entails using a number of copies of each tile vertex
equal to the maximum buffer load upperbound U . For every
buffer with wireload upperbound of U ′ ≤ U , we insert buffer
arcs (vi, vU′

) for every 0 ≤ i < U ′. Thus, the copy number of
each vertex continues to capture the remaining wireload budget,
which ensures the correctness of the construction.

Wire sizing can be handled by a different modification of the
gadget graph (see Figure 4(b)). Assuming that per unit capaci-
tances of the thinner wire widths are rounded to integer multiples
of the “standard” per unit capacitance, the gadget models the use
of thinner segments of wire by providing tile-to-tile arcs which
decrease the tile copy index (i.e., remaining wireload budget)
by more than one unit. For example, in Figure 4(b), solid arcs
(ui, vi−1) and (vi, ui−1) correspond to standard width connec-
tions between tiles u and v, while dashed arcs (ui, vi−2) and
(vi, ui−2) correspond to “half-width” connections, i.e., connec-
tions using wire with double capacitive load per unit.

4.3 Delay Constraints

[4] proposed a method for enforcing given sink delay constraints
based on charging wiresegment delays to buffer arcs in the gad-
get graph, and using a routine for computing minimum-weight
delay constrained paths in the algorithm for approximating the
fractional solution to ILP (1). Here we give a different method
for handling sink delay constraints. The new method is similar
in spirit to the constructions in previous sections, relying exclu-
sively on a modification of the gadget graph.

In general, our construction applies for any delay model,
such as the Elmore delay model, for which (1) the delay of a
buffered path is the sum of the delays of the path segments sep-
arated by the buffers, and (2) the delay of each segment depends
only on segment length and buffer parameters. However, for the
sake of efficiency, segment delays would have to be rounded to
relatively coarse units.

Figure 5 shows the gadget construction for the case when
delay is measured simply as the number of inserted buffers. The
idea is again to replicate the basic gadget construction, this time
a number of times equal to the maximum allowed net delay.
Within each replica, tile-to-tile arcs decrease remaining wireload
budget by one unit. In order to keep track of path delays, buffer
arcs advance over a number of gadget replicas equal to the de-
lay of the wiresegment ended by the respective buffer (this delay
can be easily determined for each buffer arc since the tail of the

u0
0

u1
0

u2
0

v0
0

v1
0

v2
0

u0
1

u1
1

u2
1

v0
1

v1
1

v2
1

u0
2

u1
2

u2
2

v0
2

v1
2

v2
2

u0
3

u1
3

u2
3

v1
3

v2
3

v0
3

Figure 5: Gadget for enforcing delay constraints when the delay is measured by the number of buffers inserted between source and
sink. The basic gadget is replicated a number of times equal to the maximum allowed net delay (3 in this example). Tile-to-tile arcs
decrease remaining wireload budget within a gadget replica, while buffer arcs advance from one replica to the next.

Table 1: Circuit parameters.

Circuit # 2-Pin Grid Tile w(e) Avg. tiles U #Buffer
Nets size area per pin sites

a9c3 1526 30 x 30 1.09 52 4.9 6 32780
ac3 409 30 x 30 0.49 26 5.0 7 8550

ami33 324 33 x 30 0.46 32 5.0 6 17750
ami49 493 30 x 30 0.68 14 4.8 6 11450

apte 141 30 x 33 0.36 13 5.0 7 4200
hc7 1318 30 x 30 1.04 28 4.8 6 17780
hp 187 30 x 30 0.42 12 5.0 7 2350

playout 1663 33 x 30 0.78 120 4.8 7 37550
xc5 2149 30 x 30 0.58 50 5.0 7 19150

xerox 390 30 x 30 0.38 40 5.0 7 7000

arc fully identifies the length of the wiresegment). The construc-
tion is completed by connecting net sources to the vertices with
maximum remaining wireload budget in the “0 delay” replica of
the gadget graph, and adding arcs into the sinks from all vertices
in replicas corresponding to delays smaller than the given delay
upperbounds.

5 Experimental Results

In this section we report results for a C implementation of our 2-
pin net multicommodity flow based algorithm. All experiments
have been conducted on a 360 MHz SUN Ultra 60 workstation
with 2 GB of memory, running under SunOS 5.7. We present
results for the 10 circuits in [6, 4], which are derived from test-
cases first used by [10]. For a more comprehensive set of results
– in particular, for results on integrated pin assignment and a
comparison of our method to the RABID algorithm of [6] – we
direct the reader to [5].

Circuit parameters are summarized in Table 1. As in [6] and
[10], we decomposed multipin nets into 2-pin nets by making
direct connections from the source of a net to each of the net’s
sinks.

Tables 2 gives results for the extension of the multicommod-
ity flow algorithm to inverting buffer insertion, which is about
twice slower than non-inverting buffer insertion due to the dou-
bling in size of the gadget graph. Inverter insertion leads to a
very small increase in the number of buffers (due to the need to
satisfy polarity constraints) which is easily compensated by the
smaller size of inverters. At the same time, inverter insertion re-
quires virtually the same wirelength (and often gives improved
congestion, see [5]).

Table 3 gives runtime scaling results for the extension of
the multicommodity flow algorithm to delay constraints. We

Table 2: Wirelength minimization results for non-inverting vs.
inverting buffer insertion. The number of buffer sites was as-
sumed to be the same in both experiments.

Testcase Non-inverting buffers Inverting buffers
Wlen #buffers CPU Wlen #buffers CPU

a9c3 29082 3800 775 29082 4540 1470
ac3 5530 905 204 5530 1095 417

ami33 4893 1014 177 4893 1186 359
ami49 6792 1133 227 6790 1417 449

apte 1833 377 88 1833 441 185
hc7 20024 2591 551 20024 3358 1030
hp 2165 404 95 2164 495 201

playout 25946 3429 1002 25946 4235 1982
xc5 25151 3843 1162 25222 4799 2285

xerox 4078 805 212 4155 1050 520

note that the algorithm becomes faster for very tight delay con-
straints, since the number of nets that can meet delay constraints
is only a fraction of the total number of nets. For moderately
tight delay constraints almost all nets become routable, yet the
runtime is comparable to that of the unconstrained version of
the algorithm. For very lax delay constraints all nets become
routable, and the runtime becomes significantly higher than that
of the delay-oblivious version of the algorithm, by a factor
roughly proportional to the increase in the size of the gadget
graph, i.e., the maximum delay upperbound. However, large de-
lay constraints are not very useful since they are satisfied almost
in totality by using the unconstrained version of the algorithm.

To further explore the scalability of our multicommodity
flow algorithm, in Table 4 we report its memory usage and run-
time as a function of the grid size and of the precision parameter
ε. We note that memory usage grows roughly proportional to the
grid size, while the runtime does not always follow the quadratic
dependence on 1/ε since, as in all previous experiments, the
number of iterations was limited to no more than 64.

6 Conclusions

In this paper we have reviewed the powerful multicommodity
flow based approach to integrated congestion and timing-driven
global routing, buffer insertion, pin assignment, and buffer/wire
sizing introduced in [4]. We have extended the method to cap-
ture polarity constraints induced by inverter insertion, and have
presented simpler and more efficient gadget constructions for
buffer/wire sizing and enforcing delay constraints.

An important direction for future research is to find practi-
cal extensions of the multicommodity flow approach to multipin

Table 3: Runtime scaling for the timing-driven version of the MCF algorithm (delay measured by number of inserted buffers).

Testcase Delay bound = 1 Delay bound = 2 Delay bound = 4 Delay bound = 8 No delay bound
#nets CPU #nets CPU #nets CPU #nets CPU #nets CPU

a9c3 455 77 820 361 1361 2178 1526 7667 1526 775
ac3 152 29 249 122 374 666 409 2270 409 204

ami33 63 13 125 50 260 413 323 1761 324 177
ami49 177 25 298 113 442 598 493 2161 493 227

apte 49 12 67 33 126 255 141 968 141 88
hc7 569 70 873 305 1231 1584 1318 5217 1318 551
hp 76 15 124 63 174 330 187 1083 187 95

playout 657 124 1095 651 1575 3506 1663 10979 1663 1002
xc5 1072 192 1429 748 2100 4158 2149 12351 2149 1162

xerox 163 29 282 201 360 752 390 2308 390 212

nets. Unfortunately, the solution proposed in [4] for 3-pin nets
becomes impractical when generalized to larger net sizes.

7 Acknowledgments

I would like to thank C. Albrecht, A.B. Kahng, and A. Ze-
likovsky, with whom most of the presented ideas have been de-
veloped. I would also like to thank C. Alpert, J. Cong, and J. Hu
for providing the testcases used in experiments.

References

[1] International Technology Roadmap for Semiconductors,
http://public.itrs.net/ (2002 Update).

[2] Ahuja, R. K., T. L. Magnanti, and J. B. Orlin, Network
Flows: Theory, Algorithms, and Applications, Prentice-
Hall, Englewood Cliffs, NJ, 1993.

[3] C. Albrecht, “Global Routing by New Approximation Al-
gorithms for Multicommodity Flow”, IEEE Trans. on CAD
20 (2001), pp. 622–632.

[4] C. Albrecht, A. B. Kahng, I. I. Măndoiu and A. Zelikovsky,
“Floorplan Evaluation with Timing-Driven Global Wire-
planning, Pin Assignment, and Buffer/Wire Sizing”, Proc.
Intl. Conf. on VLSI Design/ASP-DAC, Jan. 2002, pp. 580-
587.

[5] C. Albrecht, A. B. Kahng, I. I. Măndoiu and A. Zelikovsky,
“Floorplan Evaluation with Timing-Driven Global Wire-
planning, Pin Assignment, and Buffer/Wire Sizing”, sub-
mitted to IEEE Trans. on CAD.

[6] C. Alpert and J. Hu and S. Sapatnekar and P. Villarru-
bia, “A practical methodology for early buffer and wire
resource allocation”, Proc. DAC, 2001.

[7] C. Alpert, A.B. Kahng, B. Liu, I.I. Măndoiu, and A.Z. Ze-
likovsky. “Minimum buffered routing with bounded capac-
itive load for slew rate and reliability control”, IEEE Trans.
on CAD 22 (2003), pp. 241–253.

[8] R.C. Carden and C.-K. Cheng, “A global router using an
efficient approximate multicommodity multiterminal flow
algorithm”, Proc. DAC, 1991, pp. 316–321.

[9] S. Chopra, “Comparisons of formulations and a heuristic
for packing Steiner trees in a graph”, Annals of Oper. Res.
50 (1994), pp. 143–171.

Table 4: Memory usage (Mb) and runtime (CPU seconds) for
the MCF algorithm on testcase a9c3 as a function of ε and grid
size. The number of iterations was bounded to 64.

ε 10×10 20×20 30×30 40×40 50×50
Mb CPU Mb CPU Mb CPU Mb CPU Mb CPU

0.9 14 32 51 58 111 195 195 664 304 2094
0.6 14 31 51 93 111 396 195 1598 304 4226
0.3 14 45 51 297 111 775 195 1925 304 4283

[10] J. Cong, T. Kong and D.Z. Pan, “Buffer block planning for
interconnect-driven floorplanning”, Proc. ICCAD, 1999,
pp. 358–363.

[11] F. F. Dragan, A. B. Kahng, I. I. Măndoiu, S. Muddu and
A. Zelikovsky, “Provably Good Global Buffering by Gen-
eralized Multiterminal Multicommodity Flow Approxima-
tion”, IEEE Trans. on CAD 21 (2002), pp. 263–274.

[12] L.K. Fleischer, “Approximating fractional multicommod-
ity flow independent of the number of commodities”, SIAM
J. Discrete Math. 13 (2000), pp. 505–520.

[13] N. Garg and J. Könemann, “Faster and simpler algo-
rithms for multicommodity flow and other fractional pack-
ing problems”, Proc. 39th Annual Symp. on Foundations
of Computer Science, 1998, pp. 300–309.

[14] J. Hu and S. Sapatnekar, “A survey on multi-net global
routing for integrated circuits”, Integration 31 (2001), pp.
1–49.

[15] J. Huang, X.-L. Hong, C.-K. Cheng and E. S. Kuh, “An
Efficient Timing Driven Global Routing Algorithm”, Proc.
DAC, 1993, pp. 596–600.

[16] P. Raghavan and C.D. Thomson, “Randomized rounding”,
Combinatorica, 7 (1987), pp. 365–374.

[17] F. Shahrokhi and D. W. Matula, “The Maximum Concur-
rent Flow Problem”, J. Assoc. Comput. Mach. 37(2), Apr.
1990, pp. 318–334.

[18] X. Tang and D.F. Wong, “Planning buffer locations by net-
work flows”, Proc. ISPD, 2000, pp. 180–185.

[19] J. Vygen, Theory of VLSI Layout, Habilitation thesis, Uni-
versity of Bonn, 2001.

