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Abstract. Two main transcriptome sequencing protocols have been pro-
posed in the literature: the most commonly used shotgun sequencing of
full length mRNAs (RNA-Seq) and 3-tag digital gene expression (DGE).
In this paper we present a novel expectation-maximization algorithm,
called DGE-EM, for inference of gene-specific expression levels from DGE
tags. Unlike previous methods, our algorithm takes into account alter-
native splicing isoforms and tags that map at multiple locations in the
genome, and corrects for incomplete digestion and sequencing errors.
The open source Java/Scala implementation of the DGE-EM algorithm
is freely available at http://dna.engr.uconn.edu/software/DGE-EM/.
Experimental results on real DGE data generated from reference RNA
samples show that our algorithm outperforms commonly used estima-
tion methods based on unique tag counting. Furthermore, the accuracy
of DGE-EM estimates is comparable to that obtained by state-of-the-art
estimation algorithms from RNA-Seq data for the same samples. Results
of a comprehensive simulation study assessing the effect of various ex-
perimental parameters suggest that further improvements in estimation
accuracy could be achieved by optimizing DGE protocol parameters such
as the anchoring enzymes and digestion time.

1 Introduction

Massively parallel transcriptome sequencing is quickly replacing microarrays as
the technology of choice for performing gene expression profiling due to its wider
dynamic range and digital quantitation capabilities. However, accurate estima-
tion of expression levels from sequencing data remains challenging due to the
short read length delivered by current sequencing technologies and still poorly
understood protocol- and technology-specific biases. To date, two main tran-
scriptome sequencing protocols have been proposed in the literature. The most
commonly used one, referred to as RNA-Seq, generates short (single or paired)
sequencing tags from the ends of randomly generated cDNA fragments. An al-
ternative protocol, referred to as 3’-tag Digital Gene Expression (DGE), or high-
throughput sequencing based Serial Analysis of Gene Expression (SAGE-Seq),
generates single cDNA tags using an assay including as main steps transcript
capture and cDNA synthesis using oligo(dT) beads, cDNA cleavage with an an-
choring restriction enzyme, and release of cDNA tags using a tagging restriction



enzyme whose recognition site is ligated upstream of the recognition site of the
anchoring enzyme.

While computational methods for accurate inference of gene (and isoform)
specific expression levels from RNA-Seq data have attracted much attention re-
cently (see, e.g., [4,6,8]), analysis of DGE data still relies on direct estimates
obtained from counts of uniquely mapped DGE tags [1, 10]. In part this is due to
salient features of the DGE protocol, which, unlike RNA-Seq, guarantees that
each mRNA molecule in the sample generates at most one tag and obviates
the need for length normalization. Nevertheless, ignoring ambiguous DGE tags
(which, due to the severely restricted tag length, can represent a sizeable fraction
of the total) is at best discarding useful information, and at worst may result in
systematic inference biases. In this paper we seek to address this shortcoming of
existing methods for DGE data analysis. Our main contribution is a rigorous sta-
tistical model of DGE data and a novel expectation-maximization algorithm for
inference of gene and isoform expression levels from DGE tags. Unlike previous
methods, our algorithm, referred to as DGE-EM, takes into account alternative
splicing isoforms and tags that map at multiple locations in the genome, and cor-
rects for incomplete digestion and sequencing errors. Experimental results show
that DGE-EM outperforms methods based on unique tag counting on a multi-
library DGE dataset consisting of 20bp tags generated from two commercially
available reference RNA samples that have been well-characterized by quanti-
tative real time PCR as part of the MicroArray Quality Control Consortium
(MAQQO).

We also take advantage of the availability of RNA-Seq data generated from
the same MAQC samples to directly compare estimation performance of the
two transcriptome sequencing protocols. While RNA-Seq is clearly more pow-
erful than DGE at detecting alternative splicing and novel transcripts such as
fused genes, previous studies have suggested that for gene expression profiling
DGE may yield accuracy comparable to that of RNA-Seq at a fraction of the cost
[7]. We find that the two protocols achieve similar cost-normalized accuracy on
the MAQC samples when using state-of-the-art estimation methods. However,
the current protocol versions are unlikely to be optimal. Indeed, the results of a
comprehensive simulation study assessing the effect of various experimental pa-
rameters suggest that further improvements in DGE accuracy could be achieved
by using anchoring enzymes with degenerate recognition sites and using partial
digest of cDNA with the anchoring enzyme during library preparation.

2 DGE Protocol

The DGE protocol generates short cDNA tags from a mRNA population in
several steps (Figure 1). First, PolyA+ mRNA is captured from total RNA using
oligo-dT magnetic beads and used as template for cDNA synthesis. The double
stranded cDNA is then digested with a first restriction enzyme, called Anchoring
Enzyme (AE), with known sequence specificity (e.g., the Nlalll enzyme cleaves
c¢DNA at sites at which the four nucleotide motif CATG appears). We refer to
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Fig. 1. Schematic representation of the DGE protocol
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the cDNA sites cleaved by the anchoring enzyme as AFE sites. The recognition
site of a second restriction enzyme, called Tagging Enzyme (TE) is ligated to
the fragments of cDNA that remain attached to the beads after cleavage with
the AE, immediately upstream of the AE site. The cDNA fragments are then
digested with TE, which cleaves several bases away from its recognition site.
This results in very short ¢cDNA tags (10 to 26 bases long, depending on the
TE used), which are then sequenced using any of the available high-throughout
technologies.

Since the recognition site of AE is only 4 bases long, most transcripts contain
multiple AE sites. Under perfect experimental conditions, full digest by AE
would ensure that DGE tags are generated only from the most 3’ AE site of
each transcript. In practice some mRNA molecules release tags from other AE
sites, or no tag at all. As in [10], we assume that the cleavage probability of the
AE, denoted by p, is the same for all AE sites of all transcripts. Since only the
most 3’ cleaved AE site of a transcript releases a DGE tag, the probability of
generating a tag from site i = 1,. .., k follows a geometric distribution with ratio
1 — p as shown in Figure 2, where sites are numbered starting from the 3’ end.
Note that splicing isoforms of a gene are likely to share many AE sites. However,
the probability of generating a tag from a site is isoform specific since it depends
on the number downstream AE sites on each isoform. Thus, although the primary
motivation for this work is inference of gene expression levels from DGE tags, the
algorithm presented in next section must take into account alternative splicing
isoforms to properly allocate ambiguous tags among AFE sites.



3 DGE-EM Algorithm

Previous studies have either discarded ambiguous DGE tags (e.g. [1, 10]) or used
simple heuristic redistribution schemes for rescuing some of them. For example,
in [9] the rightmost site in each transcript is identified as a “best” site. If a tag
matches several locations, but only one of them is a best site, then the tag is
assigned to that site. If a tag matches multiple locations, none of which is a best
site, the tag is equally split between these locations. In this section we detail
an Expectation Maximization algorithm, referred to as DGE-EM, that proba-
bilistically assigns DGE tags to candidate AE sites in different genes, different
isoforms of the same gene, as well as different sites within the same isoform.

In a pre-processing step, a weight is assigned to each (DGE tag, AE site) pair,
reflecting the conditional probability of the tag given the site that releases it. This
probability is computed from base quality scores assuming that sequencing errors
at different tag positions arise independently of one another. Formally, the weight
for the alignment of tag ¢t with the j*® rightmost AE site in isoform 4 is wy; ;

\kﬂ:l [(1—ex) My, + (1= My, )], where My . is 1 if position & of tag ¢ matches the
corresponding position at site j in the transcript, 0 otherwise, while € denotes
the error probability of the k-th base of ¢, derived from the corresponding Phred
quality score reported by the sequencing machine. In practice we only compute
these weights for sites at which a tag can be mapped with a small (user selected)
number of mismatches, and assume that remaining weights are 0. To each tag ¢
we associate a “tag class” y; which consists of the set of triples (7, j, w) where i
is an isoform, j is an AE site in isoform i, and w > 0 is the weight associated
as above to tag ¢t and site j in isoform 4. The collection of tag classes, y = (y:):,
represents the observed DGE data.

Let m be the number of isoforms. The parameters of the model are the rela-
tive frequencies of each isoform, 6 = (f;)i=1,...,m. Let n; ; denote the (unknown)
number of tags generated from AE site j of isoform ¢. Thus, z = (n; ;)i ; repre-
sents the complete data. Denoting by k; the number of AE sites in isoform ¢, by
N; = Ele n;; the total number of tags from isoform i, and by N = > | N;
the total number of tags overall, we can write the complete data likelihood as
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where § =Y 251:1 fil=p)tp=%", fi (1= (1 —p)*). Put into words,
the probability of observing a tag from site j in isoform i is the frequency of that
isoform (f;) times the probability of not cutting at any of the first j — 1 sites
and cutting at the j*® [(1 — p)’~!p]. Notice that the algorithm effectively down-
weights the matching AE sites far from the 3’ end based on the site probabilities
shown in Figure 2. Since for each transcript there is a probability that no tag is
actually generated, for the above formula to use proper probabilities we have to
normalize by the sum S over all observable AE sites.



Taking logarithms in (1) gives the complete data log-likelihood:

ki
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3.1 E-Step

Let ¢; ; = {y:|3w s.t. (4,7,w) € y:} be the collection of all tag classes that are
compatible with AE site j in isoform ¢. The expected number of tags from each
cleavage site of each isoform, given the observed data and the current parameter
estimates #("), can be computed as
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This means that each tag class is fractionally assigned to the compatible isoform

AE sites based on the frequency of the isoform, the probability of cutting at

the cleavage sites where the tag matches, and the confidence that the tag comes

from each location.

3.2 M-Step

In this step we want to select # that maximizes the Q function,
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Partial derivatives of the Q function are:
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Letting C = N/(3)", fi (1 = (1 — p)*)) and equating partial derivatives to 0
gives
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Since Y ", fi = 1 it follows that
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3.3 Inferring p

In the above calculations we assumed that p is known, which may not be the case
in practice. Assuming the geometric distribution of tags to sites, the observed
tags of each isoform provide an independent estimate of p [10]. However, the
presence of ambiguous tags complicates the estimation of p on an isoform-by-
isoform basis. In order to globally capture the value of p we incorporate it in
the DGE-EM algorithm as a hidden variable and iteratively re-estimate it as the
distribution of tags to isoforms changes from iteration to iteration.

We estimate the value of p as N'/D, where D denotes the total number
of RNA molecules with at least one AE site, and N! = Z:ll n;1 denotes the
total number of tags coming from first AE sites. The total number of RNA
molecules representing an isoform is computed as the number of tags coming
from that isoform divided by the probability that the isoform is cut. This gives
D =3"" N;/(1—(1-p)*), which happens to be the normalization term used
in the M step of the algorithm.

3.4 Implementation

For an efficient implementation, we pre-process AE sites in all the known iso-
form sequences. All tags that can be generated from these sites, assuming no
errors, are stored in a trie data structure together with information about their
original locations. Searching for a tag is performed by traversing the trie, per-
mitting for as many jumps to neighboring branches as the maximum number
of mismatches allowed. The Expectation Maximization part of DGE-EM, which
follows after mapping, is given in Algorithm 1 (for simplicity, the re-estimation
of p is omitted).

In practice, for performance reasons, tags with the same matching sites and
weights are collapsed into one, keeping track of their multiplicity. Then the EM
algorithm can process them all at once by factoring in their multiplicity when
increasing the n(iso, site) counter. This greatly reduces the running time and
memory footprint.

4 Results

4.1 Experimental Setup

We conducted experiments on both real and simulated DGE and RNA-Seq
datasets. In addition to estimates obtained by DGE-EM, for DGE data we also
computed direct estimates from uniquely mapped tags; we refer to this method



Algorithm 1 DGE-EM algorithm

assign random values to all f()
while not converged do
initialize all n(iso, site) to 0
for each tag class t do
sum = Z(iso,site,w)et w X f(iso) x (1 —p
for (iso, site, w) € t do
n(iso, site)+ = w x f(iso) x (1 — p)***~* /sum
end for
end for
for each isoform i do
Ni = 358 (i, 5)
F) = Nif(1 = (1 — p)ites)
end for
end while

)sitcfl

as “Uniq”. RNA-Seq data was analyzed using both our IsoEM algorithm [6],
which was shown to outperform existing methods of isoform and gene expres-
sion level estimation, and the well-known Cufflinks algorithm [8]. As in previous
works [4, 6], estimation accuracy was assessed using the median percent error
(MPE), which gives the median value of the relative errors (in percentage) over
all genes.

Real DGE datasets included nine libraries kindly provided to us (in fastq
format) by the authors of [1]. These libraries were independently prepared and
sequenced at multiple sites using 6 flow cells on Illumina Genome Analyzer (GA)
I and II platforms, for a total of 35 lanes. The first eight libraries were prepared
from the Ambion Human Brain Reference RNA, (Catalog #6050), henceforth
referred to as HBRR and the ninth was prepared from the Stratagene Universal
Human Reference RNA (Catalog #740000) henceforth referred to as UHRR.
DpnllI, with recognition site GATC, was used as anchoring enzyme and Mmel
as tagging enzyme, resulting in approximately 238 million tags of length 20 across
the 9 libraries. Unless otherwise indicated, Uniq estimates are based on uniquely
mapped tags with 0 mismatches (63% of all tags) while for DGE-EM we used
all tags mapped with at most 1 mismatch (83% of all tags) since preliminary
experiments (Section 4.2) showed that these are the optimal settings for each
algorithm.

For comparison, we downloaded from the SRA repository two RNA-Seq
datasets for the HBRR sample and six RNA-Seq datasets for the UHRR sample
(SRA study SRP001847 [2]) . Each RNA-Seq dataset contains between 47 and
92 million reads of length 35. We mapped RNA-Seq reads onto Ensembl known
isoforms (version 59) using bowtie [3] after adding a polyA tail of 200 bases to
each transcript. Allowing for up to two mismatches, we were able to map be-
tween 65% and 72% of the reads. We then ran IsoEM and Cufflinks assuming a
mean fragment length of 200 bases with standard deviation 50.



To assess accuracy, gene expression levels estimated from real DGE and
RNA-Seq datasets were compared against TagMan qPCR measurements (GEO
accession GPL4097) collected by the MicroArray Quality Control Consortium
(MAQC). As described in [5], each TagMan Assay was run in four replicates for
each measured gene. POLR2A (ENSEMBL id ENSG00000181222) was chosen
as the reference gene and each replicate CT was subtracted from the average
POLR2A CT to give the log2 difference (delta CT). For delta CT calculations,
a CT value of 35 was used for any replicate that had CT > 35. Normalized ex-
pression values are reported: 2(CT of POLR2A)—(CT of the tested gene) e yged the
average of the qPCR expression values in the four replicates as the ground truth.
After mapping gene names to Ensembl gene IDs using the HUGO Gene Nomen-
clature Committee (HGNC) database, we got TagMan qPCR expression levels
for 832 Ensembl genes. Expression levels inferred from DGE and RNA-Seq data
were similarly divided by the expression level inferred for POLR2A prior to
computing accuracy.

Synthetic error-free DGE and RNA-Seq data was generated using an ap-
proach similar to that described in [6]. Briefly, the human genome sequence
(hg19, NCBI build 37) was downloaded from UCSC and used as reference. We
used isoforms in the UCSC KnownGenes table (n = 77,614), and defined genes
as clusters of known isoforms in the GNFAtlas2 table (n = 19,625). We con-
ducted simulations based on gene expression levels for five different tissues in
GNFAtlas2. The simulated frequency of isoforms within gene clusters followed a
geometric distribution with ratio 0.5. For DGE we simulated data for all restric-
tion enzymes with 4-base long recognition sites from the Restriction Enzyme
Database (REBASE), assuming either complete digestion (p = 1) or partial di-
gestion with p = 0.5. For RNA-Seq we simulated fragments of mean length 250
and standard deviation 25 and simulated polyA tails with uniform length of
250bp. For all simulated data mapping was done without allowing mismatches.

4.2 DGE-EM Outperforms Uniq

The algorithm referred to as Uniq quantifies gene expression based on the number
of tags that match one or more cleavage sites in isoforms belonging to the same
gene. These tags are unique with respect to the source gene. Figure 3 compares
the accuracy of Uniq and DGE-EM on library 4 from the HBRR sample, with the
number of allowed mismatches varying between 0 and 2. As expected, counting
only perfectly mapped tags gives the best accuracy for Uniq, since with the
number of mismatches we increase the ambiguity of the tags, and thus reduce
the number of unique ones. When run with 0 mismatches, DGE-EM already
outperforms Uniq, but the accuracy improvement is limited by the fact that it
cannot tolerate any sequencing errors (tags including errors are either ignored,
or, worse, mapped at an incorrect location). Allowing 1 mismatch per tag gives
the best accuracy of all compared methods, but further increasing the number of
mismatches to 2 leads to accuracy below that achieved when using exact matches
only, likely due to the introduction of excessive tag ambiguity for data for which
the error rate is well below 10%.
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Fig. 3. Median Percent Error of DGE-EM and Uniq estimates for varying number of
allowed mismatches and DGE tags generated from the HBRR library 4.

4.3 Comparison of DGE and RNA-Seq Protocols

Figure 4 shows the gene expression estimation accuracy for 9 DGE and 8 RNA-
Seq libraries generated from the HBRR and UHRR MAQC sample. All DGE
estimates were obtained using the DGE-EM algorithm, while for RNA-Seq data
we used both IsoEM [6] and the well-known Cufflinks algorithm [8]. The cutting
probability inferred by DGE-EM is almost the same for all libraries, with a mean
of 0.8837 and standard deviation 0.0049. This is slightly higher than the esti-
mated value of 70 — 80% suggested in the original study [1], possibly due to their
discarding of non-uniq or non-perfectly matched tags. Normalized for sequencing
cost, DGE performance is comparable to that of RNA-Seq estimates obtained
by IsoEM, with accuracy differences between libraries produced using different
protocols within the range of library-to-library variability within each of the two
protocols. The MPE of estimates generated from RNA-Seq data by Cufflinks is
significantly higher than that of IsoEM and DGE-EM estimates, suggesting that
accurate analysis methods are at least as important as the sequencing protocol.

4.4 Possible DGE Assay Optimizations

To assess accuracy of DGE estimates under various protocol parameters, we
conducted an extensive simulation study where we varied the anchoring enzyme
used, the number of tags, the tag length and the cutting probability. We tested
all restriction enzymes with 4-base long recognition sites from REBASE. Figure
5(a) gives MPE values obtained by the Unique and DGE-EM algorithms for a
subset of these enzymes on synthetic datasets with 30 million tags of length 21,
simulated assuming either complete or p = .5 partial digest. Figure 5(b) gives
the percentage of genes cut and the percentage of uniquely mapped DGE tags
for each of these enzymes. These results suggest that using enzymes with high
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Fig. 4. Median Percent Error of DGE-EM, IsoEM, and Cufflinks estimates from vary-
ing amounts of DGE/RNA-Seq data generated from the HBRR MAQC sample.

percentage of genes cut leads to improvements in accuracy. In particular, en-
zymes like NlaIII (previously used in [9]) with recognition site CATG and CviJI
with degenerate recognition site RGCY (R=G or A, Y=C or T) cut more genes
than the Dpnll (GATC) enzyme used to generate the MAQC DGE libraries, and
yield better accuracy for both Uniq and DGE-EM estimates. Furthermore, for
every anchoring enzyme, partial digestion with p = .5 yields an improved DGE-
EM accuracy compared to complete digestion. Interestingly, Unique estimates
are less accurate for partial digest due to the smaller percentage of uniquely
mapped reads. For comparison, IsoEM estimates based on 30 million RNA-Seq
tags of length 21 yield an MPE of 8.3.

5 Conclusions

In this paper we introduce a novel expectation-maximization algorithm, called
DGE-EM, for inference of gene-specific expression levels from DGE tags. Our
algorithm takes into account alternative splicing isoforms and tags that map
at multiple locations in the genome within a unified statistical model, and can
further correct for incomplete digestion and sequencing errors. Experimental
results on both real and simulated data show that DGE-EM outperforms com-
monly used estimation methods based on unique tag counting. DGE-EM has
cost-normalized accuracy comparable to that achieved by state-of-the-art RNA-
Seq estimation algorithms on the tested real datasets, and outperforms them
on error-free synthetic data. Simulation results suggest that further accuracy
improvements can be achieved by tuning DGE protocol parameters such as the



degeneracy of the anchoring enzyme and cutting probability. It would be inter-
esting to experimentally test this hypothesis.
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Fig. 5. (a) Median Percent Error of Unique and DGE-EM estimates obtained from 30
million 21bp DGE tags simulated for anchoring enzymes with different restriction sites
(averages over 5 GNF-Atlas tissues) (b) Percentage of genes cut and uniquely mapped
tags for each anchoring enzyme.



