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1 Introduction

In this paper we focus on the IE problem, namely estimating isoform expression
levels (interchangeably referred to as frequencies) from RNA-Seq reads, under
the assumption that a complete list of candidate isoforms is available. While
current transcript libraries are still incomplete, we expect their coverage to in-
crease rapidly. Besides facilitating finer-resolution studies of isoform regulation,
improvements in IE accuracy lead to direct improvements in GE estimates (es-
timating gene expression levels). Indeed, as shown in Section 3, genome-wide
gene expression level estimates derived from isoform level estimates are much
more accurate than those obtained directly from RNA-Seq data using isoform-
oblivious GE methods such as the widely used counting of unique reads, the
rescue method of [5], or the recent EM algorithm of [1]. Furthermore, improve-
ments in IE accuracy are likely to also benefit methods for identification of novel
transcripts based on iterative refinement frameworks similar to that proposed in
[2].

Our main contribution is a novel EM algorithm for isoform frequency estima-
tion from (any mixture of) single and paired RNA-Seq reads. A key feature of
our algorithm, referred to as IsoEM, is that it exploits a largely ignored source
of disambiguation information provided by the distribution of insert sizes, which
is typically tightly controlled during library preparation as recommended by se-
quencing instrument manufacturers. The recently published [7] is the only other
work we are aware of that incorporates insert size distribution in conjunction
with paired read data. We show that modeling insert sizes is also highly beneficial
in conjunction with single RNA-Seq reads.

Insert sizes contribute to increased estimation accuracy in two different ways.
On one hand, insert sizes are an important source of disambiguation informa-
tion. In IsoEM, insert lengths are combined with base quality scores, and, if
available, read pairing and strand information to probabilistically allocate reads
to isoforms during the expectation step of the EM algorithm. As in [4], the
genomic locations of multireads are also resolved probabilistically in this step,
further contributing to overall accuracy compared to methods that pre-select



a unique genomic location by ad-hoc filtering rules. On the other hand, insert
size distribution is used to accurately adjust isoform lengths during frequency
re-estimation in the M step of the EM algorithm; an equivalent adjustment was
independently employed in the probabilistic model of [7].

We also present preliminary experimental results on synthetic datasets gen-
erated with various sequencing parameters and distribution assumptions. The
results show that IsoEM algorithm significantly outperforms existing methods
of isoform and gene expression level estimation from RNA-Seq data. Further-
more, we empirically evaluate the effect of sequencing parameters such as read
length, read pairing, and strand information on estimation accuracy. We con-
firm the finding of [4] that, for a fixed total number of typed bases, longer reads
are not necessarily better for estimation accuracy. In particular, for both single
and paired read sequencing, 100bp reads are always dominated by 50bp reads.
This suggests that there may be limited benefits from further increases in read
length and that higher sequencing depth is more critical to expression estimation
accuracy.

2 Methods

2.1 Read mapping

As with most RNA-Seq analyses, the first step of IsoEM is to map the reads. Our
approach is to map the reads onto the library of known isoforms using any one of
the many available aligners (we used Bowtie [3] with default parameters in our
experiments). Although spliced alignment to the genome could also be employed
(as was done in [7] – note that genome mapping is required for discovery of
novel transcripts), preliminary experiments with TopHat [6] resulted in much
fewer mapped reads and significantly increased mapping uncertainty, despite
providing TopHat a complete set of annotated junctions and using paired reads
of up to 100bp. Nevertheless, further increases in read length in conjunction
with improvements in spliced alignment algorithms could make genome mapping
more attractive in the future. To make our implementation compatible with
both mapping approaches, coordinates of alignments onto known isoforms are
converted to genome coordinates, and all subsequent operations are done in
genome space.

2.2 Finding read-isoform compatibilities

The candidate set of isoforms for each read is obtained by putting together all
genome coordinates for reads and isoforms, sorting them and using a line sweep
technique to detect read-isoform compatibilities. During the line sweep, reads
are grouped into equivalence classes defined by their isoform compatibility sets.
This speeds up the E-steps of the EM algorithm by allowing the processing of
an entire read class at once.



2.3 EM algorithm

The EM algorithm starts with the set of N known isoforms. For each isoform we
denote by l(j) its length and by f(j) its (unknown) frequency. If we ignore library
preparation and amplification biases, the probability that a read is sampled from
isoform j is proportional with (l(j) − µ+ 1)f(j) where µ is the mean fragment
length from the sample preparation.

Thus, if the isoform of origin is known for each read, then the maximum
likelihood estimator for f(j) is given by c(j)/(c(1) + . . . + c(N)), where n(j)
denotes the number of reads sampled from isoform j and c(j) = n(j)/(l(j) −
µ+ 1) is its length-normalized read coverage. Unfortunately, some reads match
equally well multiple isoforms, so their isoform of origin cannot be established
unambiguously. The EM algorithm (see Algorithm 1) overcomes this problem by
simultaneously estimating the frequencies and imputing the missing read origin
within an iterative framework.

Algorithm 1 EM algorithm

assign random values to all f(i)
while not converged do

initialize all n(j) to 0
for each read r do

sum =
∑

j∈compatible(r)
wr,jf(j)

for each isoform j compatible with r do

n(j)+ = wr,jf(j)/sum
end for

end for

s =
∑

j
n(j)/(l(j) − µ+ 1)

for each isoform j do
f(j) = n(j)/(l(j) − µ+ 1)/s

end for

end while

Some of the reads can match multiple positions in the genome. We will call
these positions alignments. Each alignment a can in turn be compatible with
multiple isoforms that overlap at that position of the genome. For paired end
reads, an alignment consists of the two positions where the two reads in the pair
align with the genome. For each alignment we define three random variables:
Qa, Fa and Oa. Qa = P (a) represents the quality of the alignment against the
genome computed from the sequencing quality scores of the associated read and
from comparison with the genome sequence at the given position(s). Fa = P (a|i)
represents the probability of the fragment length needed to produce alignment a
from isoform i. For paired end reads, the length of the fragment can be inferred
from the positions of the two reads in isoform i. For single reads, we can only
estimate a maximum fragment length: if the alignment is on the same strand
as the isoform, we use the distance from the start of the alignment to the end



of the isoform, otherwise we use the distance from the end of the alignment to
the start of the isoform. Oa = P (a|i, o) is the probability of alignment a coming
from isoform i if we know whether the technology used for sequencing always
samples from the coding strand of the isoform (for pairs, whether the first read
comes from the coding strand). Putting it all together, the “weight” of mapping
read r on isoform i is obtained by summing the product of the three random
variables over all the alignments of read r in isoform i: wi,r =

∑
a
QaFaOa.

3 Experimental Results

3.1 Simulation setup

We tested IsoEM on simulated human RNA-Seq data. The human genome se-
quence (hg18, NCBI build 36) was downloaded from UCSC together with the
coordinates of the isoforms in the KnownGenes table. Genes were defined as clus-
ters of known isoforms defined by the GNFAtlas2 table. The dataset contains a
total of 66803 isoforms pertaining to 19372 genes.

We compared IsoEM to several existing algorithms for solving the IE and GE
problems. For IE we included in the comparison the analogues of the Uniq and
Rescue methods used for GE [5], an improved version of Uniq (UniqLN) that
estimates isoform frequencies from unique read counts by normalizing with the
adjusted isoform length that excludes ambiguous positions, and the RSEM algo-
rithm of [4]. For the GE problem, the comparison included the Uniq and Rescue
methods, our implementation of the EM algorithm described in [1] (GeneEM),
and estimates obtained by summing isoform expression levels inferred by RSEM
and IsoEM.

Frequency estimation accuracy was assessed using the error fraction (EF) and
median percent error (MPE) measures used in [4] along with the coefficient of
determination, r2. Accuracy was computed against true frequencies, not against
estimates derived from true counts, as in [4].

3.2 Comparison between methods

For 30M reads of length 25 generated under a geometric isoform distribution
assumption, Figure 1 shows the error fraction at different thresholds for isoform
and gene expression levels. This plot makes more apparent the relative perfor-
mance of compared algorithms, as well as the significant difference in accuracy
between IE and GE. The variety of methods included in the comparison allows us
to discern the relative contribution of various algorithmic ideas to estimation ac-
curacy. The importance of appropriate length normalization is demonstrated by
the IE accuracy gain over Uniq of UniqLN – clearly larger than that achieved by
ambiguous read reallocation as implemented in the IE version of Rescue. Proper
length normalization is also the basis for the large accuracy gain of IsoEM and
RSEM over isoform oblivious GE methods. The importance of modeling insert
sizes even for single read data is underscored by the significant IE and GE ac-
curacy gains of IsoEM over RSEM.
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Fig. 1. Error fraction at different thresholds for isoform (left panel) and gene (right
panel) expression levels inferred from 30M reads of length 25 simulated assuming geo-
metric isoform expression.
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