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Abstract. In this paper we present a novel expectation-maximization
algorithm for inference of alternative splicing isoform frequencies from
high-throughput transcriptome sequencing (RNA-Seq) data. Our algo-
rithm exploits disambiguation information provided by the distribution
of insert sizes generated during sequencing library preparation, and takes
advantage of base quality scores, strand and read pairing information if
available. Empirical experiments on synthetic datasets show that the al-
gorithm significantly outperforms existing methods of isoform and gene
expression level estimation from RNA-Seq data. The Java implementa-
tion of IsoEM is available at http://dna.engr.uconn.edu/software/IsoEM/.

1 Introduction

Ubiquitous regulatory mechanisms such as the use of alternative transcription
start and polyadenylation sites, alternative splicing, and RNA editing result
in multiple messenger RNA (mRNA) isoforms being generated from a single
genomic locus. Most prevalently, alternative splicing is estimated to take place
for over 90% of the multi-exon human genes [19], and thought to play critical
roles in early stages of development and normal function of cells from diverse
tissue types. Thus, the ability to reconstruct full length isoform sequences and
accurately estimate their frequencies is critical for understanding gene functions
and transcription regulation mechanisms.

Three key interrelated computational problems arise in the context of tran-
scriptome analysis: gene expression level estimation (GE), isoform discovery
(ID), and isoform expression level estimation (IE). Targeted GE has long been
a staple of genetic studies, and the completion of the human genome has en-
abled genome-wide GE performed using expression microarrays. Since expres-
sion microarrays have limited capability of detecting alternative splicing events,
specialized splicing arrays have been developed to interrogate genome-wide both
(annotated) exons and exon-exon junctions. However, despite sophisticated de-
convolution algorithms [1, 15], the fragmentary information provided by splicing
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arrays is often insufficient for unambiguous identification of transcribed isoforms
[6,9]. High-throughput transcriptome sequencing, commonly referred to as RNA-
Seq, is quickly replacing microarrays as the technology of choice for performing
GE due to the far wider dynamic range and more accurate quantitation capabil-
ities [20]. Unfortunately, most RNA-Seq studies to date either ignore alternative
splicing or, similar to splicing array studies, restrict themselves to surveying the
presence/expression levels of exons and exon-exon junctions. The main difficulty
lies in the fact that current technologies used to perform RNA-Seq generate
short reads (from few tens to hundreds of bases), many of which cannot be
unambiguously assigned to individual isoforms.

1.1 Related Work

RNA-Seq analyses typically start by mapping sequencing reads onto the refer-
ence genome, transcript libraries, exon-exon junction libraries, or combinations
thereof. Early RNA-Seq studies have recognized that short read lengths result
in a significant percentage of so called multireads, i.e., reads that map equally
well at multiple locations in the genome. A simple (and still commonly used) ap-
proach is to discard multireads, and estimate expression levels using only the so
called unique reads. Mortazavi et al. [12] proposed a multiread “rescue” method
whereby initial gene expression levels are estimated from unique reads and used
to fractionally allocate multireads, with final expression levels re-estimated from
total counts obtained after multiread allocation. An expectation-maximization
(EM) algorithm that extends this scheme by repeatedly alternating between frac-
tional read allocation and re-estimation of gene expression levels was recently
proposed in [13].

A number of recent works have addressed the IE problem, namely isoform
expression level estimation from RNA-Seq reads. Under a simplified “exact infor-
mation” model, [9] showed that neither single nor paired read RNA-Seq data can
theoretically guarantee unambiguous inference of isoform expression levels, but
paired reads may be sufficient to deconvolute expression levels for the majority
of annotated isoforms. The key challenge in IE is accurate assignment of am-
biguous reads to isoforms. Compared to the GE context, read ambiguity is much
more significant, since it affects not only multireads, but also reads that map
at a unique genome location expressed in multiple isoforms. To overcome this
difficulty, [8] proposed a Poisson model of single-read RNA-Seq data explicitly
modeling isoform frequencies. Under this model, maximum likelihood estimates
are obtained by solving a convex optimization problem, and uncertainty of esti-
mates are obtained by importance sampling from the posterior distribution. Li
et al. [11] introduced an expectation-maximization (EM) algorithm similar to
that of [13] but apply it to isoforms instead of genes. Unlike the method of [8],
which estimates isoform frequencies only from reads that map to a unique loca-
tion in the genome, the algorithm of [11] incorporates multireads as well. The TE
problem for single reads is also tackled in [14], who propose an EM algorithm for
inferring isoform expression levels from read coverage of exons (reads spanning
exon junctions are ignored).



The related isoform discovery (ID) problem has also received much interest
in the literature. De novo transcriptome assembly algorithms have been pro-
posed in [2,7]. Very recently, [4] and [18] proposed methods for simultaneously
solving ID and IE based on paired RNA-Seq reads. Assuming known genomic
positions for alternative transcription start and polyadenylation sites as well as
exon boundaries, [4] formulate IE as a convex quadratic program (QP) that can
be efficiently solved for each gene locus after discarding multireads. ID is solved
by iteratively generating isoform candidates from the splicing graph derived from
annotations and reads spanning exon-exon junctions. The process is continued
until the p-value of the objective value of the QP corresponding to the set of
selected isoforms, assumed to follow a x? distribution, exceeds an empirically
selected threshold of 5%. However, pair read information is not directly used in
isoform frequency estimation, contributing only as secondary data to filter out
false positives in the process of isoform selection. Trapnell et al. [18] also describe
a method, referred to as Cufflinks, for simultaneously solving ID and IE. Unlike
the method of [4], Cufflinks requires no genome annotations (but can use them if
available). After performing spliced alignment of (paired) reads onto the genome
using TopHat [17], Cufflinks constructs a read overlap graph and generates can-
didate isoforms by finding a minimal size path cover via a reduction to maximum
matching in a weighted bipartite graph. Reads that match equally well multiple
locations in the genome are fractionally allocated to these locations, and esti-
mation is then performed independently at different transcriptional loci, using
an extension to paired reads of the methods in [8].

1.2 Our Contributions

In this paper we focus on the IE problem, namely estimating isoform expression
levels (interchangeably referred to as frequencies) from RNA-Seq reads, under
the assumption that a complete list of candidate isoforms is available. Projects
such as [3] and [16] have already assembled large libraries of full-length ¢cDNA
sequences for humans and other model organisms, and the coverage of these
libraries is expected to continue to increase rapidly. Although an incomplete
isoform library may lead to estimation biases [18], statistical tests such as the one
in [4] can be used to detect the presence of isoforms not represented in the library.
Inferring expression at isoform level provides information for finer-resolution
biological studies, and also leads to more accurate estimates of expression at
the gene level by allowing rigorous length normalization. Indeed, as shown in
Section 3, genome-wide gene expression level estimates derived from isoform
level estimates are significantly more accurate than those obtained directly from
RNA-Seq data using isoform-oblivious GE methods such as the widely used
counting of unique reads, the rescue method of [12], or the EM algorithm of [13].

Our main contribution is a novel expectation-maximization algorithm for
isoform frequency estimation from (any mixture of) single and paired RNA-Seq
reads. A key feature of our algorithm, referred to as IsoEM, is that it exploits
the information provided by the distribution of insert sizes, which is tightly con-
trolled during sequencing library preparation under current RNA-Seq protocols.



The recently published [18] is the only other work we are aware of that exploits
this information (that is not captured by the “exact” information models of [6,
9]) in conjunction with paired read data. We show that modeling insert sizes
is also highly beneficial in conjunction with single RNA-Seq reads. Insert sizes
contribute to increased estimation accuracy in two different ways. On one hand,
insert sizes help disambiguating the isoform of origin for the reads. In IsoEM, in-
sert lengths are combined with base quality scores, and, if available, read pairing
and strand information to probabilistically allocate reads to isoforms during the
expectation step of the algorithm. As in [11], the genomic locations of multireads
are also resolved probabilistically in this step, further contributing to overall ac-
curacy compared to methods that ignore or fractionally pre-allocate multireads.
On the other hand, insert size distribution is used to accurately adjust isoform
lengths during frequency re-estimation in the M step of the IsoEM algorithm;
an equivalent adjustment was independently employed in [18].

We also present preliminary experimental results on synthetic datasets gen-
erated with various sequencing parameters and distribution assumptions. The
results show that IsoEM algorithm significantly outperforms existing methods of
isoform and gene expression level estimation from RNA-Seq data. Furthermore,
we empirically evaluate the effect of sequencing parameters such as read length,
read pairing, and strand information on estimation accuracy. Our experiments
confirm the finding of [11] that, for a fixed total number of sequenced bases,
longer reads do not necessarily lead to better accuracy for estimation of isoform
and gene expression levels.

2 Methods

2.1 Read Mapping

As with most RNA-Seq analyses, the first step of IsoEM is to map the reads. Our
approach is to map them onto the library of known isoforms using any one of
the many available aligners (we used Bowtie [10] with default parameters in our
experiments). An alternative strategy is to map the reads onto the genome using
a spliced alignment tool such as TopHat [17], as done in [18]. However, prelim-
inary experiments with TopHat resulted in fewer mapped reads and increased
mapping uncertainty. Since further increases in read length coupled with im-
provements in spliced alignment algorithms could make genome mapping more
attractive in the future, we made our IsoEM implementation compatible with
both mapping approaches by converting read alignments to genome coordinates
and performing all operations in genome space.

2.2 Finding Read-Isoform Compatibilities

The candidate set of isoforms for each read is obtained by putting together all
genome coordinates for reads and isoforms, sorting them and using a line sweep
technique to detect read-isoform compatibilities. During the line sweep, reads



are grouped into equivalence classes defined by their isoform compatibility sets;
this speeds up the E-steps of the IsoEM algorithm by allowing the processing of
an entire read class at once.

Some of the reads match multiple positions in the genome, which we refer
to as alignments (for paired end reads, an alignment consists of the positions
where the two reads in the pair align with the genome). Each alignment a can in
turn be compatible with multiple isoforms that overlap at that position of the
genome. During the line sweep, we compute the relative “weight” of assigning a
given read/pair r to isoform j as wy; = Y, QaFqOq, where the sum is over all
alignments of » compatible with j, and the factors of the summed products are
defined as follows.

— @, represents the probability of observing the read from the genome loca-
tions described by the alignment. This is computed from the base quality
scores as Q, = Lil[(l —ek) My, +er(l—M,,)], where M,, =1 if position
k of alignment ¢ matches the genome and 0 otherwise, while ; denotes the
error probability of kth base of r.

— F, represents the probability of the fragment length needed to produce align-
ment a from isoform j. For paired end reads, the length of the fragment can
be inferred from the positions of the two reads. For single reads, we can only
estimate a maximum fragment length: if the alignment is on the same strand
as the isoform, we use the distance from the start of the alignment to the end
of the isoform, otherwise we use the distance from the end of the alignment
to the start of the isoform.

— O, is 1 if alignment a of r is consistent with the orientation of isoform j,
and 0 otherwise. Consistency between the orientations of r and j depends
on whether or not the library preparation protocol preserves the strand in-
formation. For single reads O, = 1 when reads are generated from fragment
ends randomly or, for directional RNA-Seq, when they match the known
isoform orientation. For pairs, O, = 1 if the two reads come from different
strands, point to each other, and, in the case of directional RNA-Seq, the
orientation of first read matches the known isoform orientation.

Weigths w, ; can be further adjusted to account for biases introduced by
sequencing library preparation or the sequencing process once a model of this
biases, such as the one in [5], is available.

2.3 The IsoEM Algorithm

The IsoEM algorithm starts with the set of N known isoforms. For each iso-
form we denote by [(j) its length and by f(j) its (unknown) frequency. If we
ignore library preparation and amplification biases, the probability that a read
is sampled from isoform j is proportional with (I(j) — x+ 1) f(j) where p is the
mean fragment length from the sample preparation. To see why this is true, we
write the expected number of reads coming from an isoform by summing over
all possible fragment lengths. For each fragment length k£ we expect the number



Algorithm 1 IsoEM algorithm

assign random values to all ()
while not converged do
initialize all n(j) to 0
for each read r do
sum = Zj:wr’j>0 wr; f(7)
for each isoform j with w,; > 0 do
n(j)+ = wr,; f(j)/sum
end for
end for
s =%, n()/(1G) — p+1)
for each isoform j do
) = n(J)/(l(i)*uH)

end for
end while

of fragments of that length to be proportional to the number of valid starting
positions for a fragment of that length in the isoform. If p(k) denotes the prob-
ability of a fragment of length k and n(j) denotes the number of reads coming
from isoform j then E[n(j)] o< >, p(k)(I(j) — k +1) = I(j) — p + 1. Thus, if
the isoform of origin is known for each read, the maximum likelihood estimator
for f(j) is given by ¢(4)/(c(1) + ... + ¢(N)), where ¢(j5) = n(5)/((j) — p+ 1)
denotes the length-normalized fragment coverage.

Unfortunately, some reads match multiple isoforms, so their isoform of origin
cannot be established unambiguously. The IsoEM algorithm (see Algorithm 1)
overcomes this difficulty by simultaneously estimating the frequencies and im-
puting the missing read origin within an iterative framework. After initializing
frequencies f(j) at random, the algorithm repeatedly performs the next two
steps until convergence:

— E-step: Compute the expected number n(j) of reads that come from isoform
j under the assumption that isoform frequencies f(j) are correct, based on
weights w,. ;

— M-step: For each j, set the new value of f(j) to c(j)/(c(1) + ...+ ¢(N)),
where normalized coverages ¢(j) are based on expected counts computed in
previous step

3 Experimental Results

3.1 Simulation Setup

We tested IsoEM on simulated human RNA-Seq data. The human genome se-
quence (hgl8, NCBI build 36) was downloaded from UCSC together with the
coordinates of the isoforms in the KnownGenes table. Genes were defined as
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Fig. 1. Distribution of isoform lengths (left panel) and gene cluster sizes (right panel)
for the UCSC KnownGenes dataset.

clusters of known isoforms defined by the GNFAtlas2 table. The dataset con-
tains a total of 66803 isoforms pertaining to 19372 genes. The isoform length
distribution and the number of isoforms per genes are shown in Figure 1.

Single and paired-end reads were randomly generated by sampling fragments
from the known isoforms. Each isoform was assigned a true frequency based on
the abundance reported for the corresponding gene in the first human tissue of
the GNFAtlas2 table, and a probability distribution over the isoforms inside a
gene cluster. Thus, the true frequency of isoform j is a(g)p(j), where a(g) is the
abundance of the gene g for which j is an isoform and p(j) is the probability
of isoform j among all the isoforms of g. We simulated datasets with uniform
and geometric (p = 0.5) distributions for the isoforms of each gene. Fragment
lengths were simulated from a normal probability distribution with mean 250
and standard deviation 25. We simulated between 1 and 60 million single and
paired reads of lengths ranging from 25 to 100 base pairs, with or without strand
information.

We compared IsoEM to several existing IE and GE algorithms. For IE we
included in the comparison the isoform analogs of the Uniq and Rescue methods
used for GE [12], an improved version of Uniq (UnigLN) that estimates isoform
frequencies from unique read counts but normalizes them using adjusted isoform
lengths that exclude ambiguous positions, the Cufflinks algorithm of [18], and
the RSEM algorithm of [11]. For the GE problem, the comparison included the
Uniq and Rescue methods, our implementation of the EM algorithm described
n [13] (GeneEM), and estimates obtained by summing isoform expression levels
inferred by Cufflinks, RSEM, and IsoEM. All methods except Cufflinks use align-
ments obtained by mapping reads onto the library of isoforms with Bowtie [10]
and then converting them to genome coordinates. As suggested in [18], Cufflinks
uses alignments obtained by mapping the reads onto the genome with TopHat
[17], which was provided with a complete set of annotated junctions.

Frequency estimation accuracy was assessed using the coefficient of determi-
nation, r2, along with the error fraction (EF) and median percent error (MPE)
measures used in [11]. However, accuracy was computed against true frequencies,
not against estimates derived from true counts as in [11]. If f; is the frequency



Isoform Expression Gene Expression
Algorithm Uniform Geometric|Algorithm Uniform Geometric

Uniq 0.466 0.447 Uniq 0.579 0.586
Rescue 0.693 0.675 Rescue 0.724 0.724
UniqLN  0.856 0.838 GeneEM  0.636 0.637
Cufflinks  0.661 0.618 Cufflinks  0.778 0.757
RSEM 0.919 0.911 RSEM  0.939 0.934
IsoEM  0.979 0.964 IsoEM  0.988 0.978
Table 1. r2 for isoform and gene expression levels inferred from 30M reads of length
25 from reads simulated assuming uniform, respectively geometric expression of gene
isoforms.

estimate for an isoform with true frequency f;, the relative error is defined as
|fi = fil/fiif fi £0,0if f; = fi =0, and oo if f; > f; = 0. The error fraction
with threshold 7, denoted EF; is defined as the percentage of isoforms with
relative error greater or equal to 7. The median percent error, denoted MPE, is
defined as the threshold 7 for which EF, = 50%.

3.2 Comparison Between Methods

Table 1 gives r? values for isoform, respectively gene expression levels inferred
from 30M reads of length 25, simulated assuming both uniform and geometric
isoform expression. IsoEM significantly outperforms the other methods, achiev-
ing an 72 values of over .96 for all datasets. For all methods the accuracy differ-
ence between datasets generated assuming uniform and geometric distribution of
isoform expression levels is small, with the latter one typically having a slightly
worse accuracy. Thus, in the interest of space we present remaining results only
for datasets generated using geometric isoform expression.

For a more detailed view of the relative performance of compared IE and
GE algorithms, Figure 2 gives the error fraction at different thresholds ranging
between 0 and 1. The variety of methods included in the comparison allows us
to tease out the contribution of various algorithmic ideas to overall estimation
accuracy. The importance of rigorous length normalization is demonstrated by
the IE accuracy gain of UnigLN over Uniq — clearly larger than that achieved by
ambiguous read reallocation as implemented in the IE version of Rescue. Proper
length normalization is also the main reason for the accuracy gain of isoform-
aware GE methods (Cufflinks, RSEM, and IsoEM) over isoform oblivious GE
methods. Similarly, the importance of modeling insert sizes even for single read
data is underscored by the IE and GE accuracy gains of IsoEM over RSEM.

For yet another view, Tables 2 and 3 report the MSE and EF ;5 measures for
isoform, respectively gene expression levels inferred from 30M reads of length 25,
computed over groups of isoforms with various expression levels. IsSoOEM consis-
tently outperforms the other IE and GE methods at all expression levels except
for isoforms with zero true frequency, where it is dominated by the more conser-
vative Uniq algorithm and its UniqLN variant.
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Fig. 2. Error fraction at different thresholds for isoform (top panel) and gene (bot-
tom panel) expression levels inferred from 30M reads of length 25 simulated assuming
geometric isoform expression.

3.3 Influence of Sequencing Parameters

Although high-throughput technologies allow users to make tradeoffs between
read length and the number of generated reads, very little has been done to
determine optimal parameters even for common applications such as RNA-Seq.
The intuition that longer reads are better certainly holds true for many appli-
cations such as de novo assembly. Surprisingly, [11] found that shorter reads are
better for IE when the total number of sequenced bases is fixed. Figure 3 plots
IE estimation accuracy for reads of length between 25 and 100 when the total
amount of sequence data is kept constant at 750M bases. Our results confirm
the finding of [11], although the optimal read length is somewhat sensitive to
the accuracy measure used and to the availability of pairing information. While
25bp reads optimize the MPE measure regardless of the availability of paired
reads, the read length that maximizes 72 is 36 for paired reads and 50 for sin-
gle reads. While more experiments are needed to determine how the optimum
length depends on the amount of sequence data and transcriptome complexity,
this does suggest that, for isoform and gene expression estimation accuracy, in-
creasing the number of reads may be more useful than increasing read length
beyond a certain limit.



Expression range 0

(0,107°] (107°,107°] (107°,107%] (107%,107°] (107°,107°] All

# isoforms 13290 10024 23882 18359 1182 66 66803
Uniq 0.0 100.0 98.4 97.1 98.5 96.6 95.4
Rescue 0.0 294.7 75.5 49.2 30.4 28.3 71.9

MPE UnigLN 0.0 100.0 80.8 30.3 26.4 24.8 36.0
Cufflinks 0.0 100.0 49.7 25.5 27.2 44.6 34.1
RSEM 0.0 100.0 31.9 13.5 114 13.0 21.2
IsoEM 0.0 100.0 22.7 7.3 3.5 2.5 11.8
Uniq 0.2 98.4 97.2 96.9 97.0 95.5 78.0
Rescue 484  95.5 86.2 73.1 61.5 56.1 76.0

EF.15 UnigLN 0.2 97.2 86.2 82.8 83.3 7.3 69.8
Cufflinks 17.6  96.4 81.3 71.0 4.7 80.3 67.9
RSEM 199 93.7 71.1 46.4 39.8 47.0 56.9
IsoEM 5.1 91.2 62.8 29.3 15.8 7.6 45.5

Table 2. Median percent error (MPE) and 15% error fraction (EF i5) for isoform
expression levels inferred from 30M reads of length 25.

The top panel of Figure 4 shows, for reads of length 75, the effects of paired
reads and strand information on estimation accuracy as measured by r2. Not
surprisingly, for a fixed number of reads, paired reads yield better accuracy than
single reads. Also not very surprisingly, adding strand information to paired se-
quencing yields no benefits to genome-wide IE accuracy (although it may be
helpful, e.g., in identification of novel transcripts). Quite surprisingly, perform-
ing strand-specific single read sequencing is actually detrimental to IsoEM IE
(and hence GE) accuracy under the simulated scenario, most likely due to the
reduction in sampled transcript length.

As shown in the bottom panel of Figure 4, the runtime of our Java imple-
mentation of IsoEM scales roughly linearly with the number of fragments, and
is largely insensitive to the type of sequencing data (single or paired reads, di-
rectional or non-directional). IsoEM was tested on a DELL PowerEdge R900
server with 4 Six Core E7450Xeon Processors at 2.4Ghz (64 bits) and 128Gb of
internal memory. None of the datasets require more than 16GB of memory to
complete, however, increasing the amount of memory made available to the Java
virtual machine significantly decreases runtime by reducing the time needed for
garbage collection. The runtimes in Figure 4 were obtained by allowing IsoEM
to use up to 32GB of memory, in which case none of the datasets took more
than 3 minutes to solve.

4 Conclusions and Ongoing Work

In this paper we have introduced an expectation-maximization algorithm for
isoform frequency estimation assuming a known set of isoforms. Our algorithm,
called IsoEM, explicitly models base quality scores, insert size distribution,
strand and read pairing information. Experiments on synthetic data sets gen-
erated using two different assumptions on the isoform distribution show that



Expression range (0,10~ °] (107°,107°] (10~°,10~%] (10-*,107°] (107°,10"%] Al

# genes 120 5610 11907 1632 102 19372
Uniq 37.4 43.6 42.7 43.0 48.2 43.0

Rescue 32.8 28.7 26.0 25.1 28.8 26.7

MPE GeneEM 30.6 28.2 25.7 25.1 28.0 26.3
Cufflinks 33.0 21.1 19.0 20.2 40.2 19.7
RSEM 23.6 11.0 7.2 7.9 114 8.1
IsoEM 18.3 8.4 3.3 2.2 2.1 4.0

Uniq 77.5 82.4 81.7 79.7 82.4 81.7

Rescue 74.2 74.0 71.6 72.8 76.5 72.4

EF .15 GeneEM 72.5 73.8 71.5 73.0 74.5 72.3
Cufllinks 73.3 64.7 62.3 66.2 82.3 63.5
RSEM 64.2 37.3 174 16.3 41.2 23.5
IsoEM 57.5 28.3 6.8 6.5 4.9 13.3

Table 3. Median percent error (MPE) and 15% error fraction (EF 15) for gene expres-
sion levels inferred from 30M reads of length 25.

IsoEM consistently outperforms existing algorithms for isoform and gene ex-
pression level estimation with respect to a variety of quality metrics.

The open source Java implementation of IsoEM is freely available for down-
load at http://dna.engr.uconn.edu/software/IsoEM/. In ongoing work we are
extending IsoEM to perform allelic specific isoform expression and exploring in-
tegration of isoform frequency estimation with identification of novel transcripts
using the iterative refinement framework proposed in [4].
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