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Abstract

Background: Massively parallel whole transcriptome sequencing, commonly referred as RNA-Seq, is quickly

becoming the technology of choice for gene expression profiling. However, due to short reads delivered by

current sequencing technologies, estimation of expression levels for alternative splicing gene isoforms remains

challenging.

Results: In this paper we present a novel expectation-maximization algorithm for inference of isoform- and

gene-specific expression levels from RNA-Seq data. Our algorithm, referred to as IsoEM, is based on

disambiguating of information provided by the distribution of insert sizes generated during sequencing library

preparation, and takes advantage of base quality scores, strand and read pairing information when available. The

open source Java implementation of IsoEM is freely available at http://dna.engr.uconn.edu/software/IsoEM/.

Conclusions: Empirical experiments on both synthetic and real RNA-Seq datasets show that IsoEM has scalable

running time and outperforms existing methods of isoform and gene expression level estimation. Simulation

experiments confirm previous findings that, for a fixed sequencing cost, using reads longer than 25-36 bases does

not necessarily lead to better accuracy for estimating expression levels of annotated isoforms and genes.
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1 Background

Ubiquitous regulatory mechanisms such as the use of alternative transcription start and polyadenylation

sites, alternative splicing, and RNA editing result in multiple messenger RNA (mRNA) isoforms being

generated from a single genomic locus. Most prevalently, alternative splicing is estimated to take place for

over 90% of the multi-exon human genes across diverse cell types [1], with as much as 68% of multi-exon

genes expressing multiple isoforms in a clonal cell line of colorectal cancer origin [2]. Not surprisingly, the

ability to reconstruct full length isoform sequences and accurately estimate their expression levels is widely

believed to be critical for unraveling gene functions and transcription regulation mechanisms [3].

Three key interrelated computational problems arise in the context of transcriptome analysis: gene

expression level estimation (GE), isoform expression level estimation (IE), and novel isoform discovery

(ID). Targeted GE using methods such as quantitative PCR has long been a staple of genetic studies. The

completion of the human genome has been a key enabler for genome-wide GE performed using expression

microarrays. Since expression microarrays have limited capability of detecting alternative splicing events,

specialized splicing arrays have been developed for genome-wide interrogation of both annotated exons and

exon-exon junctions. However, despite sophisticated deconvolution algorithms [4, 5], the fragmentary

information provided by splicing arrays is typically insufficient for unambiguous identification of full-length

transcripts [6, 7]. Massively parallel whole transcriptome sequencing, commonly referred to as RNA-Seq, is

quickly replacing microarrays as the technology of choice for performing GE due to their wider dynamic

range and digital quantitation capabilities [8]. Unfortunately, most RNA-Seq studies to date still ignore

alternative splicing or, similar to splicing array studies, restrict themselves to surveying the expression

levels of exons and exon-exon junctions. The main difficulty in inferring expression levels for full-length

isoforms lies in the fact that current sequencing technologies generate short reads (from few tens to

hundreds of bases), many of which cannot be unambiguously assigned to individual isoforms.

1.1 Related Work

RNA-Seq analyses typically start by mapping sequencing reads onto the reference genome, transcript

libraries, exon-exon junction libraries, or combinations thereof. Early RNA-Seq studies have recognized

that limited read lengths result in a significant percentage of so called multireads, i.e., reads that map

equally well at multiple locations in the genome. A simple (and still commonly used) approach is to

discard multireads, and estimate expression levels using only the so called unique reads. Mortazavi et

al. [9] proposed a multiread “rescue” method whereby initial gene expression levels are estimated from
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unique reads and used to fractionally allocate multireads, with final expression levels obtained by

re-estimation based on total counts obtained after multiread allocation. An expectation-maximization

(EM) algorithm that extends this scheme by repeatedly alternating between fractional read allocation and

re-estimation of gene expression levels was recently proposed in [10].

A number of recent works have addressed the IE problem, namely isoform expression level estimation from

RNA-Seq reads. Under a simplified “exact information” model, [7] showed that neither single nor paired

read RNA-Seq data can theoretically guarantee unambiguous inference of isoform expression levels,

although paired reads may be sufficient to deconvolute expression levels for the majority of annotated

isoforms. The key challenge in IE is accurate assignment of ambiguous reads to isoforms. Compared to the

GE context, read ambiguity is much more significant, since it affects not only multireads, but also reads

that map at a unique genome location expressed in multiple isoforms. Estimating isoform expression levels

based solely on unambiguous reads, as suggested, e.g., in [2], results in splicing-dependent biases similar to

the transcript-length bias noted in [11], further complicating the design of unbiased differential expression

tests based on RNA-Seq data. To overcome this difficulty, [12] proposed a Poisson model of single-read

RNA-Seq data explicitly modeling isoform frequencies. Under their model, maximum likelihood estimates

are obtained by solving a convex optimization problem, and uncertainty of estimates is obtained by

importance sampling from the posterior distribution. Li et al. [13] introduced an expectation-maximization

(EM) algorithm similar to that of [10] but applied to isoforms instead of genes. Unlike the method of [12],

which estimates isoform frequencies only from reads that map to a unique location in the genome, the

algorithm of [13] incorporates multireads as well. The IE problem for single reads is also tackled in [14],

who propose an EM algorithm for inferring isoform expression levels from the read coverage of exons (reads

spanning exon junctions are ignored).

The related novel isoform discovery (ID) problem is also receiving much interest in the literature. Although

showing encouraging results, de novo transcriptome assembly algorithms such as [15–17] have difficulties in

identifying transcripts with moderate coverage. Very recently, [18–20] proposed genome-assisted (i.e.,

mapping based) methods for simultaneously solving ID and IE based on paired RNA-Seq reads. The

method of Feng et al. [18] generates isoform candidates from the splicing graph derived from annotations

and reads spanning exon-exon junctions. After discarding multireads, [18] formulate IE for a given set of

isoforms as a convex quadratic program (QP) that can be efficiently solved for each gene locus. The set of

isoform candidates is iteratively refined until the p-value of the objective value of the QP, assumed to

follow a χ2 distribution, exceeds an empirically selected threshold of 5%. Pair read information is not
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directly used in isoform frequency estimation, contributing only as secondary data to filter out false

positives in the process of isoform selection. As [18], Guttman et al. [19] construct a splicing graph from

the mapped reads and filter candidate isoforms using paired-end information. Isoform specific expression

levels are inferred using the method of [9]. After performing spliced alignment of (paired) reads onto the

genome using TopHat [21], the method of Trapnell et al. [20], referred to as Cufflinks, constructs a read

overlap graph and generates candidate isoforms by finding a minimal size path cover via a reduction to

maximum matching in a weighted bipartite graph. Reads that match equally well multiple locations in the

genome are fractionally allocated to these locations, and estimation is then performed independently at

different transcriptional loci, using an extension to paired reads of the methods in [12].

1.2 Our Contributions

In this paper we focus on the IE problem, namely estimating isoform expression levels (interchangeably

referred to as frequencies) from RNA-Seq reads, under the assumption that a complete list of candidate

isoforms is available. Projects such as [22] and [23] have already assembled large libraries of full-length

cDNA sequences for humans and other model organisms, and the coverage of these libraries is expected to

continue to increase rapidly following ultra-deep paired-end transcriptome sequencing projects such

as [19,20] and the widely anticipated deployment of third-generation sequencing technologies such

as [24,25], which deliver reads with significantly increased length. Inferring expression at isoform level

provides information for finer-resolution biological studies, and also leads to more accurate estimates of

expression at the gene level by allowing rigorous length normalization. Indeed, as shown in Section 3,

genome-wide gene expression level estimates derived from isoform level estimates are significantly more

accurate than those obtained directly from RNA-Seq data using isoform-oblivious GE methods such as the

widely used counting of unique reads, the rescue method of [9], or the EM algorithm of [10].

Our main contribution is a novel expectation-maximization algorithm for isoform frequency estimation

from any mixture of single and paired RNA-Seq reads. A key feature of our algorithm, referred to as

IsoEM, is that it exploits information provided by the distribution of insert sizes, which is tightly

controlled during sequencing library preparation under current RNA-Seq protocols. Such information is

not modeled in the “exact” information models of [6, 7], challenging the validity of their negative results.

Guttman et al. [19] take into account insert lengths derived from paired read data, but only for filtering

candidate isoforms in ID. Trapnell et al. [20] is the only other work we are aware of that exploit this

information for IE, in conjunction with paired read data. We show that modeling insert sizes is highly
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beneficial for IE even for RNA-Seq data consisting of single reads. Insert sizes contribute to increased

estimation accuracy in two different ways. On one hand, they can help disambiguating the isoform of

origin for the reads. In IsoEM, insert lengths are combined with base quality scores, and, if available, read

pairing and strand information to probabilistically allocate reads to isoforms during the expectation step of

the algorithm. As in [13], the genomic locations of multireads are also resolved probabilistically in this

step, further contributing to overall accuracy compared to methods that ignore or fractionally pre-allocate

multireads. On the other hand, insert size distribution is used to accurately adjust isoform lengths during

frequency re-estimation in the maximization step of the IsoEM algorithm.

We also present the results of comprehensive experiments conducted to assess the performance of IsoEM on

both synthetic and real RNA-Seq datasets. These results show that IsoEM consistently outperforms

existing methods under a wide range of sequencing parameters and distribution assumptions. We also

report results of experiments empirically evaluating the effect of sequencing parameters such as read

length, read pairing, and strand information on estimation accuracy. Our experiments confirm the

surprising finding of [13] that, for a fixed total number of sequenced bases, longer reads do not necessarily

lead to better accuracy for estimation of isoform and gene expression levels.

2 Methods
2.1 Read Mapping

As with many RNA-Seq analyses, the first step of IsoEM is to map the reads. Our approach is to map

them onto the library of known isoforms using any one of the many available ungapped aligners (we used

Bowtie [26] with default parameters in our experiments). An alternative strategy is to map the reads onto

the genome using a spliced alignment tool such as TopHat [21], as done, e.g., in [19,20]. However,

preliminary experiments with TopHat resulted in fewer mapped reads and significantly increased mapping

uncertainty, despite providing TopHat with a complete set of annotated junctions. Since further increases

in read length coupled with improvements in spliced alignment algorithms could make mapping onto the

genome more attractive in the future, we made our IsoEM implementation compatible with both mapping

approaches by always converting read alignments to genome coordinates and performing all IsoEM

read-isoform compatibility calculations in genome space.
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2.2 Finding Read-Isoform Compatibilities

The candidate set of isoforms for each read is obtained by combining all genome coordinates of reads and

isoforms, sorting them and using a line sweep technique to detect read-isoform compatibilities (see Figure

1). As detailed in Section 2.4, during the line sweep reads are grouped into equivalence classes defined by

their isoform compatibility sets; this speeds up the E-steps of the IsoEM algorithm by allowing the

processing of an entire read class at once.

Some of the reads match multiple positions in the genome, which we refer to as alignments (for paired end

reads, an alignment consists of the positions where the two reads in the pair align with the genome). Each

alignment a can in turn be compatible with multiple isoforms that overlap at that position of the genome.

During the line sweep, we compute the relative “weight” of assigning a given read/pair r to isoform j as

wr,j =
∑

a QaFaOa, where the sum is over all alignments of r compatible with j, and the factors of the

summed products are defined as follows:

• Qa represents the probability of observing the read from the genome locations described by the

alignment. This is computed from the base quality scores as Qa =
∏|r|

k=1[(1− εk)Mak
+ εk

3 (1−Mak
)],

where Mak
= 1 if position k of alignment a matches the reference genome sequence and 0 otherwise,

while εk denotes the error probability of k-th base of r.

• For paired end reads, Fa represents the probability of the fragment length needed to produce

alignment a from isoform j; note that the length of this fragment can be inferred from the genome

coordinates of the two aligned reads and the available isoform annotation. For single reads, we can

only estimate an upperbound u on the fragment length: if the alignment is on the same strand as the

isoform then u is the number of isoform annotated bases between the 5′ end of the aligned read and

the 3′ end of the isoform, otherwise u is the number of isoform annotated bases between the 5′ end of

the aligned read and the 5′ end of the isoform. In this case Fa is defined as the probability of

observing a fragment with length of u bases or fewer.

• Oa is 1 if alignment a of r is consistent with the orientation of isoform j, and 0 otherwise. Consistency

between the orientations of r and j depends on whether or not the library preparation protocol

preserves the strand information. For single reads Oa = 1 when reads are generated from fragment

ends randomly or, for directional RNA-Seq, when they match the known isoform orientation. For

paired-end reads, Oa = 1 if the two reads come from different strands, point to each other, and, in

the case of directional RNA-Seq, the orientation of first read matches the known isoform orientation.
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2.3 The IsoEM Algorithm

The IsoEM algorithm starts with the set of N known isoforms. For each isoform we denote by l(j) its

length and by f(j) its (unknown) frequency. If we denote by n(j) the number of reads coming from isoform

j and let p(k) denote the probability of a fragment of length k, then

E[n(j)] ∝
∑

k≤l(j)

p(k)(l(j)− k + 1) (1)

since, the number of fragments of length k is expected to be proportional to the number of valid starting

positions for a fragment of that length in the isoform. Thus, if the isoform of origin is known for each read,

the maximum likelihood estimator for f(j) is given by c(j)/(c(1) + . . . + c(N)), where

c(j) = n(j)/
∑

k≤l(j) p(k)(l(j)− k + 1) denotes the length-normalized fragment coverage. Note that the

length of most isoforms is significantly larger than the mean fragment length μ typical of current

sequencing libraries; for such isoforms
∑

k≤l(j) p(k)(l(j)− k + 1) ≈ l(j)− μ + 1 and c(j) can be

approximated by n(j)/(l(j)− μ + 1).

Since some reads match multiple isoforms, their isoform of origin cannot be established unambiguously.

The IsoEM algorithm (see Figure 2) overcomes this difficulty by simultaneously estimating the frequencies

and imputing the missing read origin within an iterative framework. After initializing frequencies f(j) at

random, the algorithm repeatedly performs the next two steps until convergence:

• E-step: Compute the expected number n(j) of reads that come from isoform j under the assumption

that isoform frequencies f(j) are correct, based on weights wr,j computed as described in Section 2.2

• M-step: For each j, set the new value of f(j) to c(j)/(c(1) + . . . + c(N)), where normalized coverages

c(j) are based on expected counts computed in the prior E-step

2.4 IsoEM Optimizations

Below we describe two implementation optimizations that significantly improve the performance of IsoEM

by reducing both runtime and memory usage.

The first optimization consists of partitioning the input into compatibility components. The compatibility

between reads and isoforms naturally induces a bipartite read-isoform compatibility graph, with edges

connecting each isoform with all reads that can possibly originate from it. Connected components of the

compatibility graph can be processed independently in IsoEM since the frequencies of isoforms in one

connected component do not affect the frequencies of isoforms in any other connected component.
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Although this optimization can be applied to any EM algorithm, its impact is particularly significant in

IsoEM. Indeed, in this context the compatibility graph decomposes in numerous small components (see

Figure 3(a) for a typical distribution of component sizes; a similar distribution of component sizes is

reported for Arabidopsis gene models in [27]). The resulting speed-up comes from the fact that in each

iteration of IsoEM we update frequencies of isoforms in a single compatibility component, avoiding needless

updates for other isoforms.

The second IsoEM optimization consists of partitioning the set of reads within each compatibility

component into equivalence classes. Two reads are equivalent for IsoEM if they are compatible with the

same set of isoforms and their compatibility weights to the isoforms are proportional. Keeping only a single

representative from each read class (with appropriately adjusted frequency) drastically reduces the number

of reads kept in memory (see Figure 3(b)). As the number of reads increases, the number of read classes

increases much slower. Eventually this reaches saturation and no new read classes appear – at which point

the runtime of IsoEM becomes virtually independent of the number of reads. Indeed, in practice the

runtime bottlenecks are parsing the reads, computing the compatibility graph and detecting equivalent

reads.

Once read classes are constructed, we only need a small modification of the E-step of IsoEM to use read

classes instead of reads (Figure 4). Next we describe the union-find algorithm used for efficiently finding

compatibility components and read classes in IsoEM. A read class is defined as

〈m, {(i, w)|i = isoform, w = weight}〉, where m is called the multiplicity of the read class. Given a

collection of reads, we want to:

• Find the connected components of the compatibility graph induced by the reads, and

• Collapse equivalent reads into read classes with multiplicity indicating the number of reads in each

class.

A straightforward approach is to solve the first problem using a union-find algorithm, then to take the

reads corresponding to each connected component and remove equivalent reads, e.g., using hashing.

However, there are two drawbacks to this approach:

• First, all reads need to be kept in memory until all connected components have been computed.

• Second, when the number of reads in a connected components is very large the number of collisions

increases, which leads to poor performance.
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We overcome the two problems presented above using an online version of the union-find algorithm which

computes connected components and eliminates equivalent reads on the fly. This way, equivalent reads will

never reside too long in memory. Also, we avoid the problem of large hash tables by using multiple smaller

hash tables which are guaranteed to be disjoint.

We start our modified version of Union-Find with an empty set of trees. A new single-node tree is

initialized every time a new isoform is found in a read class. In each node we store a hash-table of read

classes. Each read is processed as follows:

• If the isoforms compatible with the read correspond to nodes in more than one tree unite the

corresponding trees. The root of the tallest tree becomes the root of the union tree. Then create a

new read class for this read (we can be sure it was not seen before, otherwise the isoforms would have

been in the same tree) and add it to the hash table of the root node. Notice that at this point the

root node is also (trivially) the Lowest Common Ancestor (LCA) of the nodes corresponding to the

isoforms in the read class

• If the isoforms correspond to nodes in the same tree find the LCA of all these nodes. If the read is

present in the hash table of the LCA, increment the multiplicity of the existing class and then drop

the current read. Otherwise, create a new read class and add it to the LCA’s hash table.

Notice that in the second case it suffices to look only in the LCA of the isoforms for an already existing

read class. This follows immediately from the fact that we always add reads to the LCA of the nodes

(isoforms) compatible with the read. Note that we cannot use path compression to speed up ’find’

operations because this would be altering the structure of existing trees. Thus, ’find’ operations will take

logarithmic (amortized) time. At the end of the algorithm, each tree in the union find forest corresponds to

a connected component. The read classes in each connected component are obtained by traversing the

corresponding tree and collecting all the read classes present in the nodes. At this point we are sure that

all the read classes are distinct, so the collection process does simple concatenations. To further speed up

the collection process, we can safely use path compression as we traverse the trees, since we no longer care

about the exact topology of the subtrees.

Runtime analysis. Each union operation takes O(1) time, so for a read with k compatible isoforms we

spend at most O(k) time doing unions. By always making the root of the taller tree to be the root of a

union, we ensure that the height of any tree is not bigger than O(log n) where n is the number of nodes in

the tree. Thus, finding the root of a node’s tree takes O(log n). For a read with k compatible isoforms we
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spend at most O(k log n) time processing it. The LCA of two nodes can be computed at constant overhead

when performing find operations (by marking the nodes on the paths from isoforms to root). Collecting all

the read classes is sped-up by using path compression. The whole collecting phase takes O(nα(n)) time

where n is the total number of isoforms and α(n) is the inverse of the Ackermann function. Overall, for Q

reads with an average of k isoforms per read and n total distinct isoforms, computing read classes and

compatibility components using the modified union-find algorithm takes O(Qk log n + nα(n)) time.

2.5 Hexamer and Repeat Bias Corrections

As noted in [28], some commonly used library preparation protocols result in biased sampling of fragments

from isoforms due to the random hexamers used to prime reverse transcription. To correct for possible

hexamer bias, we implemented a simple re-weighting scheme similar to that proposed in [28]. Each read is

assigned a weight b(h) based on its first six bases and computed as follows. Given a set of mapped reads,

let p̂i be the observed distribution of hexamers starting at position i (spanning positions i to i + 5) of all

the reads. Thus, p̂i(h) is the proportion of reads which have hexamer h at position i and p̂1(h) is the

proportion of reads starting with hexamer h. Let l be the read length. We define the weights b by:

b(h) =
1
6

∑l/2+3
i=l/2−2 p̂i(h)

1
2 (p̂1(h) + p̂2(h))

Since we already collapse equivalent reads into read classes, we can seamlessly incorporate hexamer weights

in the algorithm by slightly changing the definition of a read class’ multiplicity to m(R) =
∑

r∈R b(h(r)),

where h(r) denotes the starting hexamer of r. The effect of this correction procedure is to reduce

(respectively increase) the multiplicity of reads with starting hexamers that overrepresented (respectively

under-represented) at the beginning of reads compared to the middle of reads. The underlying assumption

is that the average frequency with which a hexamer appears in the middle of reads is not affected by

library preparation biases.

To avoid biases from incorrectly mapped reads originating from repetitive regions, IsoEM will also discard

reads that overlap annotated repeats. When applying this correction, isoform lengths are automatically

adjusted by subtracting the number of positions resulting in reads that would be discarded.

3 Experimental Results
3.1 Comparison of Methods on Simulated Datasets

We tested IsoEM on simulated human RNA-Seq data. The human genome sequence (hg18, NCBI build 36)

was downloaded from UCSC together with the coordinates of the isoforms in the KnownGenes table.
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Genes were defined as clusters of known isoforms defined by the GNFAtlas2 table. The dataset contains a

total of 66, 803 isoforms pertaining to 19, 372 genes. The isoform length distribution and the number of

isoforms per genes are shown in Figure 5.

Single and paired-end reads were randomly generated by sampling fragments from the known isoforms.

Each isoform was assigned a true frequency based on the abundance reported for the corresponding gene in

the first human tissue of the GNFAtlas2 table, and a probability distribution over the isoforms inside a

gene cluster. Thus, the true frequency of isoform j is a(g)p(j), where a(g) is the abundance of the gene g

for which j is an isoform and p(j) is the probability of isoform j among all the isoforms of g. We simulated

datasets with uniform, respectively truncated geometric distribution with ratio r = 1/2 for the isoforms of

each gene. For a gene with k isoforms p(j) = 1/k, j = 1, . . . , k, under the uniform distribution. Under the

truncated geometric distribution, the respective isoform probabilities are p(j) = 1/2j for j = 1, . . . , k − 1

and p(k) = 1/2k−1. Fragment lengths were simulated from a normal probability distribution with mean

250 and standard deviation 25.

We compared IsoEM to several existing algorithms for solving the IE and GE problems. For IE we

included in the comparison the isoform analogs of the Uniq and Rescue methods used for GE [9], an

improved version of Uniq (UniqLN) that estimates isoform frequencies from unique read counts but

normalizes them using adjusted isoform lengths that exclude ambiguous positions, the Cufflinks algorithm

of [20] (version 0.8.2), and the RSEM algorithm of [13] (version 0.6). For the GE problem, the comparison

included the Uniq and Rescue methods, our implementation of the GeneEM algorithm described in [10],

and estimates obtained by summing isoform expression levels inferred by Cufflinks, RSEM, and IsoEM. All

methods use alignments obtained by mapping reads onto the library of isoforms with Bowtie [26] and then

converting them to genome coordinates, except for Cufflinks which uses alignments obtained by directly

mapping the reads onto the genome with TopHat [21], as suggested in [20].

Frequency estimation accuracy was assessed using the coefficient of determination, r2, along with the error

fraction (EF) and median percent error (MPE) measures used in [13]. However, accuracy was computed

against true frequencies, not against estimates derived from true counts as in [13]. If f̂i is the frequency

estimate for an isoform with true frequency fi, the relative error is defined as |f̂i − fi|/fi if fi �= 0, 0 if

f̂i = fi = 0, and ∞ if f̂i > fi = 0. The error fraction with threshold τ , denoted EFτ is defined as the

percentage of isoforms with relative error greater or equal to τ . The median percent error, denoted MPE,

is defined as the threshold τ for which EFτ = 50%.

Since not all compared methods could handle paired reads or strand information we focused our
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comparisons on single read data. Table 1 gives r2 values for isoform, respectively gene expression levels

inferred from 30M reads of length 25, simulated assuming both uniform and geometric isoform expression.

IsoEM significantly outperforms the other methods, achieving an r2 values of over .96 for all datasets. For

all methods the accuracy difference between datasets generated assuming uniform and geometric

distribution of isoform expression levels is small, with the latter one typically having a slightly worse

accuracy. Thus, in the interest of space we present remaining results only for datasets generated using

geometric isoform expression.

For a more detailed view of the relative performance of compared IE and GE algorithms, Figure 6 gives

the error fraction at different thresholds ranging between 0 and 1. The variety of methods included in the

comparison allows us to tease out the contribution of various algorithmic ideas to overall estimation

accuracy. The importance of rigorous length normalization is illustrated by the significant IE accuracy gain

of UniqLN over Uniq – clearly larger than that achieved by ambiguous read reallocation as implemented in

the IE version of Rescue. Proper length normalization is also explaining the accuracy gain of isoform-aware

GE methods (Cufflinks, RSEM, and IsoEM) over isoform oblivious GE methods. Similarly, the importance

of modeling insert sizes even for single read data is underscored by the significant IE and GE accuracy

gains of IsoEM over RSEM. Indeed, the latest version of the RSEM package, released as this article goes to

print, has been updated to include modeling of insert sizes and appears to have accuracy matching that of

IsoEM.

For yet another view, Tables 2 and 3 report the MSE and EF.15 measures for isoform, respectively gene

expression levels inferred from 30M reads of length 25, computed over groups of isoforms with various

expression levels. IsoEM consistently outperforms the other IE and GE methods at all expression levels

except for isoforms with zero true frequency, where it is dominated by the more conservative Uniq

algorithm and its UniqLN variant.

3.2 Comparison of Methods on Two Real RNA-Seq Datasets

In addition to simulation experiments, we validated IsoEM on two real RNA-Seq datasets. The first

dataset consists of two samples with approximately 8 million 27bp Illumina reads each, generated from two

human cell lines (embryonic kidney and B cells) as described in [29]. Estimation accuracy was assessed by

comparison with quantitative PCR (qPCR) expression levels determined in [14] for 47 genes with evidence

of alternative isoform expression. To facilitate comparison with these qPCR results, expression levels were

determined using transcript annotations in ENSEMBL version 46. The second dataset consists of
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approximately 5 million 32bp Illumina reads per sample, generated from the RM11-1a strain of S.

cerevisiae under two different nutrient conditions [30]. Expression levels were determined using transcript

annotations for the reference strain (June 2008 SGD/sacCer2) and compared against qPCR expression

levels measured for 192 genes (for a total of 394 datapoints).

Since the available implementation of RSEM could not be run on transcript sets other than UCSC known

genes, in Figures 7 and 8 we only compare Cufflinks and IsoEM estimates against qPCR values in [14],

respectively [30]. Estimation accuracy of both Cufflinks and IsoEM is significantly lower than that

observed in simulations. Likely explanations include poor quality of the transcript libraries used to perform

the inference, sequencing library preparation biases not corrected for by the algorithms, and possible

inaccuracies in qPCR estimates. Nevertheless, the relative performance of the two algorithms is consistent

with simulation results, with IsoEM outperforming Cufflinks on both datasets.

3.3 Influence of Sequencing Parameters and Scalability

Although high-throughput technologies allow users to make tradeoffs between read length and the number

of generated reads, very little has been done to determine optimal parameters even for common

applications such as RNA-Seq. The intuition that longer reads are better certainly holds true for many

applications such as de novo genome and transcriptome assembly. Surprisingly, [13] found that shorter

reads are better for IE when the total number of sequenced bases (as a rough approximation for sequencing

cost) is fixed. Figure 9 plots IE estimation accuracy for reads of length between 10 and 100 when the total

amount of sequence data is kept constant at 750M bases. Our results confirm the finding of [13], although

the optimal read length is somewhat sensitive to the accuracy measure used and to the availability of

pairing information. While 25bp reads minimize MPE regardless of the availability of paired reads, the

read length that maximizes r2 is 25 for paired reads and 50 for single reads. While further experiments are

needed to determine how the optimum length depends on the amount of sequence data and transcriptome

complexity, our simulations do suggest that for isoform and gene expression analysis, increasing the

number of reads may be more useful than increasing read length beyond 50 bases.

Figure 10(a) shows, for reads of length 75, the effects of paired reads and strand information on estimation

accuracy as measured by r2. Not surprisingly, for a fixed number of reads, paired reads yield better

accuracy than single reads. Also not very surprisingly, adding strand information to paired sequencing

yields no benefits to genome-wide IE accuracy (although it may be helpful, e.g., in identification of novel

transcripts). Quite surprisingly, performing strand-specific single read sequencing is actually detrimental to
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IsoEM IE (and hence GE) accuracy under the simulated scenario, most likely due to the reduction in

sampled transcript length.

In practice, many RNA-Seq data sets are generated from transcripts with poly(A) tails, and some of the

sequenced fragments will contain parts the poly(A) tails. We have added to IsoEM the option to

automatically extend annotated transcripts with a poly(A) tail, thus allowing it to use reads coming from

such fragments. Table 4 shows the accuracy of isoform and gene expression levels inferred by IsoEM using

30M reads of length 25 simulated from transcripts with and without poly(A) tails assuming geometric

expression of gene isoforms. The accuracy of IsoEM is practically the same under the two simulation

scenarios for paired read data, and decreases only slightly for single reads simulated taking poly(A) tails

into account, likely due to the fact that reads overlapping poly(A) tails are more ambiguous.

As shown in Figure 10(b), the runtime of IsoEM scales roughly linearly with the number of fragments, and

is practically insensitive to the type of sequencing data (single or paired reads, directional or

non-directional). IsoEM was tested on a Dell PowerEdge R900 server with 4 Six Core E7450Xeon

Processors at 2.4Ghz (64 bits) and 128Gb of internal memory. None of the datasets required more than

16GB of memory to complete. It is also true that increasing the available memory significantly decreases

runtime by keeping the garbage collection overhead to a minimum. The runtimes in Figure 10 were

obtained by allowing IsoEM to use up to 32GB of memory, in which case none of the datasets took more

than 3 minutes to solve.

4 Conclusions and Ongoing Work

In this paper we have introduced an expectation-maximization algorithm for isoform frequency estimation

assuming a known set of isoforms. Our algorithm, called IsoEM, explicitly models insert size distribution,

base quality scores, strand and read pairing information. Experiments on both real and synthetic RNA-Seq

datasets generated using two different assumptions on the isoform distribution show that IsoEM

consistently outperforms existing algorithms for isoform and gene expression level estimation with respect

to a variety of quality metrics.

The open source Java implementation of IsoEM is freely available for download at

http://dna.engr.uconn.edu/software/IsoEM/. In ongoing work we are extending IsoEM to perform allelic

specific isoform expression and exploring integration of isoform frequency estimation with identification of

novel transcripts using the iterative refinement framework proposed in [18].
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Figures

Figure 1 - The algorithm for identifying isoforms compatible with reads.

Figure 2 - The expectation-maximization algorithm used by IsoEM.

Figure 3 - Distribution of compatibility component sizes (defined as the number of isoforms) for 10

million single reads of length 75 (a) and number of read classes for 1 to 30 million single reads or pairs of

reads of length 75 (b).

Figure 4 - The E-Step of IsoEM algorithm based on read classes.

Figure 5 - Distribution of isoform lengths (a) and gene cluster sizes (b) in the UCSC dataset.

Figure 6 - Error fraction at different thresholds for isoform (a) and gene (b) expression levels inferred

from 30M reads of length 25 simulated assuming geometric isoform expression.
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Figure 7 - Comparison of Cufflinks (a) and IsoEM (b) estimates to qPCR expression levels reported

in [14].

Figure 8 - Comparison of Cufflinks (a) and IsoEM (b) estimates to qPCR expression levels reported

in [30].

Figure 9 - IsoEM MPE (a) and r2 values (b) for 750Mb of simulated data generated using single and

paired-end reads of length varying between 10 and 100.

Figure 10 - IsoEM r2 (a) and CPU time (b) for 1-60 million single/paired reads of length 75, with or

without strand information.
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Tables

Table 1 - r2 for isoform and gene expression levels inferred from 30M reads of length 25 from reads

simulated assuming uniform, respectively geometric expression of gene isoforms.

Isoform Expression Gene Expression
Algorithm Uniform Geometric Algorithm Uniform Geometric

Uniq 0.466 0.447 Uniq 0.579 0.586
Rescue 0.693 0.675 Rescue 0.724 0.724
UniqLN 0.856 0.838 GeneEM 0.636 0.637
Cufflinks 0.661 0.618 Cufflinks 0.778 0.757
RSEM 0.919 0.911 RSEM 0.939 0.934
IsoEM 0.971 0.970 IsoEM 0.990 0.982

Table 2 - Median percent error (MPE) and 15% error fraction (EF.15) for isoform expression levels

inferred from 30M reads of length 25 simulated assuming geometric isoform expression.

Expression range 0 (0, 10−6] (10−6, 10−5] (10−5, 10−4] (10−4, 10−3] (10−3, 10−2] All
# isoforms 13,290 10,024 23,882 18,359 1,182 66 66,803

Uniq 0.0 100.0 98.4 97.1 98.5 96.6 95.4
Rescue 0.0 294.7 75.5 49.2 30.4 28.3 71.9

MPE UniqLN 0.0 100.0 80.8 30.3 26.4 24.8 36.0
Cufflinks 0.0 100.0 49.7 25.5 27.2 44.6 34.1
RSEM 0.0 100.0 31.9 13.5 11.4 13.0 21.2
IsoEM 0.0 100.0 25.3 7.3 3.2 2.2 12.0
Uniq 0.2 98.4 97.2 96.9 97.0 95.5 78.0

Rescue 48.4 95.5 86.2 73.1 61.5 56.1 76.0
EF.15 UniqLN 0.2 97.2 86.2 82.8 83.3 77.3 69.8

Cufflinks 17.6 96.4 81.3 71.0 74.7 80.3 67.9
RSEM 19.9 93.7 71.1 46.4 39.8 47.0 56.9
IsoEM 3.4 93.1 65.1 29.1 11.1 7.6 46.1
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Table 3 - Median percent error (MPE) and 15% error fraction (EF.15) for gene expression levels inferred

from 30M reads of length 25 simulated assuming geometric isoform expression.

Expression range (0, 10−6] (10−6, 10−5] (10−5, 10−4] (10−4, 10−3] (10−3, 10−2] All
# genes 120 5,610 11,907 1,632 102 19,372

Uniq 37.4 43.6 42.7 43.0 48.2 43.0
Rescue 32.8 28.7 26.0 25.1 28.8 26.7

MPE GeneEM 30.6 28.2 25.7 25.1 28.0 26.3
Cufflinks 33.0 21.1 19.0 20.2 40.2 19.7
RSEM 23.6 11.0 7.2 7.9 11.4 8.1
IsoEM 18.2 8.4 3.2 2.0 1.9 3.9
Uniq 77.5 82.4 81.7 79.7 82.4 81.7

Rescue 74.2 74.0 71.6 72.8 76.5 72.4
EF.15 GeneEM 72.5 73.8 71.5 73.0 74.5 72.3

Cufflinks 73.3 64.7 62.3 66.2 82.3 63.5
RSEM 64.2 37.3 17.4 16.3 41.2 23.5
IsoEM 57.5 28.1 6.7 6.1 4.9 13.2

Table 4 - r2 for isoform and gene expression levels inferred from 30M single, respectively paired reads of

length 25, simulated assuming geometric expression of gene isoforms with and without poly(A) tails.

Reads Poly(A) Isoform Expression Gene Expression
1× 25 Yes 0.956 0.977

No 0.970 0.982
2× 25 Yes 0.972 0.990

No 0.976 0.985
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