
Using Random Peptide Phage Display Libraries
for early Breast cancer detection

Ekaterina Nenastyeva1, Yurij Ionov2, Ion Mandoiu3, and Alex Zelikovsky1

1 Department of Computer Science, Georgia State University, Atlanta, GA 30303
Email: {enenastyeva1,alexz}@cs.gsu.edu

2 Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263
Email: Yurij.Ionov@roswellpark.org

3 Department of Computer Science & Engineering, University of Connecticut, Storrs,
CT 06269 Email : ion@engr.uconn.edu

Abstract. Thousands of people beat cancer every year. Doing so is eas-
ier when cancer is diagnosed at an early stage as treatment is often
simpler and more likely to be effective. Cancer cells starts out as normal
body cells, but they begin to grow out of control because of an abnormal
gene expression. The immune system plays a major role in limiting the
development of these abnormalities. It elicits a detectable humoral im-
mune response to changes in antigen profiles caused by growing cancer
cells. Circulating autoantibodies produced by the patient’s own immune
system after exposure to cancer proteins are promising biomarkers for
the early detection of cancer.
Since an antibody recognizes not the whole antigen but 4-7 critical amino
acids within the antigenic determinant (epitope), the whole proteome
can be represented by random peptide phage display libraries (RPPDL).
To solve cancer detection problem we propose a new method based on
RPPDL. We determined that peptides assigned to breast cancer serum
samples better correlate with each other than peptides assigned to con-
trol serum samples. Thus, the cancer samples had common features in
immune response.
We tested our method on the serum antibody repertoire profiles for 5
stage 0 breast cancer patients and for 5 cancer-free women. As result all
samples were predicted correctly except one cancer which gave sensitivity
equaled 0.8, specificity equaled 1 and accuracy equaled 0.9.
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1 Introduction

Thousands of people beat cancer every year. Doing so is easier when cancer is
diagnosed at an early stage as treatment is often simpler and more likely to be
effective. So finding cancer early can make a real difference.



1.1 Motivation

Cancer cells starts out as normal body cells, but they begin to grow out of control
because of an abnormal gene expression. The immune system plays a major role
in limiting the development of these abnormalities. There are multiple lines of
evidence that the immune system elicits a detectable humoral immune response
to changes in antigen profiles caused by growing cancer cells [1], [2], [3], [4], [6].

Circulating autoantibodies produced by the patient’s own immune system
after exposure to cancer proteins are promising biomarkers for the early de-
tection of cancer. An advantage of autoantibodies in cancer detection is their
production in large quantities, despite the presence of a relatively small amount
of the corresponding antigen. It has been demonstrated, that panels of antibody
reactivities can be used for detecting cancer with high sensitivity and specificity
[7].

1.2 Previous works

The current methods of analysis of antitumor humoral immune response, such
as SEREX, SERPA, antigen microarrays, or ELISA are designed to detect high-
affinity/high-titer IgG or IgM antibodies. However, the immune system can react
to alterations in local antigenic compositions caused by growing tumors by pro-
ducing a variety of low-affinity/low-titer antibodies. There is a need to develop
more sensitive method.

Recently the authors tested whether immunosignatures correspond to clinical
classifications of disease using samples from people with brain tumors. The im-
munosignaturing platform distinguished not only brain cancer from controls, but
also pathologically important features about the tumor including type and grade
[5]. These results clearly demonstrate that random peptide arrays can be applied
to profiling serum antibody repertoires for detection of cancer. The important
advantage of using peptide arrays instead of antigen arrays is that peptides can
mimic not only the protein epitopes but also the carbohydrate epitopes that
represent an essential part of the repertoire of cancer-associated autoantibodies.

1.3 Biological mechanism

Since an antibody recognizes not the whole antigen but 4-7 critical amino acids
within the antigenic determinant (epitope), the whole proteome can be repre-
sented by random peptide phage display libraries (RPPDL). Also, it has been
demonstrated that for any antibody the peptide motif representing the best
binder can be selected from the RPPDL. The RPPDL are widely used for iden-
tifying the epitope specificity of monoclonal antibodies. The obstacle for using
RPPDL as diagnostic tools was the necessity to sequence large number of indi-
vidual phage DNA for identifying epitopes recognized by antibodies. The next
generation (next-gen) sequencing technology makes possible to identify all the
epitopes recognized by all antibodies contained in the human serum using one
run of the sequencing machine. By screening human serum samples from breast



cancer patients and healthy donors using RPPDL and next-gen sequencing we
identify as biomarkers of cancer not the whole TAAs, but short peptide 7-mer
sequences recognized by cancer associated autoantibodies.

1.4 Approach

To solve cancer detection problem we propose a new method based on RPPDL
and Pearson correlation. We determined that peptides assigned to breast cancer
serum samples better correlate with each other than peptides assigned to con-
trol serum samples. Thus, the cancer samples had common features in immune
response. Using that property we calculated pairwise correlation between whole
lists of peptides from different samples. As result we were able to identify a group
of high correlated cancer samples.

2 Experiment setting

The serum antibody repertoire profiles for 5 stage 0 breast cancer patients and
for 5 cancer-free women were generated by next-gen sequencing of peptide-coding
DNA from phage selected from the RPPDL for binding to serum IgG antibod-
ies. The flowchart in Figure 1 represents the experiment that was performed in
duplicates for every human serum sample.

Fig. 1. A scheme for generating mimotope profiles of serum antibody repertoire.

Ph.D-7 phage displayed library of 7-mer random peptides was mixed with
the serum and incubated overnight. Phage bound to antibodies was isolated
using protein-G beads and eluted from the beads using low pH buffer. The
eluted phage was amplified by propagation in E.coli and the amplified library
was incubated with the same serum. The phage bound to antibodies was isolated
using protein-G beads and the phage DNA was PCR amplified with the primers
flanking the peptide coding insert. The library of peptide coding inserts was
next-gen sequenced and the DNA sequences were translated into the peptide
sequences.



3 Data preprocessing

After sequencing reads were translated into the peptide sequences for each pep-
tide variant the number indicating how many times this peptide variant was
encountered for each serum sample were assigned. Then obtained results were
normalized. In average, for the experimental condition selected, the total num-
ber of distinct peptide sequences generated in one experiment was 3∗106. This
number represents only 0.3 % of all possible 7-mer peptide sequences contained
in the aliquot of the library used for the experiment.

As all 10 samples were done in duplicate totally we had 20 experiments
(or replicas). We rationalized that as the measure of the reproducibility of the
method we could consider the correlation of peptide abundance between the
two replicas of the same profile generated by using the same serum sample and
the same library independently. The low correlation between the replicas would
indicate that the method detects only unspecific noise. In reality the correlation
between the two replicas of the same serum for the all 10 serum samples was
comparatively high, ranging between 0.68 and 0.99 with an average of 0.87. For
the method we used Pearson correlation.

4 Method

As the result of the data preprocessing for every replica there was a list of
assigned peptides. In turn, all those peptides had corresponding expression levels.
We calculated the average correlation of the peptides’ expression between the
two replicas belonging to the different samples within the cancer set, the average
correlation between the two replicas belonging to the different samples within
the control set and the average correlation between the replicas from the cancer
and the control sets.

The results showed the highest average correlation between the cancer sam-
ples equal 0.12. Between the cancer and control sets the correlation was 0.03.
Finally, between control samples the correlation was the smallest and equal 0.02.
Thus, the average correlation between the two replicas within the same sample
was significantly higher than the overlap between the two replicas of the two
different samples. This demonstrates that the method is reproducible and that
the list of peptide sequences shared between the two replicas of the same serum
sample is not the reduced list of random peptides but represents the profile of
serum antibody repertoire. On the other hand, the average correlation between
cancer samples was higher than the average correlation between the replicas from
the cancer and the control sets. Based on the last property we proposed next
algorithm for the breast cancer prediction:

– find the average correlation between known cancers (S)
– find the average correlation between known cancers and controls (L)
– find the average correlation between any unknown sample X and all known

cancers (A)
– classify X to be the cancer if A >= (S+L)/2 and control otherwise



5 Results and discussion

To verify the accuracy of our method we used two techniques: cross-validation
and permutation test. For cross-validation we applied described algorithm to
available 10 serum samples trying to correctly predict cancers and controls. Ev-
ery time we considered one of the ten samples as unknown X and used others
to establish S, L, A and classified X as control or cancer. As result all samples
were predicted correctly except one cancer which gave sensitivity equaled 0.8,
specificity equaled 1 and accuracy equaled 0.9. To perform permutation test our
method were run swapping control and cancer serum samples. Totally, there
were 252 possible permutations or, in other words, ways of assigning case status
to 5 out of 10 samples. The real result was in the top 2% of the best permuta-
tions according accuracy, sensitivity and specificity proving the reliability of the
method.

In addition, we decided to analyzed the profiles of serum samples to identify
the peptides associated with cancer. We use the following very stringent criteria
for a peptide to be specific to breast cancer – its minimum expression level among
the 10 replicas for breast cancer patients should exceed its maximum expression
level among the 10 replicas for healthy donors. According to the above criteria,
there is a single 7-mer peptide, 9 6-mer peptides, and 44 5-mer peptides specific
to breast cancer. On the other hand, there are no 7-, 6-, and 5-mer peptide
specific to healthy donors. Using permutation test, we found that the above
property is statistically significant, namely, the p-value is less than 3%.

Although the number of serum samples used for our experiment is too low
to have significant statistical power, identified peptides allow screening a large
number of serum samples specifically for the reactivity against these peptides.
The design of a quantitative PCR based immunoassay to screen large number
of serum samples for analyzing reactivity against identified peptides is currently
underway.
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