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Introduction

Massively parallel transcriptome sequencing is quickly replacing microarrays

as the technology of choice for performing gene expression profiling due to

its wider dynamic range and digital quantitation capabilities. However, accu-

rate estimation of expression levels from sequencing data remains challenging

due to the short read length delivered by current sequencing technologies

and still poorly understood protocol- and technology-specific biases. To date,

two main transcriptome sequencing protocols have been proposed in the lit-

erature. The most commonly used one, referred to as RNA-Seq, generates

short (single or paired) sequencing tags from the ends of randomly generated

cDNA fragments. An alternative protocol, referred to as 3’-tag Digital Gene

Expression (DGE), or high-throughput sequencing based Serial Analysis of

Gene Expression (SAGE-Seq), generates single cDNA tags using an assay in-

cluding as main steps transcript capture and cDNA synthesis using oligo(dT)

beads, cDNA cleavage with an anchoring restriction enzyme, and release of

cDNA tags using a tagging restriction enzymewhose recognition site is ligated

upstream of the recognition site of the anchoring enzyme.

In this thesis we present two novel expectation-maximization algorithms for
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inference of isoform- and/or gene-specific expression levels from RNA-Seq and

DGE data and a comparison of estimation performance of the two transcrip-

tome sequencing protocols.

The first algorithm, IsoEM [1, 3], works on RNA-Seq data and is based on

disambiguating of information provided by the distribution of insert sizes

generated during sequencing library preparation and takes advantage of base

quality scores, strand and read pairing information when available. Empirical

experiments on both synthetic and real RNA-Seq datasets show that IsoEM

has scalable running time and outperforms existing methods of isoform and

gene expression level estimation. Simulation experiments confirm previous

findings that, for a fixed sequencing cost, using reads longer than 25-36 bases

does not necessarily lead to better accuracy for estimating expression levels of

annotated isoforms and genes.

The second chapter introduces a rigorous statistical model of DGE data and a

novel expectation-maximization algorithm, DGE-EM [2], for inference of gene

and isoform expression levels from DGE tags. Unlike previous methods, our

algorithm takes into account alternative splicing isoforms and tags that map

at multiple locations in the genome, and corrects for incomplete digestion

and sequencing errors. Experimental results show that DGE-EM outperforms

methods based on unique tag counting on a multi-library DGE dataset con-

sisting of 20bp tags generated from two commercially available reference RNA

samples that have been well-characterized by quantitative real time PCR as
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part of the MicroArray Quality Control Consortium (MAQC).

We also take advantage of the availability of RNA-Seq data generated from the

same MAQC samples to directly compare estimation performance of the two

transcriptome sequencing protocols. While RNA-Seq is clearly more powerful

than DGE at detecting alternative splicing and novel transcripts such as fused

genes, previous studies have suggested that for gene expression profiling DGE

may yield accuracy comparable to that of RNA-Seq at a fraction of the cost [38].

We find that the two protocols achieve similar cost-normalized accuracy on the

MAQC samples when using state-of-the-art estimation methods. However,

the current protocol versions are unlikely to be optimal. Indeed, the results

of a comprehensive simulation study assessing the effect of various experi-

mental parameters suggest that further improvements in DGE accuracy could

be achieved by using anchoring enzymes with degenerate recognition sites

and using partial digest of cDNA with the anchoring enzyme during library

preparation.
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Chapter 1

Estimation of alternative splicing isoform

frequencies from RNA-Seq data

1.1 Background

Ubiquitous regulatory mechanisms such as the use of alternative transcription

start and polyadenylation sites, alternative splicing, and RNA editing result

in multiple messenger RNA (mRNA) isoforms being generated from a single

genomic locus. Most prevalently, alternative splicing is estimated to take place

for over 90% of the multi-exon human genes across diverse cell types [33], with

asmuch as 68%ofmulti-exongenes expressingmultiple isoforms in a clonal cell

line of colorectal cancer origin [11]. Not surprisingly, the ability to reconstruct

full length isoform sequences and accurately estimate their expression levels is

widely believed to be critical for unraveling gene functions and transcription

regulation mechanisms [25].

Three key interrelated computational problems arise in the context of tran-

scriptome analysis: gene expression level estimation (GE), isoform expression level

estimation (IE), and novel isoform discovery (ID). Targeted GE using methods

such as quantitative PCR has long been a staple of genetic studies. The com-
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pletion of the human genome has been a key enabler for genome-wide GE

performed using expression microarrays. Since expression microarrays have

limited capability of detecting alternative splicing events, specialized splicing

arrays have been developed for genome-wide interrogation of both annotated

exons and exon-exon junctions. However, despite sophisticated deconvolution

algorithms [4, 28], the fragmentary information provided by splicing arrays is

typically insufficient for unambiguous identification of full-length transcripts

[14, 18]. Massively parallel whole transcriptome sequencing, commonly re-

ferred to as RNA-Seq, is quickly replacing microarrays as the technology of

choice for performing GE due to their wider dynamic range and digital quan-

titation capabilities [34]. Unfortunately, most RNA-Seq studies to date still

ignore alternative splicing or, similar to splicing array studies, restrict them-

selves to surveying the expression levels of exons and exon-exon junctions.

The main difficulty in inferring expression levels for full-length isoforms lies

in the fact that current sequencing technologies generate short reads (from few

tens to hundreds of bases), many of which cannot be unambiguously assigned

to individual isoforms.

1.1.1 Related work

RNA-Seq analyses typically start by mapping sequencing reads onto the refer-

ence genome, transcript libraries, exon-exon junction libraries, or combinations

thereof. EarlyRNA-Seq studies have recognized that limited read lengths result
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in a significant percentage of so called multireads, i.e., reads that map equally

well at multiple locations in the genome. A simple (and still commonly used)

approach is to discard multireads, and estimate expression levels using only

the so called unique reads. Mortazavi et al. [22] proposed a multiread “res-

cue” method whereby initial gene expression levels are estimated from unique

reads and used to fractionally allocate multireads, with final expression levels

obtained by re-estimation based on total counts obtained after multiread allo-

cation. An expectation-maximization (EM) algorithm that extends this scheme

by repeatedly alternating between fractional read allocation and re-estimation

of gene expression levels was recently proposed in [24].

A number of recent works have addressed the IE problem, namely isoform

expression level estimation from RNA-Seq reads. Under a simplified “exact

information” model, [18] showed that neither single nor paired read RNA-Seq

data can theoretically guarantee unambiguous inference of isoform expression

levels, although paired reads may be sufficient to deconvolute expression lev-

els for the majority of annotated isoforms. The key challenge in IE is accurate

assignment of ambiguous reads to isoforms. Compared to the GE context,

read ambiguity is much more significant, since it affects not only multireads,

but also reads that map at a unique genome location expressed in multiple

isoforms. Estimating isoform expression levels based solely on unambiguous

reads, as suggested, e.g., in [11], results in splicing-dependent biases similar

to the transcript-length bias noted in [23], further complicating the design of
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unbiased differential expression tests based on RNA-Seq data. To overcome

this difficulty, [17] proposed a Poisson model of single-read RNA-Seq data

explicitly modeling isoform frequencies. Under their model, maximum like-

lihood estimates are obtained by solving a convex optimization problem, and

uncertainty of estimates is obtained by importance sampling from the posterior

distribution. Li et al. [20] introduced an expectation-maximization (EM) algo-

rithm similar to that of [24] but applied to isoforms instead of genes. Unlike

the method of [17], which estimates isoform frequencies only from reads that

map to a unique location in the genome, the algorithm of [20] incorporates

multireads as well. The IE problem for single reads is also tackled in [26], who

propose an EM algorithm for inferring isoform expression levels from the read

coverage of exons (reads spanning exon junctions are ignored).

The related novel isoform discovery (ID) problem is also receiving much in-

terest in the literature. Although showing encouraging results, de novo tran-

scriptome assembly algorithms such as [5, 16, 30] have difficulties in identify-

ing transcripts with moderate coverage. Very recently, [10, 12, 32] proposed

genome-assisted (i.e., mapping based) methods for simultaneously solving ID

and IE based on paired RNA-Seq reads. The method of Feng et al. [10] gener-

ates isoform candidates from the splicing graph derived from annotations and

reads spanning exon-exon junctions. After discarding multireads, [10] formu-

lates IE for a given set of isoforms as a convex quadratic program (QP) that

can be efficiently solved for each gene locus. The set of isoform candidates is
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iteratively refined until the p-value of the objective value of the QP, assumed

to follow a χ2 distribution, exceeds an empirically selected threshold of 5%.

Pair read information is not directly used in isoform frequency estimation,

contributing only as secondary data to filter out false positives in the process of

isoform selection. As in [10], Guttman et al. [12] construct a splicing graph from

the mapped reads and filter candidate isoforms using paired-end information.

Isoform specific expression levels are inferred using the method of [22]. After

performing spliced alignment of (paired) reads onto the genome using TopHat

[31], the method of Trapnell et al. [32], referred to as Cufflinks, constructs a

read overlap graph and generates candidate isoforms by finding a minimal

size path cover via a reduction to maximum matching in a weighted bipartite

graph. Reads that match equally well multiple locations in the genome are

fractionally allocated to these locations, and estimation is then performed in-

dependently at different transcriptional loci, using an extension to paired reads

of the methods in [17].

1.1.2 Our contributions

In this chapter we focus on the IE problem, namely estimating isoform expres-

sion levels (interchangeably referred to as frequencies) from RNA-Seq reads,

under the assumption that a complete list of candidate isoforms is available.

Projects such as [7] and [21] have already assembled large libraries of full-length

cDNA sequences for humans and other model organisms, and the coverage of
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these libraries is expected to continue to increase rapidly following ultra-deep

paired-end transcriptome sequencing projects such as [12, 32] and the widely

anticipated deployment of third-generation sequencing technologies such as

[8, 9], which deliver reads with significantly increased length. Inferring ex-

pression at isoform level provides information for finer-resolution biological

studies, and also leads to more accurate estimates of expression at the gene

level by allowing rigorous length normalization. Indeed, as shown in the

‘Experimental results’ section, genome-wide gene expression level estimates

derived from isoform level estimates are significantly more accurate than those

obtained directly from RNA-Seq data using isoform-oblivious GE methods

such as the widely used counting of unique reads, the rescue method of [22],

or the EM algorithm of [24].

Our main contribution is a novel expectation-maximization algorithm for iso-

form frequency estimation from any mixture of single and paired RNA-Seq

reads. A key feature of our algorithm, referred to as IsoEM, is that it ex-

ploits information provided by the distribution of insert sizes, which is tightly

controlled during sequencing library preparation under current RNA-Seq pro-

tocols. Such information is not modeled in the “exact” information models of

[14, 18], challenging the validity of their negative results. Guttman et al. [12]

take into account insert lengths derived from paired read data, but only for

filtering candidate isoforms in ID. Trapnell et al. [32] is the only other work we

are aware of that exploits this information for IE, in conjunction with paired
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read data. We show that modeling insert sizes is highly beneficial for IE even

for RNA-Seq data consisting of single reads. Insert sizes contribute to increased

estimation accuracy in two different ways. On one hand, they can help dis-

ambiguating the isoform of origin for the reads. In IsoEM, insert lengths are

combined with base quality scores, and, if available, read pairing and strand

information to probabilistically allocate reads to isoforms during the expecta-

tion step of the algorithm. As in [20], the genomic locations of multireads are

also resolved probabilistically in this step, further contributing to improved

overall accuracy compared to methods that ignore or fractionally pre-allocate

multireads. On the other hand, insert size distribution is used to accurately ad-

just isoform lengths during frequency re-estimation in the maximization step

of the IsoEM algorithm.

We also present the results of comprehensive experiments conducted to assess

the performance of IsoEM on both synthetic and real RNA-Seq datasets. These

results show that IsoEM consistently outperforms existing methods under a

wide range of sequencing parameters and distribution assumptions. We also

report results of experiments empirically evaluating the effect of sequencing

parameters such as read length, read pairing, and strand information on esti-

mation accuracy. Our experiments confirm the surprising finding of [20] that,

for a fixed total number of sequenced bases, longer reads do not necessarily

lead to better accuracy for estimation of isoform and gene expression levels.
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1.2 Methods

1.2.1 Read mapping

As with many RNA-Seq analyses, the first step of IsoEM is to map the reads.

Our approach is to map them onto the library of known isoforms using any

one of themany available ungapped aligners (we used Bowtie [19] with default

parameters in our experiments). An alternative strategy is to map the reads

onto the genome using a spliced alignment tool such as TopHat [31], as done,

e.g., in [12, 32]. However, preliminary experiments with TopHat resulted in

fewer mapped reads and significantly increased mapping uncertainty, despite

providing TopHat with a complete set of annotated junctions. Since further

increases in read length coupledwith improvements in spliced alignment algo-

rithms could make mapping onto the genome more attractive in the future, we

made our IsoEM implementation compatible with both mapping approaches

by always converting read alignments to genome coordinates and performing

all IsoEM read-isoform compatibility calculations in genome space.

1.2.2 Finding read-isoform compatibilities

The candidate set of isoforms for each read is obtainedby combining all genome

coordinates of reads and isoforms, sorting them and using a line sweep tech-

nique to detect read-isoform compatibilities (see Figure 1.2.1) As detailed be-

low, during the line sweep reads are grouped into equivalence classes defined

by their isoform compatibility sets; this speeds up the E-step of the IsoEM
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algorithm by allowing the processing of an entire read class at once.

Some of the readsmatch multiple positions in the genome, whichwe refer to as

alignments (for paired end reads, an alignment consists of the positions where

the two reads in the pair align with the genome). Each alignment a can in

turn be compatible with multiple isoforms that overlap at that position of the

genome. During the line sweep, we compute the relative “weight” of assigning

a given read/pair r to isoform j as wr, j =
∑

aQaFaOa, where the sum is over all

alignments of r compatible with j, and the factors of the summed products are

defined as follows:

• Qa represents the probability of observing the read from the genome

locations described by the alignment. This is computed from the base

quality scores as Qa =
∏|r|

k=1
[(1 − εk)Mak +

εk
3
(1 −Mak)], where Mak = 1 if

position k of alignment a matches the reference genome sequence and 0

otherwise, while εk denotes the error probability of k-th base of r.

• For paired end reads, Fa represents the probability of the fragment length

needed to produce alignment a from isoform j; note that the length of this

fragment can be inferred from the genome coordinates of the two aligned

reads and the available isoform annotation. For single reads, we can only

estimate an upperbound u on the fragment length: if the alignment is on

the same strand as the isoform then u is the number of isoform annotated

bases between the 5′ end of the aligned read and the 3′ end of the isoform,
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otherwise u is the number of isoform annotated bases between the 5′ end

of the aligned read and the 5′ end of the isoform. In this case Fa is defined

as the probability of observing a fragment with length of u bases or fewer.

• Oa is 1 if alignment a of r is consistent with the orientation of isoform j,

and 0 otherwise. Consistency between the orientations of r and j depends

on whether or not the library preparation protocol preserves the strand

information. For single reads Oa = 1 when reads are generated from

fragment ends randomly or, for directional RNA-Seq, when they match

the known isoform orientation. For paired-end reads, Oa = 1 if the two

reads come from different strands, point to each other, and, in the case

of directional RNA-Seq, the orientation of first read matches the known

isoform orientation.

1.2.3 The IsoEM algorithm

The IsoEM algorithm starts with the set ofN known isoforms. For each isoform

we denote by l( j) its length and by f ( j) its (unknown) frequency. If we denote

by n( j) the number of reads coming from isoform j and let p(k) denote the

probability of a fragment of length k, then

E[n( j)] ∝
∑

k≤l( j)

p(k)(l( j) − k + 1) (1.2.1)

since, the number of fragments of length k is expected to be proportional to

the number of valid starting positions for a fragment of that length in the
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X = all the coordinates of all the entities (isoforms and reads)
sort X (radix sort; for equal values, isoform coordinates come first)
for x in X do

e = entityFor(x)
if x is an entity end then

sig = signature[e]
gap = getLastGap(sig)
if x is an isoform end then

currentIsoformsForGap[gap].remove(e)
else if x is a read end then

isoforms = currentIsoformsForGap[gap].keepOnlyMatching(sig)
if read e is the second read in the pair then

isoformsForRead[e] = isoformsForRead[e]∩ isoforms
else

isoformsForRead[e] = isoforms
end if

readClasses[isoformsForRead[e]].add(e)
end if

signature.remove(e)
else

signature[e].add(x)
end if

if x is an exon start then

sig = signature[e]
lastButOneGap = getLastButOneGap(sig)
currentIsoformsForGap[lastButOneGap].remove(e)
lastGap = getLastGap(sig)
currentIsoformsForGap[lastGap].add(e, sig)

end if

end for

Figure 1.2.1: The algorithm for identifying isoforms compatible with reads.

isoform. Thus, if the isoform of origin is known for each read, the maximum

likelihood estimator for f ( j) is given by c( j)/(c(1) + . . . + c(N)), where c( j) =

n( j)/
∑

k≤l( j) p(k)(l( j) − k + 1) denotes the length-normalized fragment coverage.

Note that the length of most isoforms is significantly larger than the mean

fragment length µ typical of current sequencing libraries; for such isoforms

∑

k≤l( j) p(k)(l( j)− k+ 1) ≈ l( j)− µ+ 1 and c( j) can be approximated by n( j)/(l( j)−

µ + 1).
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Since some reads match multiple isoforms, their isoform of origin cannot be

established unambiguously. The IsoEM algorithm (see Figure 1.2.2) overcomes

this difficulty by simultaneously estimating the frequencies and imputing the

missing read origin within an iterative framework. After initializing frequen-

cies f ( j) at random, the algorithm repeatedly performs the next two steps until

convergence:

• E-step: Compute the expected number n( j) of reads that come from

isoform j under the assumption that isoform frequencies f ( j) are correct,

based on weights wr, j computed as described in the previous section

• M-step: For each j, set the new value of f ( j) to c( j)/(c(1) + . . . + c(N)),

where normalized coverages c( j) are based on expected counts computed

in the prior E-step

1.2.4 IsoEM optimizations

Below we describe two implementation optimizations that significantly im-

prove the performance of IsoEM by reducing both runtime andmemory usage.

The first optimization consists of partitioning the input into compatibility com-

ponents. The compatibility between reads and isoforms naturally induces a

bipartite read-isoformcompatibility graph, with edges connecting each isoform

with all reads that can possibly originate from it. Connected components of

the compatibility graph can be processed independently in IsoEM since the fre-

quencies of isoforms in one connected component do not affect the frequencies

15



assign random values to all f(i)
while not converged do

E-step:

initialize all n(j) to 0
for each read r do

sum =
∑

j:wr,j>0 wr,jf(j)
for each isoform j with wr,j > 0 do

n(j)+ = wr,jf(j)/sum
end for

end for

M-step:

s =
∑

j n(j)/(l(j)− µ + 1)
for each isoform j do

f(j) = n(j)/(l(j)−µ+1)
s

end for

end while

Figure 1.2.2: The expectation-maximization algorithm used by IsoEM.

of isoforms in any other connected component. Although this optimization can

be applied to any EM algorithm, its impact is particularly significant in IsoEM.

Indeed, in this context the compatibility graph decomposes in numerous small

components (see Figure 1.2.3(a) for a typical distribution of component sizes; a

similar distribution of component sizes is reported for Arabidopsis gene mod-

els in [15]). The resulting speed-up comes from the fact that in each iteration of

IsoEMwe update frequencies of isoforms in a single compatibility component,

avoiding needless updates for other isoforms.

The second IsoEM optimization consists of partitioning the set of reads within

each compatibility component into equivalence classes. Two reads are equiv-

alent for IsoEM if they are compatible with the same set of isoforms and their

compatibility weights to the isoforms are proportional. Keeping only a single

16
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Figure 1.2.3: Distribution of compatibility component sizes (defined as the
number of isoforms) for 10 million single reads of length 75 (a) and number of
read classes for 1 to 30 million single reads or pairs of reads of length 75 (b).

E-step for read classes:

initialize all n(j) to 0
for each read class R do

sum =
∑

j:wR,j>0
wR,jf(j)

for each isoform j with wR,j > 0 do

n(j)+ = m(R) ∗ wR,jf(j)/sum
end for

end for

Figure 1.2.4: The E-Step of IsoEM algorithm based on read classes.

representative from each read class (with appropriately adjusted frequency)

drastically reduces the number of reads kept in memory (see Figure 1.2.3(b)).

As the number of reads increases, the number of read classes increases much

slower. Eventually this reaches saturation and no new read classes appear –

at which point the runtime of IsoEM becomes virtually independent of the

number of reads. Indeed, in practice the runtime bottlenecks are parsing the

reads, computing the compatibility graph and detecting equivalent reads.

Once read classes are constructed, we only need a small modification of the
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E-step of IsoEM to use read classes instead of reads (Figure 1.2.4). Next we

describe the union-find algorithm used for efficiently finding compatibility

components and read classes in IsoEM. A read class is defined as 〈m, {(i,w)|i =

isoform,w = weight}〉, where m is called the multiplicity of the read class.

Given a collection of reads, we want to:

• Find the connected components of the compatibility graph induced by

the reads, and

• Collapse equivalent reads into read classes with multiplicity indicating

the number of reads in each class.

A straightforward approach is to solve the first problem using a union-find

algorithm, then to take the reads corresponding to each connected component

and remove equivalent reads, e.g., using hashing. However, there are two

drawbacks to this approach:

• First, all reads need to be kept inmemory until all connected components

have been computed.

• Second, when the number of reads in a connected component is very large

the number of collisions increases, which leads to poor performance.

We overcome the two problems presented above using an online version of the

union-find algorithm which computes connected components and eliminates

equivalent reads on the fly. This way, equivalent reads will never reside too
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long in memory. Also, we avoid the problem of large hash tables by using

multiple smaller hash tables which are guaranteed to be disjoint.

We start our modified version of union-find with an empty set of trees. A new

single-node tree is initialized every time a new isoform is found in a read class.

In each node we store a hash-table of read classes. Each read is processed as

follows:

• If the isoforms compatible with the read correspond to nodes in more than one

tree unite the corresponding trees. The root of the tallest tree becomes the

root of the union tree. Then create a new read class for this read (we can

be sure it was not seen before, otherwise the isoforms would have been in

the same tree) and add it to the hash table of the root node. Notice that at

this point the root node is also (trivially) the Lowest Common Ancestor

(LCA) of the nodes corresponding to the isoforms in the read class

• If the isoforms correspond to nodes in the same tree find the LCA of all these

nodes. If the class of the read is present in the hash table of the LCA,

increment its multiplicity and then drop the read. Otherwise, create a

new read class and add it to the LCA’s hash table.

Notice that in the second case it suffices to look only in the LCA of the isoforms

for an already existing read class. This follows immediately from the fact that

we always add reads to the LCA of the nodes (isoforms) compatible with the

read. Note that we cannot use path compression to speed up ‘find’ operations
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because this would be altering the structure of existing trees. Thus, ‘find’ op-

erations will take logarithmic (amortized) time. At the end of the algorithm,

each tree in the union-find forest corresponds to a connected component. The

read classes in each connected component are obtained by traversing the cor-

responding tree and collecting all the read classes present in the nodes. At this

point we are sure that all the read classes are distinct, so the collection process

performs simple concatenations. To further speed up the collection process,

we can safely use path compression as we traverse the trees, since we no longer

care about the exact topology of the subtrees.

Runtime analysis. Each union operation takes O(1) time, so for a read with k

compatible isoforms we spend at most O(k) time doing unions. By always

making the root of the taller tree to be the root of a union, we ensure that the

height of any tree is not bigger than O(logn) where n is the number of nodes

in the tree. Thus, finding the root of a node’s tree takes O(logn). For a read

with k compatible isoforms we spend at mostO(k log n) time processing it. The

LCA of two nodes can be computed at constant overhead when performing

find operations (by marking the nodes on the paths from isoforms to root).

Collecting all the read classes is sped-up by using path compression. Thewhole

collecting phase takes O(nα(n)) time where n is the total number of isoforms

and α(n) is the inverse of the Ackermann function. Overall, for q reads with an

average of k isoforms per read and n total distinct isoforms, computing read

classes and compatibility components using themodified union-find algorithm

20



takes O(qk logn + nα(n)) time.

1.2.5 Hexamer and repeat bias corrections

As noted in [13], some commonly used library preparation protocols result

in biased sampling of fragments from isoforms due to the random hexamers

used to prime reverse transcription. To correct for possible hexamer bias, we

implemented a simple re-weighting scheme similar to that proposed in [13].

Each read is assigned a weight b(h) based on its first six bases and computed

as follows. Given a set of mapped reads, let p̂i be the observed distribution of

hexamers starting at position i (spanning positions i to i + 5) of all the reads.

Thus, p̂i(h) is the proportion of reads which have hexamer h at position i and

p̂1(h) is the proportion of reads startingwith hexamer h. Let l be the read length.

We define the weights b by:

b(h) =

1
6

∑l/2+3
i=l/2−2

p̂i(h)

1
2
(p̂1(h) + p̂2(h))

Since we already collapse equivalent reads into read classes, we can seam-

lessly incorporate hexamer weights in the algorithm by slightly changing the

definition of a read class’ multiplicity to m(R) =
∑

r∈R b(h(r)), where h(r) de-

notes the starting hexamer of r. The effect of this correction procedure is to

reduce (respectively increase) the multiplicity of reads with starting hexamers

that are overrepresented (respectively under-represented) at the beginning of

reads compared to the middle of reads. The underlying assumption is that
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the average frequency with which a hexamer appears in the middle of reads is

not affected by library preparation biases. Recent methods [27] further target

biases in the bases surrounding the sequenced fragments in addition to those

at read ends.

To avoid biases from incorrectly mapped reads originating from repetitive re-

gions, IsoEM will also discard reads that overlap annotated repeats. When

applying this correction, isoform lengths are automatically adjusted by sub-

tracting the number of positions resulting in reads that would be discarded.

1.3 Experimental results

1.3.1 Comparison of methods on simulated datasets

We tested IsoEM on simulated human RNA-Seq data. The human genome

sequence (hg18, NCBI build 36) was downloaded from UCSC together with

the coordinates of the isoforms in the KnownGenes table. Genes were defined

as clusters of known isoforms defined by the GNFAtlas2 table. The dataset

contains a total of 66, 803 isoforms pertaining to 19, 372 genes. The isoform

length distribution and the number of isoforms per genes are shown in Figure

1.3.1.

Single and paired-end reads were randomly generated by sampling fragments

from the known isoforms. Each isoform was assigned a true frequency based

on the abundance reported for the corresponding gene in the first human

tissue of the GNFAtlas2 table, and a probability distribution over the isoforms
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inside a gene cluster. Thus, the true frequency of isoform j is a(g)p( j), where

a(g) is the abundance of the gene g for which j is an isoform and p( j) is the

probability of isoform j among all the isoforms of g. We simulated datasets

with uniform, respectively truncated geometric distribution with ratio r = 1/2

for the isoforms of each gene. For a gene with k isoforms p( j) = 1/k, j = 1, . . . , k,

under the uniform distribution. Under the truncated geometric distribution,

the respective isoform probabilities are p( j) = 1/2 j for j = 1, . . . , k − 1 and

p(k) = 1/2k−1. Fragment lengths were simulated from a normal probability

distribution with mean 250 and standard deviation 25.

We compared IsoEM to several existing algorithms for solving the IE and GE

problems. For IEwe included in the comparison the isoformanalogs of theUniq

and Rescue methods used for GE [22], an improved version of Uniq (UniqLN)

that estimates isoform frequencies from unique read counts but normalizes

them using adjusted isoform lengths that exclude ambiguous positions, the

Cufflinks algorithm of [32] (version 0.8.2), and the RSEM algorithm of [20]

(version 0.6). For the GE problem, the comparison included the Uniq and

Rescue methods, our implementation of the GeneEM algorithm described in

[24], and estimates obtained by summing isoform expression levels inferred by

Cufflinks, RSEM, and IsoEM.Allmethodsuse alignments obtainedbymapping

reads onto the library of isoforms with Bowtie [19] and then converting them

to genome coordinates, except for Cufflinks which uses alignments obtained

by directly mapping the reads onto the genome with TopHat [31], as suggested
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in [32].

Frequency estimation accuracy was assessed using the coefficient of determi-

nation, r2, along with the error fraction (EF) and median percent error (MPE)

measures used in [20]. However, accuracy was computed against true fre-

quencies, not against estimates derived from true counts as in [20]. If f̂i is the

frequency estimate for an isoform with true frequency fi, the relative error is

defined as | f̂i − fi|/ fi if fi , 0, 0 if f̂i = fi = 0, and ∞ if f̂i > fi = 0. The error

fraction with threshold τ, denoted EFτ is defined as the percentage of isoforms

with relative error greater or equal to τ. The median percent error, denoted

MPE, is defined as the threshold τ for which EFτ = 50%.

Since not all compared methods could handle paired reads or strand infor-

mation we focused our comparisons on single read data. Table 1.3.1 gives

r2 values for isoform, respectively gene expression levels inferred from 30M

reads of length 25, simulated assuming both uniform and geometric isoform

expression. IsoEM significantly outperforms the other methods, achieving an

r2 values of over .96 for all datasets. For all methods the accuracy difference

between datasets generated assuming uniform and geometric distribution of

isoform expression levels is small, with the latter one typically having a slightly

worse accuracy. Thus, in the interest of spacewe present remaining results only

for datasets generated using geometric isoform expression.

For a more detailed view of the relative performance of compared IE and GE

algorithms, Figure 1.3.2 gives the error fraction at different thresholds ranging
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between 0 and 1. The variety of methods included in the comparison allows us

to tease out the contribution of various algorithmic ideas to overall estimation

accuracy. The importance of rigorous length normalization is illustrated by

the significant IE accuracy gain of UniqLN over Uniq – clearly larger than that

achieved by ambiguous read reallocation as implemented in the IE version

of Rescue. Proper length normalization is also explaining the accuracy gain

of isoform-aware GE methods (Cufflinks, RSEM, and IsoEM) over isoform

oblivious GEmethods. Similarly, the importance of modeling insert sizes even

for single read data is underscored by the significant IE and GE accuracy gains

of IsoEM over RSEM. Indeed, the latest version of the RSEM package, released

as this article goes to print, has been updated to include modeling of insert

sizes and appears to have accuracy matching that of IsoEM.

For yet another view, Tables 1.3.2 and 1.3.3 report the MSE and EF.15 measures

for isoform, respectively gene expression levels inferred from 30M reads of

length 25, computed over groups of isoforms with various expression levels.

IsoEM consistently outperforms the other IE and GEmethods at all expression

levels except for isoforms with zero true frequency, where it is dominated by

the more conservative Uniq algorithm and its UniqLN variant.

1.3.2 Comparison of methods on two real RNA-Seq datasets

In addition to simulation experiments, we validated IsoEM on two real RNA-

Seq datasets. The first dataset consists of two samples with approximately 8
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million 27bp Illumina reads each, generated from two human cell lines (embry-

onic kidney and B cells) as described in [29]. Estimation accuracy was assessed

by comparison with quantitative PCR (qPCR) expression levels determined in

[26] for 47 genes with evidence of alternative isoform expression. To facilitate

comparison with these qPCR results, expression levels were determined using

transcript annotations in ENSEMBL version 46. The second dataset consists of

approximately 5 million 32bp Illumina reads per sample, generated from the

RM11-1a strain of S. cerevisiae under two different nutrient conditions [6]. Ex-

pression levels were determined using transcript annotations for the reference

strain (June 2008 SGD/sacCer2) and compared against qPCR expression levels

measured for 192 genes (for a total of 394 datapoints).

Since the available implementation of RSEM could not be run on transcript

sets other than UCSC known genes, in Figures 1.3.3 and 1.3.4 we only compare

Cufflinks and IsoEM estimates against qPCR values in [26], respectively [6].

Estimation accuracy of both Cufflinks and IsoEM is significantly lower than

that observed in simulations. Likely explanations include poor quality of the

transcript libraries used to perform the inference, sequencing library prepa-

ration biases not corrected for by the algorithms, and possible inaccuracies in

qPCR estimates. Nevertheless, the relative performance of the two algorithms

is consistent with simulation results, with IsoEM outperforming Cufflinks on

both datasets.

1.3.3 Influence of sequencing parameters and scalability
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Although high-throughput technologies allow users tomake tradeoffs between

read length and the number of generated reads, very little has been done to

determine optimal parameters even for common applications such as RNA-

Seq. The intuition that longer reads are better certainly holds true for many

applications such as de novo genome and transcriptome assembly. Surpris-

ingly, [20] found that shorter reads are better for IE when the total number of

sequenced bases (as a rough approximation for sequencing cost) is fixed. Fig-

ure 1.3.5 plots IE estimation accuracy for reads of length between 10 and 100

when the total amount of sequence data is kept constant at 750M bases. Our

results confirm the finding of [20], although the optimal read length is some-

what sensitive to the accuracy measure used and to the availability of pairing

information. While 25bp reads minimize MPE regardless of the availability of

paired reads, the read length that maximizes r2 is 25 for paired reads and 50 for

single reads. Although further experiments are needed to determine how the

optimum length depends on the amount of sequence data and transcriptome

complexity, our simulations do suggest that for isoform and gene expression

analysis, increasing the number of reads may be more useful than increasing

read length beyond 50 bases.

Figure 1.3.6(a) shows, for reads of length 75, the effects of paired reads and

strand information on estimation accuracy asmeasured by r2. Not surprisingly,

for a fixed number of reads, paired reads yield better accuracy than single reads.

Also not very surprisingly, adding strand information to paired sequencing
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yields no benefits to genome-wide IE accuracy (although itmay be helpful, e.g.,

in identification of novel transcripts). Quite surprisingly, performing strand-

specific single read sequencing is actually detrimental to IsoEM IE (and hence

GE) accuracy under the simulated scenario, most likely due to the reduction in

sampled transcript length.

In practice, many RNA-Seq data sets are generated from transcripts with

poly(A) tails, and some of the sequenced fragments will contain parts the

poly(A) tails. We have added to IsoEM the option to automatically extend

annotated transcripts with a poly(A) tail, thus allowing it to use reads coming

from such fragments. Table 1.3.4 shows the accuracy of isoform and gene ex-

pression levels inferred by IsoEM using 30M reads of length 25 simulated from

transcripts with and without poly(A) tails assuming geometric expression of

gene isoforms. The accuracy of IsoEM is practically the same under the two

simulation scenarios for paired read data, and decreases only slightly for sin-

gle reads simulated taking poly(A) tails into account, likely due to the fact that

reads overlapping poly(A) tails are more ambiguous.

As shown in Figure 1.3.6(b), the runtime of IsoEM scales roughly linearly with

the number of fragments, and is practically insensitive to the type of sequencing

data (single or paired reads, directional or non-directional). IsoEM was tested

on a Dell PowerEdge R900 server with 4 Six Core E7450Xeon Processors at

2.4Ghz (64 bits) and 128Gb of internal memory. None of the datasets required

more than 16GB of memory to complete. It is also true that increasing the
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available memory significantly decreases runtime by keeping the garbage col-

lection overhead to a minimum. The runtimes in Figure 1.3.6 were obtained

by allowing IsoEM to use up to 32GB of memory, in which case none of the

datasets took more than 3 minutes to solve.

1.4 Conclusions

In this chapter we have introduced an expectation-maximization algorithm

for isoform frequency estimation assuming a known set of isoforms. Our

algorithm, called IsoEM, explicitly models insert size distribution, base quality

scores, strand and read pairing information. Experiments on both real and

synthetic RNA-Seq datasets generated using two different assumptions on

the isoform distribution show that IsoEM consistently outperforms existing

algorithms for isoform and gene expression level estimation with respect to a

variety of quality metrics.

The open source Java implementation of IsoEM is freely available for download

at http://dna.engr.uconn.edu/software/IsoEM/.
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Figure 1.3.1: Distribution of isoform lengths (a) and gene cluster sizes (b) in
the UCSC dataset.
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Isoform Expression Gene Expression
Algorithm Uniform Geometric Algorithm Uniform Geometric

Uniq 0.466 0.447 Uniq 0.579 0.586
Rescue 0.693 0.675 Rescue 0.724 0.724
UniqLN 0.856 0.838 GeneEM 0.636 0.637
Cufflinks 0.661 0.618 Cufflinks 0.778 0.757
RSEM 0.919 0.911 RSEM 0.939 0.934
IsoEM 0.971 0.970 IsoEM 0.990 0.982

Table 1.3.1: r2 for isoform and gene expression levels inferred from 30M reads
of length 25 from reads simulated assuming uniform, respectively geometric
expression of gene isoforms.
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Figure 1.3.2: Error fraction at different thresholds for isoform (a) and gene (b)
expression levels inferred from 30M reads of length 25 simulated assuming
geometric isoform expression.
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Expression range 0 (0, 10−6] (10−6, 10−5] (10−5, 10−4] (10−4, 10−3] (10−3, 10−2] All
# isoforms 13,290 10,024 23,882 18,359 1,182 66 66,803

Uniq 0.0 100.0 98.4 97.1 98.5 96.6 95.4
Rescue 0.0 294.7 75.5 49.2 30.4 28.3 71.9

MPE UniqLN 0.0 100.0 80.8 30.3 26.4 24.8 36.0
Cufflinks 0.0 100.0 49.7 25.5 27.2 44.6 34.1
RSEM 0.0 100.0 31.9 13.5 11.4 13.0 21.2
IsoEM 0.0 100.0 25.3 7.3 3.2 2.2 12.0

Uniq 0.2 98.4 97.2 96.9 97.0 95.5 78.0
Rescue 48.4 95.5 86.2 73.1 61.5 56.1 76.0

EF.15 UniqLN 0.2 97.2 86.2 82.8 83.3 77.3 69.8
Cufflinks 17.6 96.4 81.3 71.0 74.7 80.3 67.9
RSEM 19.9 93.7 71.1 46.4 39.8 47.0 56.9
IsoEM 3.4 93.1 65.1 29.1 11.1 7.6 46.1

Table 1.3.2: Median percent error (MPE) and 15% error fraction (EF.15) for
isoform expression levels inferred from 30M reads of length 25 simulated as-
suming geometric isoform expression.

Expression range (0, 10−6] (10−6, 10−5] (10−5, 10−4] (10−4, 10−3] (10−3, 10−2] All
# genes 120 5,610 11,907 1,632 102 19,372

Uniq 37.4 43.6 42.7 43.0 48.2 43.0
Rescue 32.8 28.7 26.0 25.1 28.8 26.7

MPE GeneEM 30.6 28.2 25.7 25.1 28.0 26.3
Cufflinks 33.0 21.1 19.0 20.2 40.2 19.7
RSEM 23.6 11.0 7.2 7.9 11.4 8.1
IsoEM 18.2 8.4 3.2 2.0 1.9 3.9

Uniq 77.5 82.4 81.7 79.7 82.4 81.7
Rescue 74.2 74.0 71.6 72.8 76.5 72.4

EF.15 GeneEM 72.5 73.8 71.5 73.0 74.5 72.3
Cufflinks 73.3 64.7 62.3 66.2 82.3 63.5
RSEM 64.2 37.3 17.4 16.3 41.2 23.5
IsoEM 57.5 28.1 6.7 6.1 4.9 13.2

Table 1.3.3: Median percent error (MPE) and 15% error fraction (EF.15) for gene
expression levels inferred from 30M reads of length 25 simulated assuming
geometric isoform expression.
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Figure 1.3.3: Comparison of Cufflinks (a) and IsoEM (b) estimates to qPCR
expression levels reported in [26].
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Figure 1.3.4: Comparison of Cufflinks (a) and IsoEM (b) estimates to qPCR
expression levels reported in [6].
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Figure 1.3.5: IsoEM MPE (a) and r2 values (b) for 750Mb of simulated data
generated using single and paired-end reads of length varying between 10 and
100.
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Reads Poly(A) Isoform Expression Gene Expression
1× 25 Yes 0.956 0.977

No 0.970 0.982
2× 25 Yes 0.972 0.990

No 0.976 0.985

Table 1.3.4: r2 for isoform and gene expression levels inferred from 30M single,
respectively paired reads of length 25, simulated assuming geometric expres-
sion of gene isoforms with and without poly(A) tails.
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Figure 1.3.6: IsoEM r2 (a) and CPU time (b) for 1-60 million single/paired reads
of length 75, with or without strand information.
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Chapter 2

Accurate Estimation of Gene Expression Levels

from DGE Sequencing Data

2.1 Introduction

Massively parallel transcriptome sequencing is quickly replacing microarrays

as the technology of choice for performing gene expression profiling due to

its wider dynamic range and digital quantitation capabilities. However, accu-

rate estimation of expression levels from sequencing data remains challenging

due to the short read length delivered by current sequencing technologies

and still poorly understood protocol- and technology-specific biases. To date,

two main transcriptome sequencing protocols have been proposed in the lit-

erature. The most commonly used one, referred to as RNA-Seq, generates

short (single or paired) sequencing tags from the ends of randomly generated

cDNA fragments. An alternative protocol, referred to as 3’-tag Digital Gene

Expression (DGE), or high-throughput sequencing based Serial Analysis of

Gene Expression (SAGE-Seq), generates single cDNA tags using an assay in-

cluding as main steps transcript capture and cDNA synthesis using oligo(dT)

beads, cDNA cleavage with an anchoring restriction enzyme, and release of

36



cDNA tags using a tagging restriction enzymewhose recognition site is ligated

upstream of the recognition site of the anchoring enzyme.

While computational methods for accurate inference of gene (and isoform)

specific expression levels from RNA-Seq data have attracted much attention

recently (see, e.g., [1, 20, 32]), analysis of DGE data still relies on direct esti-

mates obtained from counts of uniquely mapped DGE tags [35, 40]. In part

this is due to salient features of the DGE protocol, which, unlike RNA-Seq,

guarantees that each mRNA molecule in the sample generates at most one

tag and obviates the need for length normalization. Nevertheless, ignoring

ambiguous DGE tags (which, due to the severely restricted tag length, can

represent a sizeable fraction of the total) is at best discarding useful informa-

tion, and at worst may result in systematic inference biases. In this chapter we

seek to address this shortcoming of existing methods for DGE data analysis.

Our main contribution is a rigorous statistical model of DGE data and a novel

expectation-maximization algorithm for inference of gene and isoform expres-

sion levels from DGE tags. Unlike previous methods, our algorithm, referred

to as DGE-EM, takes into account alternative splicing isoforms and tags that

map at multiple locations in the genome, and corrects for incomplete digestion

and sequencing errors. Experimental results show that DGE-EM outperforms

methods based on unique tag counting on a multi-library DGE dataset con-

sisting of 20bp tags generated from two commercially available reference RNA

samples that have been well-characterized by quantitative real time PCR as
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part of the MicroArray Quality Control Consortium (MAQC).

We also take advantage of the availability of RNA-Seq data generated from the

same MAQC samples to directly compare estimation performance of the two

transcriptome sequencing protocols. While RNA-Seq is clearly more powerful

than DGE at detecting alternative splicing and novel transcripts such as fused

genes, previous studies have suggested that for gene expression profiling DGE

may yield accuracy comparable to that of RNA-Seq at a fraction of the cost [38].

We find that the two protocols achieve similar cost-normalized accuracy on the

MAQC samples when using state-of-the-art estimation methods. However,

the current protocol versions are unlikely to be optimal. Indeed, the results

of a comprehensive simulation study assessing the effect of various experi-

mental parameters suggest that further improvements in DGE accuracy could

be achieved by using anchoring enzymes with degenerate recognition sites

and using partial digest of cDNA with the anchoring enzyme during library

preparation.

2.2 DGE Protocol

The DGE protocol generates short cDNA tags from a mRNA population in

several steps (Figure 2.1.1). First, PolyA+ mRNA is captured from total RNA

using oligo-dT magnetic beads and used as template for cDNA synthesis. The

double stranded cDNA is then digested with a first restriction enzyme, called

Anchoring Enzyme (AE), with known sequence specificity (e.g., the NlaIII en-
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Cleave with anchoring enzyme (AE)

Attach primer for tagging enzyme (TE)

Cleave with tagging enzyme

AAAAA

AAAAACATG

AE

TCCRAC AAAAACATGCATG

AETE

CATG

Map tags

A B C D E

Figure 2.1.1: Schematic representation of the DGE protocol

zyme cleaves cDNA at sites at which the four nucleotide motif CATG appears).

We refer to the cDNA sites cleaved by the anchoring enzyme as AE sites. The

recognition site of a second restriction enzyme, called Tagging Enzyme (TE)

is ligated to the fragments of cDNA that remain attached to the beads after

cleavage with the AE, immediately upstream of the AE site. The cDNA frag-

ments are then digested with TE, which cleaves several bases away from its

recognition site. This results in very short cDNA tags (10 to 26 bases long, de-

pending on the TE used), which are then sequenced using any of the available

high-throughout technologies.

Since the recognition site of AE is only 4 bases long, most transcripts contain

multiple AE sites. Under perfect experimental conditions, full digest by AE

would ensure that DGE tags are generated only from the most 3′ AE site of

each transcript. In practice some mRNAmolecules release tags from other AE
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AE site

MRNA

Tag formation 
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pp(1-p)p(1-p)k-1

Figure 2.2.1: Tag formation probability: p for the rightmost AE site, geometri-
cally decreasing for subsequent sites

sites, or no tag at all. As in [40], we assume that the cleavage probability of

the AE, denoted by p, is the same for all AE sites of all transcripts. Since only

the most 3′ cleaved AE site of a transcript releases a DGE tag, the probability

of generating a tag from site i = 1, . . . , k follows a geometric distribution with

ratio 1− p as shown in Figure 2.2.1, where sites are numbered starting from the

3′ end. Note that splicing isoforms of a gene are likely to share many AE sites.

However, the probability of generating a tag from a site is isoform specific since it

depends on the number downstream AE sites on each isoform. Thus, although

the primary motivation for this work is inference of gene expression levels

from DGE tags, the algorithm presented in next section must take into account

alternative splicing isoforms to properly allocate ambiguous tags among AE

sites.

2.3 DGE-EM Algorithm

Previous studies have either discarded ambiguous DGE tags (e.g. [35, 40]) or

used simple heuristic redistribution schemes for rescuing some of them. For

example, in [39] the rightmost site in each transcript is identified as a “best”

site. If a tag matches several locations, but only one of them is a best site, then
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the tag is assigned to that site. If a tag matches multiple locations, none of

which is a best site, the tag is equally split between these locations. In this

section we detail an Expectation Maximization algorithm, referred to as DGE-

EM, that probabilistically assigns DGE tags to candidate AE sites in different

genes, different isoforms of the same gene, as well as different sites within the

same isoform.

In a pre-processing step, a weight is assigned to each (DGE tag, AE site) pair, re-

flecting the conditional probability of the tag given the site that releases it. This

probability is computed from base quality scores assuming that sequencing

errors at different tag positions arise independently of one another. Formally,

the weight for the alignment of tag t with the jth rightmost AE site in isoform

i is wt,i, j ∝
∏|t|

k=1
[(1 − εk)Mtk +

εk
3
(1 −Mtk)], where Mt,k is 1 if position k of tag

t matches the corresponding position at site j in the transcript, 0 otherwise,

while εk denotes the error probability of the k-th base of t, derived from the

corresponding Phred quality score reported by the sequencing machine. In

practice we only compute these weights for sites at which a tag can be mapped

with a small (user selected) number of mismatches, and assume that remaining

weights are 0. To each tag t we associate a “tag class” yt which consists of the

set of triples (i, j,w) where i is an isoform, j is an AE site in isoform i, and w > 0

is the weight associated as above to tag t and site j in isoform i. The collection

of tag classes, y = (yt)t, represents the observed DGE data.

Let m be the number of isoforms. The parameters of the model are the relative
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frequencies of each isoform, θ = ( fi)i=1,...,m. Let ni, j denote the (unknown)

number of tags generated fromAEsite jof isoform i. Thus, x = (ni, j)i, j represents

the complete data. Denoting by ki the number of AE sites in isoform i, by

Ni =
∑ki

j=1
ni, j the total number of tags from isoform i, and by N =

∑m
i=1 Ni the

total number of tags overall, we can write the complete data likelihood as

g(x|θ) ∝

m
∏

i=1

ki
∏

j=1

[

fi(1 − p) j−1p

S

]ni, j

(2.3.1)

where S =
∑m

i=1

∑ki
j=1

fi(1 − p) j−1p =
∑m

i=1 fi
(

1 − (1 − p)ki
)

. Put into words, the

probability of observing a tag from site j in isoform i is the frequency of that

isoform ( fi) times the probability of not cutting at any of the first j − 1 sites

and cutting at the jth [(1 − p) j−1p]. Notice that the algorithm effectively down-

weights thematching AE sites far from the 3′ end based on the site probabilities

shown in Figure 2.2.1. Since for each transcript there is a probability that no

tag is actually generated, for the above formula to use proper probabilities we

have to normalize by the sum S over all observable AE sites.

Taking logarithms in (2.3.1) gives the complete data log-likelihood:

log g(x|θ) =

m
∑

i=1

ki
∑

j=1

ni, j

[

log fi + ( j − 1) log (1 − p) + log p − logS
]

+ constant

=

m
∑

i=1

ki
∑

j=1

ni, j

[

log fi + ( j − 1) log(1 − p)
]

+N log p −N log













m
∑

i=1

fi
(

1 − (1 − p)ki
)













+ constant
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2.3.1 E-Step

Let ci, j = {yt|∃w s.t. (i, j,w) ∈ yt} be the collection of all tag classes that are

compatible with AE site j in isoform i. The expected number of tags from

each cleavage site of each isoform, given the observed data and the current

parameter estimates θ(r), can be computed as

n(r)

i, j
:= E(ni, j|y, θ

(r)) =
∑

yt∈ci, j ,(i, j,w)∈yt

fi(1 − p) j−1pw
∑

(l,q,z)∈yt fl(1 − p)q−1pz
(2.3.1)

Thismeans that each tag class is fractionally assigned to the compatible isoform

AE sites based on the frequency of the isoform, the probability of cutting at the

cleavage sites where the tag matches, and the confidence that the tag comes

from each location.

2.3.2 M-Step

In this step we want to select θ that maximizes the Q function,

Q(θ|θ(r)) = E
[

log g(x|θ)|y, θ(r)
]

=

m
∑

i=1

ki
∑

j=1

n(r)

i, j

[

log fi + ( j − 1) log(1 − p)
]

+N log p −N log













m
∑

i=1

fi
(

1 − (1 − p)ki
)













+ constant

Partial derivatives of the Q function are:

δQ(θ|θ(r))

δ fi
=

1

fi

ki
∑

j=1

n(r)

i, j
+N

1 − (1 − p)ki
∑m

l=1 fl
(

1 − (1 − p)kl
)
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Letting C = N/(
∑m

l=1 fl
(

1 − (1 − p)kl
)

) and equating partial derivatives to 0 gives

N(r)

i

fi
+ C
(

1 − (1 − p)ki
)

= 0 =⇒ fi = −
N(r)

i

C
(

1 − (1 − p)ki
)

Since
∑m

i=1 fi = 1 it follows that

fi =
N(r)

i

1 − (1 − p)ki















m
∑

l=1

N(r)

l

1 − (1 − p)kl















−1

(2.3.1)

2.3.3 Inferring p

In the above calculations we assumed that p is known, which may not be

the case in practice. Assuming the geometric distribution of tags to sites,

the observed tags of each isoform provide an independent estimate of p [40].

However, the presence of ambiguous tags complicates the estimation of p on

an isoform-by-isoform basis. In order to globally capture the value of p we

incorporate it in the DGE-EM algorithm as a hidden variable and iteratively

re-estimate it as the distribution of tags to isoforms changes from iteration to

iteration.

We estimate the value of p as N1/D, where D denotes the total number of

RNA molecules with at least one AE site, and N1 =
∑m

i=1 ni1 denotes the total

number of tags coming from first AE sites. The total number of RNAmolecules

representing an isoform is computed as the number of tags coming from that

isoform divided by the probability that the isoform is cut. This gives D =

∑m
i=1 Ni/(1 − (1 − p)ki), which happens to be the normalization term used in the
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M step of the algorithm.

2.3.4 Implementation

For an efficient implementation, we pre-process AE sites in all the known

isoform sequences. All tags that can be generated from these sites, assuming

no errors, are stored in a trie data structure together with information about

their original locations. Searching for a tag is performed by traversing the

trie, permitting for as many jumps to neighboring branches as the maximum

number of mismatches allowed. The Expectation Maximization part of DGE-

EM, which follows after mapping, is given in Algorithm 1 (for simplicity, the

re-estimation of p is omitted).

Algorithm 1 DGE-EM algorithm

assign random values to all f (i)
while not converged do
initialize all n(iso, site) to 0
for each tag class t do
sum =

∑

(iso,site,w)∈t w × f (iso) × (1 − p)site−1

for (iso, site, w) ∈ t do
n(iso, site)+ = w × f (iso) × (1 − p)site−1/sum

end for
end for
for each isoform i do
Ni =

∑sites(i)

j=1
n(i, j)

f (i) = Ni/(1 − (1 − p)sites(i))
end for

end while

In practice, for performance reasons, tags with the same matching sites and

weights are collapsed into one, keeping track of their multiplicity. Then the

EM algorithm can process them all at once by factoring in their multiplicity
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when increasing the n(iso, site) counter. This greatly reduces the running time

and memory footprint.

2.4 Results

2.4.1 Experimental Setup

We conducted experiments on both real and simulated DGE and RNA-Seq

datasets. In addition to estimates obtained by DGE-EM, for DGE data we also

computed direct estimates fromuniquelymapped tags; we refer to this method

as “Uniq”. RNA-Seq data was analyzed using both our IsoEM algorithm

[1], which was shown to outperform existing methods of isoform and gene

expression level estimation, and the well-known Cufflinks algorithm [32]. As

in previous works [1, 20], estimation accuracy was assessed using the median

percent error (MPE), which gives the median value of the relative errors (in

percentage) over all genes.

Real DGE datasets included nine libraries kindly provided to us (in fastq for-

mat) by the authors of [35]. These libraries were independently prepared and

sequenced at multiple sites using 6 flow cells on Illumina Genome Analyzer

(GA) I and II platforms, for a total of 35 lanes. The first eight libraries were

prepared from the Ambion Human Brain Reference RNA, (Catalog #6050),

henceforth referred to as HBRR and the ninth was prepared from the Strata-

gene Universal Human Reference RNA (Catalog #740000) henceforth referred

to as UHRR.DpnII, with recognition site GATC,was used as anchoring enzyme

46



and MmeI as tagging enzyme, resulting in approximately 238 million tags of

length 20 across the 9 libraries. Unless otherwise indicated, Uniq estimates are

based on uniquely mapped tags with 0 mismatches (63% of all tags) while for

DGE-EM we used all tags mapped with at most 1 mismatch (83% of all tags)

since preliminary experiments (Section 2.4.2) showed that these are the optimal

settings for each algorithm.

For comparison, we downloaded from the SRA repository two RNA-Seq

datasets for the HBRR sample and six RNA-Seq datasets for the UHRR sample

(SRA study SRP001847 [36]) . Each RNA-Seq dataset contains between 47 and

92million reads of length 35. WemappedRNA-Seq reads onto Ensembl known

isoforms (version 59) using bowtie [19] after adding a polyA tail of 200 bases

to each transcript. Allowing for up to two mismatches, we were able to map

between 65% and 72%of the reads. We then ran IsoEM andCufflinks assuming

a mean fragment length of 200 bases with standard deviation 50.

To assess accuracy, gene expression levels estimated from real DGE and RNA-

Seq datasets were compared against TaqMan qPCR measurements (GEO ac-

cession GPL4097) collected by the MicroArray Quality Control Consortium

(MAQC). As described in [37], each TaqMan Assay was run in four replicates

for each measured gene. POLR2A (ENSEMBL id ENSG00000181222) was cho-

sen as the reference gene and each replicate CTwas subtracted from the average

POLR2A CT to give the log2 difference (delta CT). For delta CT calculations, a

CTvalue of 35was used for any replicate that hadCT > 35. Normalized expres-
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sion values are reported: 2(CT of POLR2A)−(CT of the tested gene). We used the average of

the qPCR expression values in the four replicates as the ground truth. After

mapping gene names to Ensembl gene IDs using the HUGO Gene Nomencla-

ture Committee (HGNC) database, we got TaqMan qPCR expression levels for

832 Ensembl genes. Expression levels inferred from DGE and RNA-Seq data

were similarly divided by the expression level inferred for POLR2A prior to

computing accuracy.

Synthetic error-free DGE and RNA-Seq data was generated using an approach

similar to that described in [1]. Briefly, the human genome sequence (hg19,

NCBI build 37) was downloaded from UCSC and used as reference. We used

isoforms in the UCSC KnownGenes table (n = 77, 614), and defined genes as

clusters of known isoforms in the GNFAtlas2 table (n = 19, 625). We con-

ducted simulations based on gene expression levels for five different tissues

in GNFAtlas2. The simulated frequency of isoforms within gene clusters fol-

lowed a geometric distribution with ratio 0.5. For DGE we simulated data for

all restriction enzymes with 4-base long recognition sites from the Restriction

Enzyme Database (REBASE), assuming either complete digestion (p = 1) or

partial digestion with p = 0.5. For RNA-Seq we simulated fragments of mean

length 250 and standard deviation 25 and simulated polyA tails with uniform

length of 250bp. For all simulated data mapping was done without allowing

mismatches.

2.4.2 DGE-EM Outperforms Uniq
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The algorithm referred to as Uniq quantifies gene expression based on the

number of tags that match one or more cleavage sites in isoforms belonging to

the same gene. These tags are unique with respect to the source gene. Figure

2.4.1 compares the accuracy of Uniq and DGE-EM on library 4 from the HBRR

sample, with the number of allowed mismatches varying between 0 and 2. As

expected, countingonlyperfectlymapped tags gives the best accuracy forUniq,

since with the number of mismatches we increase the ambiguity of the tags,

and thus reduce the number of unique ones. When run with 0 mismatches,

DGE-EM already outperforms Uniq, but the accuracy improvement is limited

by the fact that it cannot tolerate any sequencing errors (tags including errors

are either ignored, or, worse, mapped at an incorrect location). Allowing 1

mismatch per tag gives the best accuracy of all compared methods, but further

increasing the number ofmismatches to 2 leads to accuracy below that achieved

when using exact matches only, likely due to the introduction of excessive tag

ambiguity for data for which the error rate is well below 10%.

2.4.3 Comparison of DGE and RNA-Seq Protocols

Figure 2.4.2 shows the gene expression estimation accuracy for 9 DGE and 8

RNA-Seq libraries generated from the HBRR and UHRR MAQC sample. All

DGE estimates were obtained using the DGE-EM algorithm, while for RNA-

Seq data we used both IsoEM [1] and the well-known Cufflinks algorithm

[32]. The cutting probability inferred by DGE-EM is almost the same for all

49



75

80

85

M
e
d
ia
n

 P
e
rc
e
n
t 
E
rr
o
r

Uniq 0 mismatches Uniq 1 mismatch Uniq 2 mismatches

DGE!EM 0 mismatches DGE!EM 1 mismatch DGE!EM 2 mismatches

65

70

75

80

85

0 10 20 30 40 50 60

M
e
d
ia
n

 P
e
rc
e
n
t 
E
rr
o
r

Million Mapped Tags

Uniq 0 mismatches Uniq 1 mismatch Uniq 2 mismatches

DGE!EM 0 mismatches DGE!EM 1 mismatch DGE!EM 2 mismatches

Figure 2.4.1: Median Percent Error of DGE-EM and Uniq estimates for varying
number of allowedmismatches andDGE tags generated from theHBRR library
4.

libraries, with a mean of 0.8837 and standard deviation 0.0049. This is slightly

higher than the estimated value of 70 − 80% suggested in the original study

[35], possibly due to their discarding of non-uniq or non-perfectly matched

tags. Normalized for sequencing cost, DGE performance is comparable to that

of RNA-Seq estimates obtained by IsoEM, with accuracy differences between

libraries produced using different protocols within the range of library-to-

library variability within each of the two protocols. The MPE of estimates

generated from RNA-Seq data by Cufflinks is significantly higher than that of

IsoEM and DGE-EM estimates, suggesting that accurate analysis methods are

at least as important as the sequencing protocol.

2.4.4 Possible DGE Assay Optimizations
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To assess accuracy of DGE estimates under various protocol parameters, we

conducted an extensive simulation study where we varied the anchoring en-

zyme used, the number of tags, the tag length and the cutting probability. We

tested all restriction enzymes with 4-base long recognition sites from REBASE.

Figure 2.4.3(a) gives MPE values obtained by the Unique and DGE-EM algo-

rithms for a subset of these enzymes on synthetic datasets with 30 million tags

of length 21, simulated assuming either complete or p = .5 partial digest. Fig-

ure 2.4.3(b) gives the percentage of genes cut and the percentage of uniquely

mapped DGE tags for each of these enzymes. These results suggest that using

enzymes with high percentage of genes cut leads to improvements in accuracy.
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In particular, enzymes like NlaIII (previously used in [39]) with recognition site

CATG and CviJI with degenerate recognition site RGCY (R=G or A, Y=C or T)

cut more genes than the DpnII (GATC) enzyme used to generate the MAQC

DGE libraries, and yield better accuracy for both Uniq and DGE-EM estimates.

Furthermore, for every anchoring enzyme, partial digestion with p = .5 yields

an improvedDGE-EMaccuracy compared to complete digestion. Interestingly,

Unique estimates are less accurate for partial digest due to the smaller percent-

age of uniquely mapped reads. For comparison, IsoEM estimates based on 30

million RNA-Seq tags of length 21 yield an MPE of 8.3.

2.5 Conclusions

In this chapter we introduce a novel expectation-maximization algorithm,

calledDGE-EM, for inference of gene-specific expression levels fromDGE tags.

Our algorithm takes into account alternative splicing isoforms and tags that

map at multiple locations in the genomewithin a unified statistical model, and

can further correct for incomplete digestion and sequencing errors. Experimen-

tal results on both real and simulated data show that DGE-EM outperforms

commonly used estimation methods based on unique tag counting. DGE-EM

has cost-normalized accuracy comparable to that achieved by state-of-the-art

RNA-Seq estimation algorithms on the tested real datasets, and outperforms

them on error-free synthetic data. Simulation results suggest that further accu-

racy improvements can be achieved by tuning DGE protocol parameters such
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as the degeneracy of the anchoring enzyme and cutting probability. It would

be interesting to experimentally test this hypothesis.
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Figure 2.4.3: (a) Median Percent Error of Unique and DGE-EM estimates ob-
tained from 30 million 21bp DGE tags simulated for anchoring enzymes with
different restriction sites (averages over 5 GNF-Atlas tissues) (b) Percentage of
genes cut and uniquely mapped tags for each anchoring enzyme.
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