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Abstract— A Single Nucleotide Polymorphism (SNP) is a
position in the genome at which two or more of the possible
four nucleotides occur in a large percentage of the population.
SNPs account for most of the genetic variability between
individuals, and mapping SNPs in the human population has
become the next high-priority in genomics after the completion
of the Human Genome project. In diploid organisms such as
humans, there are two non-identical copies of each autosomal
chromosome. A description of the SNPs in a chromosome is
called a haplotype. At present, it is prohibitively expensive to
directly determine the haplotypes of an individual, but it is
possible to obtain rather easily the conflated SNP information
in the so called genotype. Computational methods for genotype
phasing, i.e., inferring haplotypes from genotype data, have re-
ceived much attention in recent years as haplotype information
leads to increased statistical power of disease association tests.
However, existing algorithms have impractical running time
for phasing large genotype datasets such as those generated by
the international HapMap project. In this paper we propose a
highly scalable algorithm based on entropy minimization. Our
algorithm is capable of phasing genotype data coming from
either unrelated individuals or families consisting of a child
and one or both parents. Experimental results show that our
algorithm achieves a phasing accuracy close to that of best
existing methods while being several orders of magnitude faster.

I. INTRODUCTION

After the completion of the Human Genome Project has
provided us with a blueprint of the DNA present in each
human cell, genomics research is now focusing on the
study of DNA variations that occur between individuals
and understanding how these variations confer susceptibility
to common diseases such as diabetes or cancer. The most
common form of genomic variation are the so called single
nucleotide polymorphisms (SNPs), i.e., the presence of dif-
ferent DNA nucleotides, or alleles, at certain chromosomal
locations. Over 9 million common SNPs have already been
catalogued in the dbSNP database maintained by NCBI.

In diploid organisms such as humans, there are two
non-identical copies of each autosomal chromosome, one
inherited from the mother and one inherited from the father.
The combinations of SNP alleles in the maternal and paternal
chromosomes are referred to as the individual’s haplotypes.
Although it is possible to directly determine the haplotypes
of an individual by experimental techniques, such methods
are prohibitively expensive and time consuming. In contrast,
there are many cost-effective high-throughput techniques for
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determining the conflated SNP information called genotype,
which specifies the identities of the two alleles at each SNP
position, but does not assign the alleles to specific chromo-
somes for heterozygous SNP positions i.e., SNP positions at
which the individual has two different alleles.

Since haplotypes determine the exact sequence (and hence
function) of proteins encoded by the genes, finding the
haplotypes in human populations is an important step in
determining the genetic basis of complex diseases. For this
reason, computational inference of haplotypes from genotype
date, known as the genotype phasing problem, has received
an increasing amount of attention in the literature in the
past few years, see, e.g., [1], [2], [3], [4] for recent surveys.
While many of the existing methods achieve high haplotype
reconstruction accuracy, their runtime does not scale well
with the number of SNPs and the number of genotypes
in the sample. In particular, existing methods are vastly
inadequate for handling datasets of the size envisioned to
be produced by next generation of genome-wide association
studies. These studies are expected to result in thousands
of individual genotypes with 500,000 or more SNPs [5] by
leveraging recent advances in genotyping technologies such
as the Affymetrix Mapping 500K Array Set [6].

In this paper we propose a highly scalable algorithm based
on the entropy minimization principle that has previously
been proposed in the context of genotype phasing and
haplotype missing data recovery by Halperin and Karp [7].
Unlike the simple greedy algorithm employed in [7], we use
a local optimization algorithm, which in practice results in
genotype phasings with lower entropy. After formalizing the
problem in Section II, in Section III we describe a simple yet
very efficient implementation of this algorithm, and a novel
overlapping window approach for handling genotypes with
large numbers of SNPs. We also describe the extension of our
algorithm to the case when the input genotypes come from
a mixture of unrelated individuals and families consisting of
a child and one or both parents. Phasing related genotypes
is likely to gain in importance in future genotyping studies
since relationships between genotypes can be exploited to
reliably infer haplotype phase for a substantial fraction of
the SNPs based on the no-recombination assumption [5].
Finally, in Section IV we present experimental results on
large real datasets extracted from the HapMap repository [8]
showing that our algorithm achieves a phasing accuracy close
to that of best existing methods while being several orders
of magnitude faster.



II. PROBLEM FORMULATION

Following the standard practice, in this paper we restrict
our attention to bi-allelic SNPs, which form the vast majority
of known SNPs. In this case a haplotype can be represented
as a 0/1 vector – typically by representing the most frequent
SNP allele as a 0 and the alternate allele as a 1. A genotype
can be viewed as a 0/1/2 vector, where 0 (1) means that both
chromosomes contain the 0 (1) allele while 2 means that the
two chromosomes contain different alleles.

We say that haplotype h is compatible with genotype g if
g(i) = h(i) whenever g(i) ∈ {0, 1}. A pair of haplotypes
(h1, h2) explains genotype g if h1(i) = h2(i) = g(i)
whenever g(i) ∈ {0, 1}, and h1(i) �= h2(i) whenever
g(i) = 2. For a given pair (h1, h2) that explains g we say
that h1 and h2 are complements with respect to g.

A phasing of a set of genotypes G, each of length k, is
a function φ : G → {0, 1}k × {0, 1}k, such that, for every
g ∈ G, φ(g) is a pair of haplotypes that explain g. For a
haplotype h and a phasing φ, the coverage of h under φ,
denoted by cov(h, φ), is the number of genotypes g ∈ G
such that φ(g) = (h, h′) or φ(g) = (h′, h) plus twice the
number of of genotypes g ∈ G such that φ(g) = (h, h). As
in [7], we define the entropy of a phasing φ as

H(φ) =
∑

h:cov(h,φ) �=0

−cov(h, φ)
2|G| log

cov(h, φ)
2|G| (1)

The Minimum Entropy Genotype Phasing Problem can
then be defined as follows: Given a set of genotypes, find a
phasing with minimum entropy.

III. ALGORITHM

Halperin and Karp [7] proposed a greedy algorithm for
the related minimum-entropy set cover problem, and showed
that a variant of this algorithm can be applied to genotype
phasing. However, this algorithm cannot be applied directly
to phasing long genotypes, i.e., genotypes with large numbers
of SNPs. Indeed, in this case each haplotype is likely to be
compatible with a single genotype, and thus all phasings are
likely to have the same entropy of − log 1

2|G| . Furthermore,
even for short genotypes, the greedy algorithm in [7] is
producing phasings whose entropy can be further decreased.
In this paper we use the entropy minimization objective of [7]
within a local improvement framework. In Section III-A we
describe the local improvement algorithm for phasing short
genotypes of unrelated individuals. Then, in Sections III-B
and III-D we describe extensions of the local improvement
algorithm to the problem of phasing long genotypes of
unrelated, respectively related individuals.

A. Short genotype phasing

We have implemented a simple local improvement algo-
rithm for entropy minimization. Our algorithm which we
refer to as ENT, starts from a random phasing, then, at
each step, finds the genotype whose re-explanation yields
the largest decrease in phasing entropy (see Figure 1). The
use of random initial phasings is justified by observing

Input: Set G of genotypes
Output: Phasing φ of the genotypes in G

1. Generate a random phasing φ for genotypes in G
2. Repeat forever

2.1 Find the pair (g, (h′
1, h

′
2)) such that H(φ′) is

minimized, where φ′ is obtained from φ by
re-explaining g with (h′

1, h
′
2)

2.2 If H(φ′) < H(φ), then φ← φ′

Else exit the repeat loop
3. Output φ

Fig. 1. ENT phasing of short genotypes.

that a random phasing of a genotype with i heterozygous
positions matches the real phasing with probability 2−i.
E.g., for the Daly children dataset (see Section IV), random
phasing results in an average of 46% correct haplotypes over
windows of 5 consecutive SNPs. We have also experimented
with a version of the algorithm in which the initial phasing
is obtained by running the greedy algorithm of [7]. However,
the use of random initial phasings was found to yield
convergence to final phasings with lower entropy.

If there exists more than one pair (g, (h1, h2)) with
minimum H(φ′) in step 2.1 of the algorithm, then we pick
the pair (g, (h1, h2)) maximizing Prob(h1) × Prob(h2),
where Prob(h) is defined as Πn

1 p(h[i]), and p(h[i]) is the
probability of seeing allele h[i] at position i.

B. Long genotype phasing

A common approach to phasing long genotypes is to
phase small non-overlapping windows of the input geno-
types and then stitch together the resulting haplotypes using
various statistical approaches. Recently, Eskin, Sharan, and
Halperin [9] proposed a dynamic programming algorithm
for selecting a set of tiling windows maximizing a natural
maximum likelihood function. Our algorithm also uses a
window-based approach to phasing long genotypes, however,
unlike previous approaches, it employs a set of overlapping
windows. Each window consists of a set of l “locked”
SNPs, which have been previously phased, and a set of f
“free” SNPs, which are currently being phased. For each
window, the phasing algorithm proceeds as described in the
previous section, except that only re-explanations consistent
with the already determined haplotypes of the locked SNPs
are considered in the local improvement step (see Figure 2).

The basic implementation of the ENT algorithm takes
l and f as input parameters. We have also implemented
variants of the algorithm that dynamically compute the
number of locked, respectively free SNPs based on the
input data. These variants pick l and f as large as possible
subject to the constraint that the numbers of ambiguous
(heterozygous or missing) SNP genotypes in the locked,
respectively free region of the current window do not exceed
twice the number of genotypes. The number of free SNPs
f is further constrained to disallow having more than 7
ambiguous SNPs in the free region of any genotype.



# Free # Locked SNPs
SNPs 1 2 3 4 5 6 7 8 9 Variable

1 19.5 37.9 38.6 38.6 39.2 42.1 44.0 43.6 42.0 39.4
2 15.1 10.3 13.4 25.6 24.7 30.2 26.9 30.3 28.2 18.2
3 12.0 8.0 6.0 10.7 17.2 23.0 19.2 22.5 24.3 11.4
4 11.0 8.0 5.1 5.0 6.7 8.2 13.3 19.8 15.6 6.9
5 8.5 6.5 5.6 4.7 4.4 5.1 7.0 7.2 7.9 5.2
6 7.6 6.4 4.4 5.2 4.9 5.4 5.5 5.5 5.5 5.0
7 8.2 5.6 6.2 5.3 5.0 5.0 5.4 5.4 5.4 5.1
8 6.8 6.1 5.5 6.0 5.1 5.2 5.4 4.8 5.9 5.4
9 6.6 5.6 4.9 4.7 4.5 5.2 5.5 5.3 5.2 4.8

Variable 7.0 5.6 4.5 4.9 4.7 4.7 6.5 6.5 7.3 4.2

TABLE I

ENT SWITCHING ERROR RATES (%) FOR VARIOUS WINDOW SETTINGS ON THE DALY DATASET.

Input: Set G of genotypes
Output: Phasing φ of the genotypes in G

1. Divide the genotypes in groups of f consecutive
SNPs from left to right

2. For each group, add the preceding l SNPs to create
a window of size l + f SNPs (leftmost window has
no locked SNPs and is of size f )

3. Run the phasing algorithm in Figure 1 for each
window, in left to right order, where the haplotypes
over the locked l SNPs are not allowed to change

4. Output the resulting phasing φ

Fig. 2. ENT phasing of long genotypes.

C. Time complexity

When phasing n unrelated genotypes over k SNPs, the
algorithm in Figure 1 is run on �k/f� windows. For each
window, the algorithm evaluates at most n × 2f candidate
pairs of haplotypes for finding the best pair in Step 2.1.
Computing the entropy gain for each candidate pair takes
constant time. Indeed, H(φ′) differs from H(φ) in at most
four terms corresponding to the haplotypes that can change
their coverages, namely the haplotypes explaining g in φ and
φ′. Empirically, the number of iterations required in Step 2
of the algorithm in Figure 1 is linear in the number n of
genotypes, resulting in an overall runtime of O(n22fk/f).
The number of iterations can be reduced to nearly constant
by re-expaining multiple genotypes per iteration. This speed-
up technique – which results in a runtime that depends nearly
linearly on the number of genotypes – will be included in
the next implementation of our algorithm, but was not used
for obtaining the experimental results in Section IV.

D. Phasing related genotypes

A trio is a nuclear family composed of the two parents
plus a child. In the no-recombination assumption each parent
passes one of its chromosomes to the child. That is, the child
shares one haplotype with the mother and the other one with
the father. The no-recombination assumption provides very
useful information about phasing all members of a trio. The
only situation when there is phasing ambiguity for a given
SNP is when all three genotypes are heterozygous at that
SNP. For example, in the CEU and YRI trio populations of

HapMap [8], the phase of only around 15% of the SNPs
is ambiguous, while the phase of the remaining 85% of
the SNPs can be inferred based on the no-recombination
assumption.

The ENT algorithm described above can be easily adapted
to phase families of related genotypes under the no-
recombination assumption. In order to enforce the no-
recombination assumption, at each local improvement step,
we re-explain a whole family, rather than an individual
genotype. The entropy can still be recomputed in constant
time after each update by a straightforward extension of
the method described in Section III-A. Our current imple-
mentation handles trio genotype data as well as mixtures of
independent genotypes, full trios, and partial trios consisting
of one parent and one child.

IV. EXPERIMENTS

In a first set of experiments we assessed the effect of the
windowing strategy (number of free and locked SNPs) on
phasing accuracy of the ENT algorithm. We conducted these
experiments on a well-known dataset from Daly et al. [10].
This dataset contains 129 trios from a European population.
Each individual was genotyped at 103 SNP positions in the
5q31 region of chromosome 5. The trio genotypes were used
to infer as much as possible out of the “true” haplotypes of
the children under the no-recombination assumption. We use
the following three measures [5] to assess phasing accuracy
on the unrelated genotypes of the children in the Daly
dataset:

Switching error. Given inferred haplotypes (h, h′) of a
genotype g with true haplotypes (t, t′), the number of
switches is defined as the number of times one has to switch
between h and h′ to obtain t. The number of ambiguous
SNPs in a genotype g is the number of 2’s (heterozygous
positions) plus the number of missing SNP genotypes. The
switching error rate (given in percents) for a set G of n
genotypes is defined as the ratio between the total number
of switches and the total number of ambiguous SNPs minus
n, since the maximum number of switches in a genotype is
one less than the number of ambiguous SNPs.

Haplotype accuracy. The percentage of haplotypes cor-
rectly recovered.



SNP accuracy. The number of correctly phased SNPs as
percentage of the total number of SNPs.

Table I reports the switching error obtained by our ENT
algorithm with various settings for the number of free and
locked SNPs on the Daly dataset. We varied the number
of locked and free SNPs from 1 to 9, and also included
in comparison the ENT variants which dynamically choose
either one or both l and f as described in Section III-B. The
version that chooses both l and f dynamically yields the
smallest switching error, with next best results being obtained
by using fixed window sizes with 5 locked and 5 free SNPs.

Table II gives all three accuracy measures for the two best
performing variants of ENT, the widely used PHASE [11],
and the more recent GERBIL [12] and 2SNP [13] phasing
algorithms. The two ENT variants have slightly worse, yet
very close accuracy compared to the other methods.

Unfortunately, the methods in [11], [12], [13] do not
directly handle trio data. An extension of PHASE to trio
data has been described in [5], however, its runtime does not
scale well to very large trio datasets such as those generated
in the HapMap project [8]. To test the scalability of the
ENT algorithm, in a second set of experiments we used
two datasets from HapMap Phase I release 16a, each one
consisting of 30 trios. The first dataset was collected from a
population of Utah residents with ancestry from northern and
western Europe (CEU), and the other one from a population
of Yoruba people of Ibadan, Nigeria (YRI).

As reported on the HapMap website, phasing these
datasets using the trio version of the PHASE algorithm [5]
requires extensive computational resources (months of CPU
time on two clusters with a combined total of 238 nodes) and
for this reason the haplotypes can be recomputed only for
major releases of the datasets. In contrast, only a few hours
on a 2.8GHz Pentium Xeon computer were required by the
ENT variant which dynamically picks the number of locked
and free SNPs. In Table III we report the accuracy of ENT
phasing with respect to the results obtained by PHASE. The
accuracy is computed as the number of trio ambiguous SNPs
– i.e., positions in which all three members of the trio have
ambiguous SNPs – that are differently phased by ENT and
PHASE, as percentage of the total number of trio ambiguous
SNPs. Of the approximately 15% of the SNPs that are trio
ambiguous, only 7-12% are inferred differently by ENT and
PHASE, depending on the population and the chromosome.
Thus, our method results in a SNP genotyping difference of
1-2% with respect to PHASE, while being many orders of
magnitude faster.

In the above experiments, the ENT algorithm was run on
the genotypes inferred from the PHASE haplotypes since the
corresponding genotypes (which most likely have missing
data) are not available at [8]. In order to test the capacity of
our method to recover missing alleles we randomly deleted
1%, 2%, 5%, and 10% of the genotype SNPs and used the
genotypes with missing data as input to ENT. In Table IV
we report the number of SNPs where our algorithm recovers
correctly the missing alleles as percentage of the total number
of deleted SNPs. The recovery accuracy varies with the

Switching Haplotype SNP
error (%) accuracy (%) accuracy (%)

PHASE 2.1 3.09 55.81 98.29
GERBIL 3.18 44.96 97.89
2SNP 3.18 51.16 98.58

ENT Var/Var 4.21 42.64 97.96
ENT 5/5 4.36 45.74 97.85

TABLE II

PHASING ACCURACY OF DIFFERENT METHODS ON THE DALY DATASET.

percentage of deleted data, but is on the average over 97.5%
for the CEU population and over 95.8% percent for the YRI
population.

V. CONCLUSIONS

In this paper we have presented a highly scalable algo-
rithm for genotype phasing based on entropy minimization.
Experimental results on large datasets extracted from the
HapMap repository show that our algorithm is several orders
of magnitude faster than existing phasing methods while
achieving a phasing accuracy close to that of best existing
methods. The source code of our implementation is available
from the authors upon request.
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CEU population (30 trios)
Chr # Trio Diff. CPU
# SNPs Ambig. from sec.

SNPs (%) PHASE (%)
1 61814 16.4 10.3 401
2 69753 16.3 8.5 939
3 56737 15.8 8.9 682
4 48952 16.0 9.0 450
5 48831 15.5 8.8 445
6 53458 16.0 8.7 452
7 41046 15.4 10.2 292
8 60234 16.0 8.5 855
9 47682 15.2 8.5 628
10 38940 16.1 9.1 353
11 36287 15.5 9.7 391
12 39189 15.9 9.9 340
13 28816 15.1 10.6 157
14 24128 16.2 9.2 215
15 21138 16.6 9.5 147
16 19922 16.2 11.2 126
17 19767 15.5 10.1 215
18 32177 16.0 9.3 465
19 14175 16.8 12.0 86
20 17096 16.6 10.5 144
21 16199 15.2 11.5 187
22 15548 15.2 9.9 176

Total 811889 - - 8155
YRI population (30 trios)

Chr # Trio Diff. CPU
# SNPs Ambig. from sec.

SNPs (%) PHASE (%)
1 68579 16.6 8.8 273
2 74275 16.1 6.4 399
3 56617 16.1 6.7 254
4 49807 16.0 7.4 211
5 47400 16.2 7.0 209
6 55376 16.8 6.9 188
7 39126 16.3 7.7 142
8 64461 16.0 6.5 410
9 50258 15.5 6.3 414
10 42002 16.1 7.6 155
11 36268 16.4 7.1 171
12 40666 16.1 8.3 149
13 31627 16.3 7.2 118
14 23968 17.2 7.1 95
15 21504 16.6 7.6 63
16 20237 16.4 9.3 69
17 19744 16.5 8.6 77
18 35094 15.8 7.1 196
19 14007 16.8 9.5 52
20 16580 16.4 12.2 56
21 17897 16.0 7.2 82
22 16386 15.9 7.2 72

Total 841879 - - 3866

TABLE III

PERCENTAGE OF TRIO AMBIGUOUS SNPS WITH DIFFERENT ENT AND

PHASE PHASINGS.

CEU population (30 trios)
Chr# #SNPs Deleted SNPs

1% 2% 5% 10%
1 61814 97.79 97.74 97.64 97.40
2 69753 98.30 98.23 98.10 97.83
3 56737 98.23 98.13 98.00 97.74
4 48952 98.15 98.07 97.93 97.72
5 48831 98.18 98.08 97.96 97.72
6 53458 98.24 98.19 98.00 97.79
7 41046 97.90 97.89 97.72 97.46
8 60234 98.54 98.48 98.39 98.16
9 47682 98.39 98.25 98.12 97.84
10 38940 97.82 97.82 97.66 97.42
11 36287 98.09 98.07 97.94 97.65
12 39189 97.85 97.84 97.74 97.49
13 28816 98.09 97.98 97.82 97.63
14 24128 98.01 97.87 97.86 97.58
15 21138 97.66 97.70 97.59 97.32
16 19922 97.34 97.24 97.10 96.84
17 19767 97.41 97.36 97.23 96.92
18 32177 98.41 98.31 98.16 97.96
19 14175 96.95 97.06 96.84 96.54
20 17096 97.29 97.35 97.31 96.93
21 16199 98.11 98.12 98.17 97.84
22 15548 97.97 97.95 97.71 97.46

Averages - 97.94 97.90 97.77 97.51
YRI population (30 trios)

Chr# #SNPs Deleted SNPs
1% 2% 5% 10%

1 68579 96.17 96.03 95.85 95.54
2 74275 97.15 97.03 96.79 96.32
3 56617 96.92 96.93 96.64 96.25
4 49807 96.82 96.77 96.46 96.09
5 47400 96.80 96.71 96.51 96.02
6 55376 96.93 96.81 96.60 96.23
7 39126 96.39 96.25 96.04 95.64
8 64461 97.66 97.62 97.31 96.99
9 50258 97.34 97.13 96.93 96.53
10 42002 96.47 96.41 96.18 95.79
11 36268 96.97 96.70 96.51 96.06
12 40666 96.36 96.22 96.04 95.70
13 31627 96.69 96.58 96.40 96.04
14 23968 96.62 96.56 96.31 95.82
15 21504 95.98 96.07 95.70 95.22
16 20237 95.90 95.76 95.36 94.84
17 19744 96.00 95.88 95.52 95.11
18 35094 97.14 97.02 96.89 96.54
19 14007 95.22 95.27 94.94 94.51
20 16580 94.66 94.67 94.32 93.86
21 17897 97.31 97.15 96.81 96.43
22 16386 96.70 96.67 96.33 95.98

Averages - 96.55 96.47 96.20 95.80

TABLE IV

PERCENTAGE OF DELETED SNPS CORRECTLY RECOVERED ON HAPMAP

CEU AND YRI TRIO POPULATIONS [8].


