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of Iaşi, Ferucio Laurenţiu Ţiplea, for believing in me.

Additionally, I would like to thank my associate advisors, Laurent Michel and Alexan-

der Russell, for serving on my examination committee and also my colleagues, Jin Jun
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Abstract

After the completion of the Human Genome Project has provided a blueprint of the

DNA present in each human cell, genomics research is now focusing on the study of DNA

variations that occur between individuals, seeking to understand how these variations

confer susceptibility to common diseases such as diabetes or cancer. The most common

form of genomic variation are the so called single nucleotide polymorphisms (SNPs), i.e.,

the presence of different DNA nucleotides, or alleles, at certain chromosomal locations.

Determining the identity of the alleles present in a DNA sample at a given set of SNP

loci is called SNP genotyping.

Among emerging genotyping technologies, one of the most promising is the use of

universal tag arrays, which provide unprecedented assay customization flexibility while

maintaining a high degree of multiplexing and low unit cost. In the first part of this

thesis we study methods for improving the multiplexing rate (defined as the average

number of reactions assayed per array) in SNP genotyping assays involving multiple

universal tag arrays. In general, it is not possible to use all tags in an array experiment

due to, e.g., unwanted hybridizations. An assay specific optimization that determines

the multiplexing rate (and hence the number of required arrays for a large assay) is

the tag assignment problem, whereby individual tags are assigned to the primers used

to genotype each SNP. We observe that significant improvements in multiplexing rate

can be achieved by combining primer selection with tag assignment. For most tag array

applications there are multiple primers with the desired functionality; for example in SNP

genotyping one can choose the corresponding primer from either the forward or reverse

strands. Since different primers hybridize to different sets of tags, a higher multiplexing

rate is achieved by integrating primer selection with tag assignment. This integrated

optimization is shown to lead to a reduction of up to 50% in the number of required

arrays.

In the second part of the thesis, we propose a new genotyping assay architecture com-

bining multiplexed solution-phase single-base extension (SBE) reactions with sequencing
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by hybridization (SBH) using universal DNA arrays such as all k-mer arrays. In ad-

dition to PCR amplification of genomic DNA, SNP genotyping using SBE/SBH assays

involves the following steps: (1) Synthesizing primers complementing the genomic se-

quence immediately preceding SNPs of interest; (2) Hybridizing these primers with the

genomic DNA; (3) Extending each primer by a single base using polymerase enzyme and

dideoxynucleotides labeled with 4 different fluorescent dyes; and finally (4) Hybridizing

extended primers to a universal DNA array and determining the identity of the bases

that extend each primer by hybridization pattern analysis. Under the assumption of per-

fect hybridization, unambiguous genotyping of a set of SNPs requires selecting primers

upstream of the SNPs such that each primer hybridizes to at least one array probe that

hybridizes to no other primer that can be extended by a common base. Our contribu-

tions include a study of multiplexing algorithms for SBE/SBH genotyping assays and

preliminary experimental results showing the achievable tradeoffs between the number

of array probes and primer length on one hand and the number of SNPs that can be

assayed simultaneously on the other. We prove that the problem of selecting a maximum

size subset of SNPs that can be unambiguously genotyped in a single SBE/SBH assay is

NP-hard, and propose efficient heuristics with good practical performance. Our heuris-

tics take into account the freedom of selecting primers from both strands of the genomic

DNA. In addition, our heuristics can enforce user-specified redundancy constraints facil-

itating reliable genotyping in the presence of hybridization errors. Simulation results on

datasets both randomly generated and extracted from the NCBI dbSNP database sug-

gest that the SBE/SBH architecture provides a flexible and cost-effective alternative to

genotyping assays currently used in the industry, enabling genotyping of up to hundreds

of thousands of user-specified SNPs per assay.
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Chapter 1

Introduction

1.1 Genetic Variation between Individuals/ SNPs

After the completion of the Human Genome Project has provided us with the blueprint

of the DNA present in the cells of each human [9, 10], genomics research has focused

on the study of variations that occur between individuals. These variations comprise

0.1% of the genome and are factors that confer susceptibility or resistance to disease,

and influence the severity or progression of disease.

Genetic variations are also important in the field of pharmacogenomics, which uses

genome-wide approaches to elucidate the inherited basis of differences between persons

in the response to drugs. It is estimated that genetics can account for 20 to 95 percent of

variability in drug disposition and effects. There are genetic variations which have already

been associated with substantial changes in the metabolism or effects of medications, and

some are now being used to predict clinical response [16].

The study of genetic variations is of interest in biological anthropology as well, since

it may reveal human migration patterns.

While ancestral mutations propagated over generations are an important cause for

variation, much of the observed genomic diversity is caused by recombination events,

whereby the chromosome transmitted to a gamete is obtained during meiosis by com-

bining segments taken alternatively from the two parent chromosomes.

There are several types of genetic variations, also called genetic markers:

Restriction fragment length polymorphisms (RFLP) are caused by the inac-

tivation of a particular restriction endonuclease cleavage site in a subpopulation.
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Variable number of tandem repeats polymorphisms (VNTR) consist of tan-

dem repetitions of DNA segments occurring at numerous locations throughout the human

genome. Based on the number of bases in the repeated block, VNTRs are classified in

minisatellites, which have a repeated block of 14-500 bp, and microsatellites, which

have a repeated block of 1-13 bp.

Single-nucleotide polymorphisms (SNP) are variations in the identity of the

base appearing at a particular position in the genome and represent the most frequent

form of genetic variation. In general, there are only two possible nucleotides, also called

alleles, that can appear at a SNP position. Determining the alleles present at a SNP

locus in the genetic DNA of an individual is called SNP genotyping.

1.2 Genotyping Methods

With a number of 10.4 million human SNPs available in public databases [32], efficient,

flexible and affordable genotyping technologies are needed. There are a multitude of

SNP genotyping methods, combining a variety of allele discrimination techniques, reac-

tion formats and detection mechanisms, but further improvements in their throughput,

flexibility and cost are desirable. In the following we briefly summarize the existing

options for the three aspects of every SNP genotyping assay, namely, the allele discrim-

ination technique, the reaction format, and the detection strategy. For comprehensive

descriptions, see [24, 44].

Allelic discrimination

There are four main mechanisms for allelic discrimination, each with its advantages

and disadvantages: allele-specific hybridization, allele-specific primer extension, allele-

specific oligonucleotide ligation and allele-specific invasive cleavage.

In the hybridization approach, two probes are designed, each containing the comple-

ment of one of the SNP variants in the middle. The design of the probes must ensure

that only the probe corresponding to the allele present at the SNP locus will hybridize

to the target DNA sequence and that the one-base mismatch in the other probe will

prevent it from forming a stable duplex with the target sequence.

Because it does not involve any enzyme, the allele-specific hybridization method is

2



the simplest one for allelic discrimination. At the same time, the reaction conditions

that ensure the optimal distinction between the alleles depend on the target sequence

and so, they must be determined separately for every SNP that has to be genotyped.

This makes the design of multiplex assays based on hybridization a difficult task. One

way of achieving this is the use of microarrays that contain multiple probes for each SNP.

This method is used in the GeneChip HuSNP Mapping Array produced by Affymetrix

[3] and described in more detail in the next section.

The primer extension method is based on the high accuracy of nucleotide incorpora-

tion by the DNA polymerase enzyme, instead of on differences in the thermal stability

between mismatched and perfectly matched hybrids, as the hybridization approach does.

There are two types of reactions that use the primer extension principle. In the first one,

called minisequencing, a primer that hybridizes with the target sequence immediately

preceding the SNP site is extended by the DNA polymerase with a single nucleotide,

which will be the complement of the present allele. The identity of the incorporated base

can be detected by different methods, like mass spectrometry [7, 42], enzyme-mediated

luminometric detection of pyrophosphate [4, 35, 41] or fluorescence [36].

The second type of reaction uses two primers which perfectly hybridize to the target

sequence immediately preceding the SNP site and which contain the complements of the

two SNP variants at their 3′ end. Only the primer corresponding to the present allele will

perfectly match at its 3′ end and, therefore, will be extended by the DNA polymerase.

Monitoring the primer extension event allows one to infer the allele found in the DNA

sample.

The main advantages of the methods based on primer extension are their robustness

and the small number of primers required.

Another enzyme assisted method for allelic discrimination is the allele-specific oligonu-

cleotide ligation method. Two pairs of probes are synthesized, such that one of the probes

matches the genomic sequence immediately preceding the SNP locus and contains the

complement of one of the SNP variants at its 3′ end, and the other probe matches the

genomic sequence following the polymorphic site. The DNA ligase enzyme will join one

such pair of probes only if they perfectly hybridize to the target sequence. Thus, by
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determining whether ligation has occurred or not, one can infer the identity of the base

present at the polymorphic site. Ligation is highly specific, but it is a slow reaction

and demands the largest number of synthesized probes, compared to the other allelic

discrimination methods.

Finally, the invasive cleavage approach also requires two pairs of probes. The first

probe in a pair, called invader probe, perfectly matches the DNA target sequence up-

stream the SNP site. The other probe is an allele-specific oligonucleotide, which contains

the complement of one of the variants in the middle and its 3′ part matches the DNA

sequence following the SNP site, while its 5′ part is unrelated to the target. When the

allele-specific probe hybridizes to the target, the invader probe will displace it at the

polymorphic site and the formed structure is recognized by a flap endonuclease enzyme,

which cleaves the 5′ part of the allele-specific probe. The purity of the allele-specific

probes must be extremely high, in order to ensure the specificity of the reaction.

Reaction formats

Based on the reaction format, there are genotyping methods that use homogeneous

reactions or solid phase reactions. The homogeneous reactions are done entirely in so-

lution. For this reason, they are robust and highly flexible, but allow only a limited

amount of multiplexing. In the solid phase reactions, solid supports, like latex beads,

glass slides, silicon chips or the walls of a microtiter well, are used. The solid support can

contain allele-specific oligonucleotides, as is the case with the GeneChip HuSNP Map-

ping Array [3], or generic oligonucleotides, as is the case of tag arrays, described in more

details in the next section. The major advantage of performing genotyping reactions on

solid supports is that many SNPs can be interrogated at the same time, saving time

and reagents. The drawback is that the design of the assays and the optimization of the

multiplex reactions require substantial capital and time investment [24].

Detection mechanisms

Detection of a positive allelic discrimination reaction can be done by monitoring the

light emitted by the products, by measuring the mass of the products or by detecting a

change in the electrical property when the products are formed.

Monitoring light emission is the most widely used detection mechanism in genotyping
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and it uses properties of light as luminescence, fluorescence, time-resolved fluorescence,

fluorescence resonance energy transfer (FRET) and fluorescence polarization (FP).

Mass spectrometry (MS) needs no label, since it measures the molecular weight of the

products formed. High resolution MS can easily distinguish between DNA molecules that

differ by only one base, which makes MS particularly useful as a detection mechanism

for genotyping methods based on primer extension. The difficulty with MS is that the

primer extesion products need to be rigorously purified before measurement to avoid

background from biological material present in the sample [44].

Electrical detection is a new and promising detection method, which offers sensitivity

and low cost. Numerous approaches to electrochemical detection have been developed,

including direct electrochemistry of DNA, electrochemistry at polymer-modified elec-

trodes, electrochemistry of DNA-specific redox reporters, electrochemical amplifications

with nanoparticles, and electrochemical devices based on DNA-mediated charge trans-

port chemistry (see [14] for a review).

1.3 Microarray Based Methods

A DNA microarray consists of a solid surface on which DNA oligonucleotides, called

probes, are chemically bonded. With current technologies, up to 106 probes can be

immobilized on a one cm2 surface, which makes microarrays a great tool for perform-

ing multiplex genotyping assays. In this section we describe three existing microarray

based SNP genotyping techniques, namely the GeneChip mapping arrays produced by

Affymetrix, which are based on hybridization, the arrayed primer extension (APEX)

method, based on minisequencing, and the universal tag arrays. The latter one also uses

single base primer extension but, unlike the first two, it is a generic method, i.e., it allows

the genotyping of a custom set of SNPs.

GeneChip Mapping Arrays

The GeneChip HuSNP Mapping Array produced by Affymetrix [3] contains multiple

allele-specific probes for each SNP to be genotyped. The probes include all possible

sequences containing a stretch of nucleotides flanking the polymorphic site. After hy-

bridization, a computer algorithm is used to interpret the complex fluorescence patterns
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formed by the multiple probes and to assign the genotypes of each SNP.

The current throughput achieved by this technology is 250,000 SNPs per array [3].

The major drawback is that the set of SNPs that can be genotyped using these arrays is

selected by the manufacturer. Genotyping a similar number of user-specified set of SNPs

would require the complete re-design of array probes as well as a difficult re-engineering

of the primer-ligation amplification protocol.

Moreover, it is a common experience that about 20% of the SNPs on the GeneChip

array do not yield confident results [24].

Arrayed primer extension (APEX)

APEX [45] is a genotyping method based on minisequencing, using solid support

and fluorescence detection. More specifically, one primer for each SNP to be genotyped

is immobilized via its 5′ end on a glass surface. The primer must complement the

DNA sequence upstream the polymorphic site. The PCR products containing the SNP

sequences, together with a DNA polymerase and the four dideoxynucleotides fluorescently

labeled with four different dyes, are brought into contact with the array. The primers

on the array will get extended with the Watson-Crick complements of the bases present

at the SNP loci. The array will be scanned and the genotypes determined by observing

the colors at the various spots on the array.

The APEX assay is quite robust and can be multiplexed. Furthermore, a universal

master mix containing the four dye-labeled terminators and DNA polymerase is used for

all SNPs, making it a very simple reaction to set up. The challenge is that thermal cycling

is generally not easily achieved in solid phase reactions, so single-stranded templates are

needed for robust primer extension. This requires a larger amount of PCR products as

target and a strand separation step that increases the cost of the reaction. In addition,

placing SNP-specific probes on the solid support decreases the flexibility of the approach

[24].

A method based on APEX, but which uses a set of generic probes (all k-mers) on

the array was recently proposed in [43].

Tag Arrays

Among technologies that allow genotyping of custom sets of SNPs the most successful
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one is the use of DNA tag arrays [8, 17, 19, 26]. DNA tag arrays consist of a set of DNA

strings called tags, which are designed such that, together with their antitags (their

Watson-Crick complements), satisfy the following hybridization constraints:

(H1) Every antitag hybridizes strongly to its tag;

(H2) No antitag hybridizes to a tag other than its complement; and

(H3) There is no antitag-to-antitag hybridization (including hybridization between two

copies of the same tag and self-hybridization).

The flexibility of tag arrays comes from combining solid-phase hybridization with the

high sensitivity of single-base extension reactions. A typical assay based on tag arrays

performs SNP genotyping using the following steps [6, 19]: (1) A set of reporter probes

is synthesized by ligating antitags to the 5′ end of primers complementing the genomic

sequence immediately preceding the SNPs of interest. (2) Reporter probes are hybridized

in solution with the genomic sample. (3) The hybridized 3′ (primer) end of reporter

probes is extended by a single base in a reaction using the polymerase enzyme and

dideoxynucleotides fluorescently labeled with 4 different dyes. (4) Reporter probes are

separated from the template DNA and hybridized to a tag array. (5) Finally, fluorescence

levels are used to determine the identity of the extending dideoxynucleotides.

Commercially available tag arrays have between 2,000 and 10,000 tags (see, e.g.,

GenFlex and ParAllele TrueTag arrays from Affymetrix [1, 2]). The number of SNPs

that can be genotyped per array is typically smaller than the number of tags since some

of the tags must remain unassigned due to cross-hybridization with the primers [6, 28].

Another factor limiting the throughput of tag arrays is the high synthesis cost of

reporter probes, which have a typical length of 40 nucleotides.

1.4 Contributions

In the first part of this thesis we study methods for improving the multiplexing rate

(defined as the average number of reactions assayed per array) in SNP genotyping assays

involving multiple universal tag arrays. In general, it is not possible to use all tags in an

array experiment due to, e.g., unwanted hybridizations. An assay specific optimization
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that determines the multiplexing rate (and hence the number of required arrays for

a large assay) is the tag assignment problem, whereby individual tags are assigned to

the primers used to genotype each SNP. We observe that significant improvements in

multiplexing rate can be achieved by combining primer selection with tag assignment.

For most universal tag array applications there are multiple primers with the desired

functionality; for example in SNP genotyping one can choose the corresponding primer

from either the forward or reverse strands. Since different primers hybridize to different

sets of tags, a higher multiplexing rate is achieved by integrating primer selection with

tag assignment. This integrated optimization is shown to lead to a reduction of up to

50% in the number of required arrays.

In the second part of the thesis, we propose a new genotyping assay architecture com-

bining multiplexed solution-phase single-base extension (SBE) reactions with sequencing

by hybridization (SBH) using universal DNA arrays such as all k-mer arrays. In ad-

dition to PCR amplification of genomic DNA, SNP genotyping using SBE/SBH assays

involves the following steps: (1) Synthesizing primers complementing the genomic se-

quence immediately preceding SNPs of interest; (2) Hybridizing these primers with the

genomic DNA; (3) Extending each primer by a single base using polymerase enzyme and

dideoxynucleotides labeled with 4 different fluorescent dyes; and finally (4) Hybridizing

extended primers to a universal DNA array and determining the identity of the bases

that extend each primer by hybridization pattern analysis. Under the assumption of per-

fect hybridization, unambiguous genotyping of a set of SNPs requires selecting primers

upstream of the SNPs such that each primer hybridizes to at least one array probe that

hybridizes to no other primer that can be extended by a common base. Our contribu-

tions include a study of multiplexing algorithms for SBE/SBH genotyping assays and

preliminary experimental results showing the achievable tradeoffs between the number

of array probes and primer length on one hand and the number of SNPs that can be

assayed simultaneously on the other. We prove that the problem of selecting a maximum

size subset of SNPs that can be unambiguously genotyped in a single SBE/SBH assay is

NP-hard, and propose efficient heuristics with good practical performance. Our heuris-

tics take into account the freedom of selecting primers from both strands of the genomic
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DNA. In addition, our heuristics can enforce user-specified redundancy constraints facil-

itating reliable genotyping in the presence of hybridization errors. Simulation results on

datasets both randomly generated and extracted from the NCBI dbSNP database sug-

gest that the SBE/SBH architecture provides a flexible and cost-effective alternative to

genotyping assays currently used in the industry, enabling genotyping of up to hundreds

of thousands of user-specified SNPs per assay.

Most of the results presented in this thesis appear in:

1. I.I. Mandoiu, C. Prajescu, and D. Trinca. Improved Tag Set Design and Multi-

plexing Algorithms for Universal Arrays. LNCS Transactions on Computational

Systems Biology, volume II (LNBI 3680), pages 124–137, 2005 [28]. A preliminary

version of this paper has appeared in Proc. 5th International Conference on Com-

putational Science (ICCS 2005)/ 2005 International Workshop on Bioinformatics

Research and Applications (IWBRA), LNCS 3515, pages 994–1002, 2005 [29].

2. N. Hundewale, I.I. Măndoiu, C. Prăjescu, and A. Zelikovsky. Integrated design flow

for universal DNA tag arrays. In 9th Annual International Conference on Research

in Computational Molecular Biology (RECOMB) Poster Book, pages 141–142, 2005

[21].

3. I.I. Măndoiu and C. Prăjescu. High-throughput SNP genotyping by SBE/SBH.

ACM Computing Research Repository, cs.DS/0512052, 2005 [27].
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Chapter 2

Multiplexing Algorithms for Tag
Arrays

In this chapter we study methods for improving the multiplexing rate (defined as the

average number of reactions assayed per array) in large-scale genomic assays involving

multiple tag arrays. In general, it is not possible to assign all tags to primers in an array

experiment due to unwanted cross-hybridizations. For example, if a tag is assigned to a

primer p, then tags hybridizing with p can no longer be assigned to other primers. An

assay specific optimization that determines the multiplexing rate (and hence the number

of required arrays for a large assay) is the tag assignment problem, whereby individual

(anti)tags are assigned to each primer.

The rest of the chapter is organized as follows. Section 2.1 formalizes the Tag Ar-

ray Multiplexing Problem and presents a review of the previous work. In Section 2.2

we observe that significant improvements in multiplexing rate can be achieved by com-

bining primer selection with tag assignment. For most tag array applications there are

pools containing multiple primers with a desired functionality; for example in the SNP

genotyping assay described in Section 1.3 one can choose the primer from either the

forward or reverse strands. Since different primers hybridize to different sets of tags, a

higher multiplexing rate is achieved by integrating primer selection with tag assignment.

Section 2.3 formalizes the problem of finding a maximum assignable pool set. Results

on simulated data are presented in Section 2.4 and an application to gene expression in

the Herpes B virus is described in Section 2.5.
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Figure 2.1: Four types of undesired hybridizations, caused by the formation of nucleation
complexes between (a) a primer and a tag other than the complement of the ligated an-
titag, (b) a primer and an antitag, (c) two primers, and (d) two reporter probe substrings,
at least one of which stradles a ligation point.

2.1 Problem Formalization and Review of Previous Work

Even when tags satisfy properties (H2)-(H3) in Section 1.3, which prevent unintended

antitag-to-tag and antitag-to-antitag hybridizations, the formation of nucleation com-

plexes involving portions of the primers may still lead to undesired hybridization between

reporter probes and tags on the array (Fig. 2.1(a)), or between two reporter probes (Fig.

2.1(b)-(d)). The formation of these duplexes must be avoided as it leads to false primer

extensions, extension misreporting, and/or reduced effective reporter probe concentra-

tion available for hybridization to the template DNA and to the tags on the array [6].

This can be done by assaying the primers using a sufficiently large number of arrays, and

assigning antitags to primers such that the following constraints are satisfied:

(A1) If primer p forms the configuration in Fig. 2.1(a), then antitag t̄′ is not assigned

to any primer in array experiments in which p is assayed, unless it is assigned to p

itself.

(A2) If primer p forms the configuration in Fig. 2.1(b), then antitag t̄′ is not assigned

to any primer in array experiments in which p is assayed (this time assigning t̄′ to

p is not allowable).

(A3) If primers p and p′ form the configuration in Fig. 2.1(c), then they are assayed on

different array experiments.

(A4) Antitag t̄ is never assigned to primer p if they form the configuration in Fig. 2.1(d)

with t′ = t.
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(A5) If antitag t̄ is assigned to primer p in an array experiment, and the resulting

reporter probe forms the configuration in Fig. 2.1(d) with t′ 6= t, then antitag t̄′ is

not assigned to any primer in that experiment.

As in [6], we focus on preventing primer-to-tag hybridizations (A1). Our algorithms

can be easily extended to prevent primer-to-antitag hybridizations (A2); a simple prac-

tical solution for preventing the other (less-frequent) unwanted hybridizations is to re-

assign offending primers in a post-processing step.

Let P = {p1, . . . , pm} be a set of primers and T = {t1, . . . , tn} a set of tags. Following

[6], we define the conflict graph of P and T to be the bipartite graph whose vertices are

primers P and tags T and which has an edge between primer p and tag t if they hybridize.

A set P of primers is called assignable to a set T of tags if there is a one-to-one

mapping a : P → T such that, for every tag t hybridizing to a primer p ∈ P , either

t 6∈ a(P) or t = a(p). An assignable set of primers induces a balanced subgraph of

maximum degree 1 in the conflict graph [6].

Tag Array Multiplexing Problem: Given primers P = {p1, . . . , pm} and tag set

T = {t1, . . . , tn}, find a partition of P into the minimum number of assignable sets.

The problem is shown to be NP-complete by reduction from Set Cover in [6]. Ben-

Dor et al. also observe in [6] that the problem remains NP-complete even if the number

of tags is required to be greater than or equal to the number of primers.

Defining X as the number of primers p for which there exists a tag t hybridizing with

p and with no other primer and Y as the number of tags that do not hybridize with any

primer, Ben-Dor et al. have proved in [6] the following proposition:

Proposition 1 ([6]) A set of primers P is assignable if and only if

X + Y ≥ |P|.

Proof. If P is assignable then there is a one-to-one mapping a : P → T such that,

for every primer p ∈ P , the tag t = a(p) either does not hybridize to any primer (it

contributes a value of 1 to Y ), or it hybridizes to p and to no other primer (it contributes

a value of 1 to X). This implies that X + Y ≥ |P|. Conversely, if X + Y ≥ |P| then

12



Input: Primer set P = {p1, . . . , pm} and tag set T
Output: A partition ε of P into assignable subsets of primers

1. ε← ∅
2. P ′ ← P
3. While P ′ is not assignable do

Remove a primer of maximum potential from P ′

End While

4. ε← ε ∪ {P ′} (add P ′ to the cover)
5. Update P ← P\P ′
6. If P = ∅ then halt else go to 2

Figure 2.2: Algorithm B in [6].

there are more than |P| tags that hybridize to at most one primer, i.e., enough tags to

assign to every primer. �

Using Proposition 1 to test whether a set of primers is assignable or not, [6] presents

a simple heuristic algorithm for solving the Univeral Array Multiplexing Problem (see

Figure 2.2). In each iteration, the algorithm checks whether the remaining set of primers

P ′ is assignable. If not, it removes a primer that has the greatest potential of creating

useful tags by its removal. Each tag t is assigned a potential of becoming useful, equal

to 2−w, where w is the number of primers that cross-hybridize with t (the greater w is,

the lower is t’s potential of becoming useful).

Ben-Dor et al. also formulate in [6] a simple stochastic model for the cross-hybridization

matrix A, as follows:. Let n(A) denote the minimum number of assignable primer sets

and let D(m,n, p) be a probability distribution of m × n matrices, where each matrix

entry independently is equal to 1 with probability p and to 0 with probability 1 − p.

Using Chernoff bound, Ben-Dor et al. prove a lower bound for n(A) for matrices drawn

from D(m,n, p):

Theorem 1 ([6]) Let matrix A be drawn from a probability distribution D(m,n, p). For

a positive integer t, define h = dmt e and x = n(1− p)h−1(1− p+hp). Then the following

bound holds for all t such that h > x:

Prob[n(a) ≤ t] ≤ tm

t!

(
xe

h−x
h

h

)ht
.
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2.2 Improved Multiplexing by Integrated Primer Selection
and Tag Assignment

For most tag array applications there are multiple primers with the desired functionality,

e.g., for the SNP genotyping assay described in Section 1.3 one can choose the primer from

either the forward or reverse strands. Since different primers have different hybridization

patterns, a higher multiplexing rate can in general be achieved by integrating primer

selection with tag assignment.

A similar integration has been recently proposed in [22] between probe selection and

physical DNA array design, with the objective of minimizing unintended illumination in

photo-lithographic manufacturing of DNA arrays. The idea in [22] is to modify probe

selection tools to return pools containing all feasible candidates, and let subsequent opti-

mization steps select the candidate to be used from each pool. We use a similar approach.

We say that a set of primer pools is assignable if we can select a primer from each pool

to form an assignable set of primers.

Pooled Tag Array Multiplexing Problem: Given primer pools P = {P1, . . . , Pm}

and tag set T = {t1, . . . , tn}, find a partition of P into the minimum number of assignable

sets.

Theorem 2 The Pooled Tag Array Multiplexing Problem is NP-complete.

Proof. Ben-Dor et al. have proved in [6] that the problem is NP-complete for the case

in which every pool has size 1 by reduction from the well-known Set Cover Problem. The

NP-completeness for the general case follows from that. �

Let P be a set of primer pools and T a tag set. For a primer p (tag t), T (p)

(resp. P(t)) denotes the set of tags (resp. primers of
⋃
P∈P P ) hybridizing with p

(resp. t). Let X(P) = {P ∈ P : ∃p ∈ P, t ∈ T s.t. t ∈ T (p) and P(t) ⊆ P} and

Y (P) = {t ∈ T : P(t) = ∅}. Clearly, in every pool of X(P) we can find a primer p

that hybridizes to a tag t which is not cross-hybridizing to primers in other pools, and

therefore assigning t to p will not violate (A1). Furthermore, any primer can be assigned

to a tag in Y (P) without violating (A1). Thus, a set P with |X(P)| + |Y (P)| ≥ |P|

is always assignable. The converse, and hence the corresponding Proposition 1 for the
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Pooled Tag Array Multiplexing Problem, is not necessarily true: Figure 2.3 shows two

pools that are assignable although |X(P)|+ |Y (P)| = 0.

p11

p12

P1

p21

p22

P2

t1

t2

Figure 2.3: Two assignable pools for which |X(P)|+ |Y (P)| = 0.

Our primer pool assignment algorithm (Primer-Del) (see Figure 2.4) is a general-

ization to primer pools of Algorithm B in [6]. In each iteration, the algorithm checks

whether |X(P ′)| + |Y (P ′)| ≥ |P ′| for the remaining set of pools P ′. If not, a primer of

maximum potential is deleted from the pools. As in [6], the potential of a tag t with

respect to P ′ is 2−|P
′
(t)|, and the potential of a primer p is the sum of potentials for

the tags in T (p). If the algorithm deletes the last primer in a pool P , then P is itself

deleted from P ′; deleted pools are subsequently assigned to new arrays using the same

algorithm.

Figure 2.5 presents a variant of the algorithm described above, called Primer-Del+,

which is shown to give better results in Section 2.4. In Primer-Del+, primers in pools

of size 1 are omitted – unless all pools have size 1 – when selecting the primer with

maximum potential for deletion.

We have also considered two simple heuristics (Min-Pot - Figure 2.6 and Min-Deg -

Figure 2.7) that first select from each pool the primer of minimum potential, respectively

minimum degree, and then run the iterative primer deletion algorithm on the resulting

pools of size 1.

2.3 Maximum Assignable Pool Set Problem

Note that all algorithms presented above work by iteratively finding assignable pools

sets. This justifies formalizing the problem of finding a maximum assignable pool set.

Maximum Assignable Pool Set Problem (MAP): Given primer pools P = {P1, . . . , Pm}
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Input: Primer pools P = {P1, . . . , Pm} and tag set T
Output: Triples (pi, ti, ki), 1 ≤ i ≤ m, where pi ∈ Pi is the selected primer for pool i,
ti is the tag assigned to pi, and ki is the index of the array on which pi is assayed

k ← 0
While P 6= ∅ do

k ← k + 1; P ′ ← P
While |X(P ′)|+ |Y (P ′)| < |P ′| do

Remove the primer p of maximum potential from the pools in P ′
If p’s pool becomes empty then remove it from P ′

End While

Assign pools in P ′ to tags on array k
P ← P \ P ′

End While

Figure 2.4: The iterative primer deletion algorithm.

and tag set T = {t1, . . . , tn}, find a maximum assignable subset of P.

Theorem 3 The Maximum Assignable Pool Set Problem is NP-hard.

Proof. Ben-Dor et al. have proved in [6] the NP-hardness for the case in which every

pool has size 1 by reduction from the complete balanced bipartite subgraph problem.

The NP-hardness for the general case follows from that. �

Ben-Dor et al. also note in [6] that MAP can be solved in polynomial time in the case

that every pool has size 1 and every primer has degree at most 1. Figure 2.8 presents a

polynomial algorithm that solves MAP for this case.

We will denote with p0 the number of primers of degree 0 and with t0 the number of

tags of degree 0.

Lemma 1 ([6]) The MAP algorithm described in Figure 2.8 gives a maximum assign-

ment when the pool size is 1 and each primer has degree at most 1.

Proof. In order to prove the optimality of our algorithm, we will first state and prove

several claims.

Claim 1: By condition (A1) in Section 2.1, if a tag t with degree greater than 0

is chosen in an assay, then at most one of its neighbor primers can be assigned in that

assay and it has to be assigned to t.
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Input: Primer pools P = {P1, . . . , Pm} and tag set T
Output: Triples (pi, ti, ki), 1 ≤ i ≤ m, where pi ∈ Pi is the selected primer for pool i,
ti is the tag assigned to pi, and ki is the index of the array on which pi is assayed

k ← 0
While P 6= ∅ do

k ← k + 1; P ′ ← P
While |X(P ′)|+ |Y (P ′)| < |P ′| do
P+ = {P ∈ P ′ s.t. |P | > 1}
If |P+| > 0
Then remove the primer p of maximum potential from the pools in P+

Else

Remove the primer p of maximum potential from the pools in P ′
Remove p’s pool from P ′

End If

End While

Assign pools in P ′ to tags on array k
P ← P \ P ′

End While

Figure 2.5: Primer-Del+ algorithm.

Claim 2: There is an optimum solution to MAP in which every tag t of degree

greater than 0 is assigned to one of its neighbor primers or not assigned at all. Otherwise,

consider an optimum solution in which a tag t of degree greater than 0 is assigned to

a primer p different from all its neighbor primers, which are left unassigned. Then, by

leaving p unassigned and assigning t to one of its neighbor primers, an optimum solution

is obtained.

Claim 3: There is an optimum solution to MAP that uses every tag of degree 0.

Otherwise, consider an optimum assignment in which a tag t of degree 0 is left unassigned.

Then, replacing any assigned tag with t does not create any conflicts, thus the newly

constructed assignment forms an optimum solution.

Claim 4: There is an optimum solution to MAP which assigns min(p0, t0) primers

of degree 0 to tags of degree 0. Otherwise, consider a maximum assignment in which a

primer p of degree 0 is left unassigned and a tag t of degree 0 is assigned to a primer

p′ 6= p of degree 1. Then, by assigning p to t and leaving p′ unassigned, one gets an

optimum solution.

If p0 ≥ t0, then, from Claims 3 and 4, there is an optimum solution in which all the
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Input: Primer pools P = {P1, . . . , Pm} and tag set T
Output: Triples (pi, ti, ki), 1 ≤ i ≤ m, where pi ∈ Pi is the selected primer for pool i,
ti is the tag assigned to pi, and ki is the index of the array on which pi is assayed

P ′ ← ∅
For all pools P ∈ P do

Find a primer p ∈ P of minimum potential
P ′ ← P ′ ∪ {p}

End For

Run Primer-Del on P ′

Figure 2.6: Min-Pot algorithm.

Input: Primer pools P = {P1, . . . , Pm} and tag set T
Output: Triples (pi, ti, ki), 1 ≤ i ≤ m, where pi ∈ Pi is the selected primer for pool i,
ti is the tag assigned to pi, and ki is the index of the array on which pi is assayed

P ′ ← ∅
For all pools P ∈ P do

Find a primer p ∈ P of minimum degree
P ′ ← P ′ ∪ {p}

End For

Run Primer-Del on P ′

Figure 2.7: Min-Deg algorithm.

tags of degree 0 are assigned to primers of degree 0. Since every tag of degree greater

than 0 can be assigned to one of its neighbor primers, the size of the optimum solution

in this case will be the total number of tags, OPT = n.

If p0 < t0, then, from Claims 3 and 4, there is an optimum solution in which p0 tags

of degree 0 are assigned to the degree 0 primers and the remaining t0− p0 tags of degree

0 are assigned to primers of degree 1, thus leaving unassigned a number k of tags of

degree greater than 0, t1, . . . , tk. Then the following inequalities hold:

k−1∑

i=1

deg(ti) < t0 − p0 ≤
k∑

i=1

deg(ti).

From this and from Claim 2, it follows that the size of the optimum solution in this case

is OPT = n− k. Since OPT is maximized, i.e., k is minimized, the k tags that are left

unassigned in an optimum solution are the k highest degree tags in T .

This proves that the MAP algorithm constructs a maximum assignment. �

The algorithm described above can be extended to solve MAP when each pool P has
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Input: Primers P = {p1, . . . , pm} and tags T = {t1, . . . , tn}
Output: P ′ ⊆ P a maximum assignable set of primers and assigments (p, t), for
every p ∈ P ′

If p0 ≥ t0
Then

Assign all tags of degree 0 to primers of degree 0
Assign each tag of degree greater than 0 to an arbitrary neighbor primer

Else

Assign p0 tags of degree 0 to the p0 primers of degree 0
While there are unassigned tags of degree 0 do

Remove t, an unassigned tag of maximum degree
Assign as many as possible of t’s neighbor primers to tags of degree 0

End While

Assign each left tag of degree greater than 0 to an arbitrary neighbor primer
End If

Figure 2.8: MAP algorithm.

degree at most 1, i.e., primers in P hybridize to at most one tag.

Lemma 2 MAP can be solved in polynomial time when each pool has degree at most 1.

Proof. Let P be a set of pools. Note that all primers of degree 1 in pool P are

equivalent with regard to the generated conflicts, since they hybridize to the same tag,

and, obviously, all primers of degree 0 in P are also equivalent. We will choose the

representative of a pool P to be an arbitrary primer of degree 0 from P , if it exists,

otherwise an arbitrary primer of degree 1 from P .

Let R be the set of representative primers for all pools in P . We claim that the size

of a maximum assignable subset of pools in P (denoted by OPT (P)) is equal to the size

of a maximum assignable subset of primers in R (denoted by OPT (R)).

A maximum assignable subset of representatives R′ ⊆ R induces an assignable subset

of pools (for each representative primer in R′, its corresponding pool is assignable). So

OPT (P) ≥ OPT (R). Moreover, let P ′ ⊆ P be a maximum assignable subset of pools

and let R′ be the set of the representative primers of pools in P ′. For every pool P ∈ P ′,

let p ∈ P be the chosen primer from P and t the tag assigned to p. If r, the representative

primer of P , has degree 0, then r can be assigned to t. If r has degree 1, then it can also
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be assigned to t, because r and p hybridize to the same tag. This means that R ′ is an

assignable subset of R, so OPT (P) ≤ OPT (R).

Thus, applying the MAP algorithm in Figure 2.8 on the set of representatives of each

pool will give a maximum assignable pool set. �

In the case where each primer has degree at most 1, we do not know whether or not

MAP is NP-hard, but we can decide if the size of a maximum assignable pool set is the

number of tags using the maximum matching problem.

In the following we present an integer programming formulation for the Maximum

Assignable Pool Set Problem. For every primer p ∈ ⋃P∈P P and every tag t ∈ T ,

consider a binary variable zpt. zpt = 1 if and only if t is assigned to p.

Maximize
∑

p∈SP

∑

t∈T
zpt (2.1)

Subject to

∑

p∈Pi

∑

t∈T
zpt ≤ 1, 1 ≤ i ≤ m (2.2)

∑

p:(p,t)/∈E
zpt +

∑

p:(p,t)∈E

∑

t′∈T
zpt′ ≤ 1, ∀t ∈ T (2.3)

zpt ∈ {0, 1}, ∀p ∈
⋃

P∈P
P,∀t ∈ T (2.4)

Lemma 3 The above integer program solves the Maximum Assignable Pool Set Problem.

Proof. We have to show that our ILP formulation enforces condition (A1), i.e., the

primers for which there is a tag t with zpt = 1 form an assignable set. Conversely, suppose

that there is a primer p and a tag t that cross-hybridize and primer p is assigned a tag

t′ 6= t and tag t is assigned to a primer p′ 6= p. Then zpt′ = 1 and zp′t = 1, which is not

consistent with constraint (2.3), so we have a contradiction. �

The integer program described above can be used to solve the Pooled Tag Array

Multiplexing Problem by iteratively finding maximum assignable pool sets (see Figure

2.9). While this method does not guarantee an optimum solution for the Multiplexing

Problem, the experiments presented in Section 2.4 show that it performs slightly better

than the heuristics presented in Section 2.2.
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Input: Primer pools P = {P1, . . . , Pm} and tag set T
Output: Triples (pi, ti, ki), 1 ≤ i ≤ m, where pi ∈ Pi is the selected primer for pool i,
ti is the tag assigned to pi, and ki is the index of the array on which pi is assayed

k ← 0
While P 6= ∅ do

k ← k + 1
Find the maximum assignable subset P ′ ⊆ P using ILP
Assign pools in P ′ to tags on array k
P ← P \ P ′

End While

Figure 2.9: The iterative ILP algorithm.

2.4 Results on Simulated Data

We ran all four algorithms proposed in Section 2.2 on data sets with between 1000 to

5000 pools of up to 5 randomly generated primers. As in [6], we varied the number of

tags between 500 and 2000.

For instance size, we report the number of arrays and the average tag utilization

(computed over all arrays except the last) obtained by (a) algorithm B in [6] run using

a single primer per pool, (b) the four pool-aware assignment algorithms run with 1

additional candidate in each pool, and (c) the four pool-aware assignment algorithms

run with 4 additional candidates in each pool. Scenario (b) models SNP genotyping

applications in which the primer can be selected from both strands of the template

DNA, while scenario (c) models applications such as gene transcription monitoring, where

significantly more than 2 gene specific primers are typically available.

We extracted tag sequences from the tag set of the commercially available GenFlex

Tag Arrays. All GenFlex tags have length 20; primers used in our experiments are 20

bases long as well. Primer-to-tag hybridizations were assumed to occur between primers

and tags containing complementary c-tokens with c = 11 (Table 2.1), respectively c = 12

(Table 2.2). The results show that significant improvements in multiplexing rate – and

a corresponding reduction in the number of arrays – are achieved by the pool-aware

algorithms over the Algorithm B in [6]. For example, assaying 5000 reactions on a 1000-

tag array requires 13 arrays using the method in [6] for c = 11, compared to only 10

(respectively 8) if 2 (respectively 5) primers per pool are available. In these experiments,
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the Primer-Del+ algorithm dominates in solution quality the Primer-Del, while Min-Deg

dominates Min-Pot. Neither Primer-Del+ nor Min-Deg consistently outperforms the

other over the whole range of parameters, which suggests that a good practical meta-

heuristic is to run both of them and pick the best solution obtained.

Table 2.1: Multiplexing results for c = 11 (averages over 10 test cases).
# Pool Algorithm 500 tags 1000 tags 2000 tags

pools size #arrays % Util. #arrays % Util. #arrays % Util.

1 Algorithm B 4.6 52.6 3.0 41.5 3.0 24.3
2 Primer-Del 4.0 61.9 3.0 44.1 3.0 24.6
2 Primer-Del+ 4.0 63.9 3.0 47.2 2.0 37.2
2 Min-Pot 4.0 62.9 3.0 46.1 2.0 36.5

1000 2 Min-Deg 4.0 64.4 3.0 47.3 2.0 37.9
5 Primer-Del 3.5 75.8 3.0 48.8 2.2 36.4
5 Primer-Del+ 3.0 86.2 2.0 72.2 2.0 44.4
5 Min-Pot 3.0 85.7 2.0 71.0 2.0 42.4
5 Min-Deg 3.0 84.2 2.0 75.8 2.0 46.3

1 Algorithm B 8.0 55.3 6.0 38.8 4.4 27.5
2 Primer-Del 7.0 65.3 5.0 47.0 4.0 31.5
2 Primer-Del+ 7.0 66.2 5.0 48.2 4.0 32.9
2 Min-Pot 7.0 64.7 5.0 46.8 4.0 31.9

2000 2 Min-Deg 7.0 65.9 5.0 48.6 4.0 32.8
5 Primer-Del 6.0 79.2 4.1 61.2 3.6 37.6
5 Primer-Del+ 5.0 88.0 4.0 64.0 3.0 47.0
5 Min-Pot 6.0 78.9 4.0 61.4 3.0 44.8
5 Min-Deg 6.0 79.6 4.0 64.8 3.0 48.1

1 Algorithm B 17.6 59.7 13.0 41.7 9.0 30.1
2 Primer-Del 15.0 71.0 11.0 49.9 8.0 35.2
2 Primer-Del+ 15.0 71.1 10.0 53.3 8.0 35.5
2 Min-Pot 15.2 69.0 11.0 49.0 8.0 34.3

5000 2 Min-Deg 15.0 70.9 10.1 53.0 8.0 35.5
5 Primer-Del 12.6 85.4 8.2 68.0 6.0 48.4
5 Primer-Del+ 12.0 88.2 8.0 69.5 6.0 49.0
5 Min-Pot 14.0 76.3 9.0 60.7 6.9 42.1
5 Min-Deg 12.1 86.5 8.0 69.3 6.0 49.4

We have also implemented the iterative ILP algorithm described in Figure 2.9 and

compared it with the other algorithms. The data sets contained between 200 and 1000

pools with up to 5 randomly generated primers of length 20. For these experiments

we used 100 GenFlex tags and considered a 11-token hybridization model. The results

in Tables 2.3 and 2.4 show that the Iterative ILP algorithm slightly outperforms the

algorithms described in Section 2.2.
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Table 2.2: Multiplexing results for c = 12 (averages over 10 test cases).
# Pool Algorithm 500 tags 1000 tags 2000 tags

pools size #arrays % Util. #arrays % Util. #arrays % Util.

1 Algorithm B 3.0 80.4 2.0 69.9 2.0 43.4
2 Primer-Del 3.0 86.0 2.0 71.9 2.0 45.1
2 Primer-Del+ 3.0 89.1 2.0 79.6 2.0 49.5
2 Min-Pot 3.0 89.3 2.0 79.1 2.0 48.7

1000 2 Min-Deg 3.0 87.9 2.0 80.9 2.0 49.3
5 Primer-Del 3.0 95.5 2.0 85.5 2.0 47.7
5 Primer-Del+ 3.0 97.8 2.0 91.6 1.0 50.0
5 Min-Pot 3.0 97.9 2.0 91.0 1.0 50.0
5 Min-Deg 3.0 89.9 2.0 90.7 1.0 50.0

1 Algorithm B 6.0 75.8 4.0 61.2 3.0 45.9
2 Primer-Del 5.9 80.9 4.0 65.3 3.0 48.0
2 Primer-Del+ 5.0 89.5 3.0 79.3 2.0 68.2
2 Min-Pot 5.0 88.8 3.3 75.5 2.3 62.4

2000 2 Min-Deg 5.0 87.5 3.0 80.1 2.0 69.9
5 Primer-Del 5.0 96.6 3.0 89.4 2.9 52.4
5 Primer-Del+ 5.0 97.6 3.0 91.4 2.0 80.9
5 Min-Pot 5.0 97.7 3.0 91.5 2.0 79.9
5 Min-Deg 5.0 90.0 3.0 87.0 2.0 83.7

1 Algorithm B 13.4 78.8 9.0 61.7 6.0 47.4
2 Primer-Del 12.0 89.0 8.0 71.2 5.3 55.6
2 Primer-Del+ 12.0 89.5 7.0 77.9 5.0 59.0
2 Min-Pot 12.0 88.5 8.0 71.1 5.0 57.5

5000 2 Min-Deg 12.0 88.3 7.1 76.5 5.0 59.2
5 Primer-Del 11.0 97.9 7.0 83.3 4.2 74.2
5 Primer-Del+ 11.0 98.0 6.0 92.9 4.0 78.5
5 Min-Pot 11.0 97.6 6.0 91.9 4.0 76.2
5 Min-Deg 11.0 93.9 6.0 88.8 4.0 77.7

2.5 Application to Gene Expression in the Herpes B Virus

In this section we describe an integrated design flow for genomic assays based on universal

tag arrays and we use it to design assays for measuring Herpes B viral gene expression

in cells derived from macaque and human hosts. After defining a “B virus molecular

signature”, the assay can provide a sensitive tool for early B virus infection diagnosis

and differentiation between B herpes and closely related herpes simplex viruses.

The steps of the proposed design flow are given in Figure 2.10. With small modi-

fications, the flow is appropriate for a wide range of genomic analyses, including gene

expression, single nucleotide polymorphism (SNP) genotyping, and micro-organism iden-

tification via string barcoding [11]. Below we detail the necessary steps and present

experimental results for designing a universal tag array-based assay for studying gene

expression in the Herpes B virus.
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Figure 2.10: DNA Universal Tag Array Design Flow

Reading Genomic Data and Open Reading Frame (ORF) Extraction: ORFs

are regions of genetic material beginning with a start codon and ending with a stop codon

that might code for a protein. We use ORF extraction programs to extract the set of

ORFs relevant to the application. Because of the differences between prokaryotic and

eukaryotic transcription systems there are two types of ORFs. There are two approaches

to accomplish this. The first one is ORF-Finder [34]. ORFs can be extracted by means

of the genome’s sequence or id using ORF Finder. It uses the prokaryotic approach,

there are limitations in gene prediction using ORF finder. A second approach is to use

GenMark [33], which provides identification of protein coding, uses both prokaryotic

and eukaryotic; and it has several functions. It uses statistical methods to indicate the

true beginning of the ORF and mean coding range of the ORF. GenMark extracts very

specific ORFs compared to that of ORF finder.

Probe Pool Selection: The probe pool selection step is responsible for implement-

ing the desired functionality of the DNA array. We use the Promide [40] algorithm

to select a large number of possibly overlapping oligonucleotide probes (25-mers in our

experiments) from every extracted ORF.1 Promide uses a suffix array with additional

1The probe pool selection step is application dependent, e.g., probe candidates are chosen from the
whole genomic sequence in string barcoding applications [11], or immediately preceding the target SNP
on the sense or antisense strands in SNP genotyping.
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information to rank all candidate oligos according to their hybridization specificity. It

also introduce the concept of master sequences to describe the sequences from which

oligos are to be selected. Constraints such as oligo length, melting temperature, and

self-complementarily are incorporated in the master sequence at a preprocessing stage

and thus kept separate from the main selection problem.

Tag Assignment: For the Tag Assignment step we integrated in our flow both

Algorithm B from [6] (which is using only one candidate from each pool) and the pool-

aware Primer-Del+ algorithm presented in Section 2.2.

We used our flow to design an assay for studying the expression of 78 genes in the

Herpes B virus. We varied the prescribed temperature for the hybridization experiment

between 60 and 70 degrees Celcius, and selected approximately 20 probes per gene in each

case. In a first set of experiments we used 500, 1000, respectively 2000 tags of length

20 from the GenFlex Tag Array (see Table 2.5). We compared the results obtained

in these experiments with the ones obtained when using the same number of so-called

periodic tags generated using the Cycle Packing Algorithm in [30] (Table 2.6). The two

tables report the number of arrays and the multiplexing rate (defined as average tag

utilization computed over all arrays except the last) for both Algorithm B and Primer-

Del+ algorithm. We observe that the results are significantly better when using periodic

tags. This happens because the periodic tags, by construction, contain fewer c-tokens

than the tags on the GenFlex Tag Array, so they generate a sparser conflict graph.
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Table 2.3: Multiplexing results for 200–500 pools with c = 11.
# Pool Algorithm 100 tags

pools size #arrays % Util.

1 Iterative-ILP 3.0 91.0
1 Algorithm B 3.0 89.0
2 Iterative-ILP 3.0 98.5
2 Primer-Del 3.0 94.0
2 Primer-Del+ 3.0 96.0

200 2 Min-Pot 3.0 95.0
2 Min-Deg 3.0 93.0
5 Iterative-ILP 2.0 100.0
5 Primer-Del 3.0 99.5
5 Primer-Del+ 2.0 100.0
5 Min-Pot 2.0 100.0
5 Min-Deg 3.0 93.5

1 Iterative-ILP 4.0 92.7
1 Algorithm B 4.0 86.7
2 Iterative-ILP 4.0 98.0
2 Primer-Del 4.0 92.7
2 Primer-Del+ 4.0 94.0

300 2 Min-Pot 4.0 94.7
2 Min-Deg 4.0 90.7
5 Iterative-ILP 3.0 100.0
5 Primer-Del 4.0 98.7
5 Primer-Del+ 4.0 99.7
5 Min-Pot 4.0 99.0
5 Min-Deg 4.0 91.3

1 Iterative-ILP 5.0 92.8
1 Algorithm B 5.0 87.2
2 Iterative-ILP 5.0 98.8
2 Primer-Del 5.0 95.0
2 Primer-Del+ 5.0 95.8

400 2 Min-Pot 5.0 96.2
2 Min-Deg 5.0 91.8
5 Iterative-ILP 4.0 100.0
5 Primer-Del 5.0 99.0
5 Primer-Del+ 5.0 99.8
5 Min-Pot 5.0 99.8
5 Min-Deg 5.0 92.2

1 Iterative-ILP 6.0 93.0
1 Algorithm B 7.0 82.5
2 Iterative-ILP 6.0 98.4
2 Primer-Del 6.0 94.0
2 Primer-Del+ 6.0 94.4

500 2 Min-Pot 6.0 94.2
2 Min-Deg 6.0 91.2
5 Iterative-ILP 5.0 100.0
5 Primer-Del 6.0 99.2
5 Primer-Del+ 6.0 99.6
5 Min-Pot 6.0 99.8
5 Min-Deg 6.0 92.0
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Table 2.4: Multiplexing results for 600–1000 pools with c = 11.
# Pool Algorithm 100 tags

pools size #arrays % Util.

1 Iterative-ILP 7.0 94.0
1 Algorithm B 8.0 84.3
2 Iterative-ILP 7.0 98.3
2 Primer-Del 7.0 94.3
2 Primer-Del+ 7.0 94.8

600 2 Min-Pot 7.0 94.7
2 Min-Deg 7.0 91.7
5 Iterative-ILP 6.0 100.0
5 Primer-Del 7.0 99.3
5 Primer-Del+ 6.0 100.0
5 Min-Pot 7.0 99.8
5 Min-Deg 7.0 92.5

1 Iterative-ILP 8.0 94.0
1 Algorithm B 9.0 86.0
2 Iterative-ILP 8.0 98.6

700 2 Primer-Del 8.0 94.6
2 Primer-Del+ 8.0 94.9
2 Min-Pot 8.0 94.4
2 Min-Deg 8.0 92.4

1 Iterative-ILP 9.0 94.2
1 Algorithm B 10.0 86.4
2 Iterative-ILP 9.0 98.5

800 2 Primer-Del 9.0 95.0
2 Primer-Del+ 9.0 94.8
2 Min-Pot 9.0 94.6
2 Min-Deg 9.0 92.8

1 Iterative-ILP 11.0 89.9
1 Algorithm B 11.0 86.6
2 Iterative-ILP 10.0 98.7

900 2 Primer-Del 10.0 95.0
2 Primer-Del+ 10.0 94.9
2 Min-Pot 10.0 94.4
2 Min-Deg 10.0 92.8

1 Iterative-ILP 12.0 90.8
1 Algorithm B 12.0 87.7
2 Iterative-ILP 11.0 98.7

1000 2 Primer-Del 11.0 95.5
2 Primer-Del+ 11.0 95.3
2 Min-Pot 11.0 94.9
2 Min-Deg 11.0 93.3
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Table 2.5: Results for GenFlex tags
Tm # Pool Algorithm 500 tags 1000 tags 2000 tags

pools size #arrays % Util. #arrays % Util. #arrays % Util.

60 1446 1 Algorithm B 5 68.50 3 56.45 2 46.25
60 1446 5 Primer-Del+ 5 71.85 3 60.20 2 49.75

67 1560 1 Algorithm B 6 62.20 4 48.90 3 37.52
67 1560 5 Primer-Del+ 5 72.25 4 51.90 2 49.15

70 1522 1 Algorithm B 5 70.45 3 58.80 2 49.50
70 1522 5 Primer-Del+ 5 75.15 3 63.15 2 54.25

Table 2.6: Results for periodic tags
Tm # Pool Algorithm 500 tags 1000 tags 2000 tags

pools size #arrays % Util. #arrays % Util. #arrays % Util.

60 1446 1 Algorithm B 4 91.07 2 92.00 1 72.30
60 1446 5 Primer-Del+ 4 93.40 2 95.30 1 72.30

67 1560 1 Algorithm B 4 93.40 2 95.20 1 78.00
67 1560 5 Primer-Del+ 4 95.80 2 97.20 1 78.00

70 1522 1 Algorithm B 4 94.13 2 96.40 1 76.10
70 1522 5 Primer-Del+ 4 95.80 2 97.80 1 76.10
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Chapter 3

High-Throughput SNP
Genotyping by SBE/SBH

3.1 Introduction

In the k-mer array format [13], all 4k DNA probes of length k are spotted or synthesized

on the solid array substrate (values of k of up to 10 are feasible with current high-density

in-situ synthesis technologies). This format was originally proposed for performing se-

quencing by hybridization (SBH), which seeks to reconstruct an unknown DNA sequence

based on its k-mer spectrum [38]. However, the sequence length for which unambiguous

reconstruction is possible with high probability is surprisingly small [39], and, despite

several suggestions for improvement, such as the use of gapped probes [18] and pooling

of target sequences [20], the SBH scheme has not become practical so far.

In this chapter we propose a new genotyping assay architecture combining mul-

tiplexed solution-phase single-base extension (SBE) reactions with sequencing by hy-

bridization (SBH) using universal DNA arrays such as all k-mer arrays. SNP genotyping

using SBE/SBH assays requires the following steps (see Figure 3.1): (1) Synthesizing

primers complementing the genomic sequence immediately preceding SNPs of interest;

(2) Hybridizing primers with the genomic DNA; (3) Extending each primer by a single

base using polymerase enzyme and dideoxynucleotides labeled with 4 different fluores-

cent dyes; and finally (4) Hybridizing extended primers to a universal DNA array and

determining the identity of the bases that extend each primer by hybridization pattern

analysis.

To the best of our knowledge the combination of the two technologies in the context
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of SNP genotyping has not been explored thus far. The most closely related genotyping

assay is the generic Polymerase Extension Assay (PEA) recently proposed in [43]. In

PEA, short amplicons containing the SNPs of interest are hybridized to an all k-mers

array of primers that are subsequently extended via single-base extension reactions.

Hence, in PEA the SBE reactions take place on solid support, similar to arrayed primer

extension (APEX) assays which use SNP specific primers spotted on the array [45].

As in [20], the SBE/SBH assay leads to high array probe utilization since we hybridize

to the array a large number of short extended primers. However, the main power of the

method lies in the fact that the sequences of the labeled oligonucleotides hybridized to the

array are a priori known (up to the identity of extending nucleotides). While genotyping

with SBE/SBH assays uses similar general principles as the PEA assays proposed in

[43], there are also significant differences. A major advantage of SBE/SBH is the much

shorter length of extended primers compared to that of PCR amplicons used in PEA. A

second advantage is that all probes hybridizing to an extended primer are informative in

SBE/SBH assays, regardless of array probe length (in contrast, only probes hybridizing

with a substring containing the SNP site are informative in PEA assays). As shown by

the experimental results in Section 3.4 these advantages translate into an increase by

orders of magnitude in multiplexing rate compared to the results reported in [43]. We

further note that PEA’s effectiveness crucially depends on the ability to amplify very

short (preferably 40bp or less) genomic fragments spanning the SNP loci of interest.

This limits the achievable degree of multiplexing in PCR amplification [23], making

PCR amplification the main bottleneck for PEA assays. Full flexibility in picking PCR

primers is preserved in SBE/SBH assays.

The rest of the chapter is organized as follows. In Section 3.2 we formalize two prob-

lems that arise in genotyping large sets of SNPs using SBE/SBH assays: the problem of

partitioning a set of SNPs into the minimum number of “decodable” subsets, i.e., sub-

sets of SNPs that can be unambiguously genotyped using a single SBE/SBH assay, and

that of finding a maximum decodable subset of a given set of SNPs. We also establish

hardness results for the latter problem. In Section 3.3 we propose several efficient heuris-

tics. Finally, in Section 3.4 we present experimental results on both randomly generated
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Figure 3.1: SBE/SBH assay: (a) Primers complementing genomic sequence upstream of
each SNP locus are mixed in solution with the genomic DNA sample. (b) Temperature is
lowered allowing primers to hybridize to the genomic DNA. (c) Polymerase enzyme and
dideoxynucleotides labeled with 4 different fluorescent dyes are added to the solution,
causing each primer to be extended by a nucleotide complementing the SNP allele. (d)
Extended primers are hybridized to a universal DNA array (an all k-mer array for k=2
is shown) and SNP genotypes are determined by analyzing the resulting hybridization
pattern. Under the assumption of perfect hybridization, unambiguous genotyping of the
SNPs requires that each primer hybridizes to at least one array probe that hybridizes to
no other primer that can be extended by a common base.

datasets and instances extracted from the NCBI dbSNP database, exploring achievable

tradeoffs between the type/number of array probes and primer length on one hand and

number of SNPs that can be assayed per array on the other. Our results suggest that the

SBE/SBH architecture provides a flexible and cost-effective alternative to genotyping as-

says currently used in the industry, enabling genotyping of up to hundreds of thousands

of user-selected SNPs per assay.
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3.2 Problem Formulations and Complexity

A set of SNP loci can be unambiguously genotyped by SBE/SBH if every combination

of SNP genotypes yields a different hybridization pattern (defined as the vector of dye

colors observed at each array probe). To formalize the requirements of unambiguous

genotyping, let us first consider a simplified SBE/SBH assay consisting of four parallel

single-color SBE/SBH reactions, one for each possible SNP allele. Under this scenario,

only one type of dideoxynucleotide is added to each SBE reaction, corresponding to the

complement of the tested SNP allele. Therefore, a primer is extended in such a reaction if

the tested allele is present at the SNP locus probed by the primer, and is left un-extended

otherwise.

Let P be the set of primers used in a single-color SBE/SBH reaction involving

dideoxynucleotide e ∈ {A,C,G,T}. From the resulting hybridization pattern we must

be able to infer for every p ∈ P whether or not p was extended by e. The extension

of p by e will result in a fluorescent signal at all array probes that hybridize with pe.

However, some of these probes can give a fluorescent signal even when p is not extended

by e, due to hybridization to other extended primers. Since in the worst case all other

primers are extended, it must be the case that at least one of the probes that hybridize

to pe does not hybridize to any other extended primer.

Formally, let X ⊂ {A,C,G, T}∗ be the set of array probes. For every string y ∈

{A,C,G, T}∗ , let the spectrum of y in X, denoted SpecX(y), be the set of probes of X

that hybridize with y. Under the assumption of perfect hybridization, SpecX(y) consists

of those probes of X that are Watson-Crick complements of substrings of y. Then, a set

of primers P is said to be decodable with respect to extension e if and only if, for every

p ∈ P ,

SpecX(pe) \
⋃

p′∈P\{p}
SpecX(p′e) 6= ∅ (3.1)

Decoding constraints (3.1) can be directly extended to 4-color SBE/SBH experiments,

in which each type of extending base is labeled by a different fluorescent dye. As before,

let P be the set of primers, and, for each primer p ∈ P , let Ep ⊆ {A,C,G, T} be the set

of possible extensions of p, i.e., Watson-Crick complements of corresponding SNP alleles.
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If we assume that any combination of dyes can be detected at an array probe location,

unambiguous decoding is guaranteed if, for every p ∈ P and every extending nucleotide

e ∈ Ep,

SpecX(pe) \
⋃

p′∈P\{p},e∈Ep′
SpecX(p′e) 6= ∅ (3.2)

In the following, we refine (3.2) to improve practical reliability of SBE/SBH assays.

More precisely, we impose additional constraints on the set of probes considered to be

informative for each SNP allele. First, to enable reliable genotyping of genomic samples

that contain SNP alleles at very different concentrations (as a result of uneven efficiency

in the PCR amplification step or of pooling DNA from different individuals), we require

that a probe that is informative for a certain SNP locus must not hybridize to primers

corresponding to different SNP loci, regardless of their extension. Second, since recent

studies by Naef et al. [31] suggest that fluorescent dyes can significantly interfere with

oligonucleotide hybridization on solid support, possibly destabilizing hybridization to a

complementary probe on the array, we use a conservative approach and require that each

probe that is informative for a certain SNP allele must hybridize to a strict substring of

the corresponding primer. On the other hand, informative probes are still required not

to hybridize with any other extended primer, even if such hybridizations involve fluores-

cently labeled nucleotides. Finally, we introduce a decoding redundancy parameter r ≥ 1,

and require that each SNP have at least r informative probes, i.e., probes that hybridize

to the corresponding primer but do not hybridize to any other extended primer. Such a

redundancy constraint facilitates reliable genotype calling in the presence of hybridiza-

tion errors. Clearly, the larger the value of r, the more hybridization errors that can be

tolerated. If a simple majority voting scheme is used for making allele calls, the assay can

tolerate up to br/2c hybridization errors involving the r informative probes of each SNP.

Furthermore, since the informative probes of a SNP are required to hybridize exclusively

with the primer corresponding to the SNP, the redundancy requirement provides a pow-

erful mechanism for detecting and gauging the extent of hybridization errors. Indeed,

each unintended hybridization at an informative probe for a bi-allelic SNP has a dye

complementary to one of the SNP alleles with probability of 1/2, and the probability

that k such errors pass undetected decreases exponentially in k.
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The refined set of constraints is captured by the following definition, where, for every

primer p ∈ {A,C,G, T}∗ and set of extensions E ⊆ {A,C,G, T}, we let

SpecX(p,E) =
⋃

e∈E
SpecX(pe)

Definition 1 A set of primers P is said to be strongly r-decodable with respect to ex-

tension sets Ep, p ∈ P, if and only if, for every p ∈ P,

∣∣∣∣∣∣
SpecX(p) \

⋃

p′∈P\{p}
SpecX(p′, Ep′)

∣∣∣∣∣∣
≥ r (3.3)

Note that testing whether or not a given set of primers is strongly r-decodable can be

easily accomplished in time linear in the total length of the primers.

Genotyping a large set of SNPs will, in general, need more than one SBE/SBH assay.

This rises the problem of partitioning a given set of SNPs into the smallest number

of subsets that can each be genotyped using a single SBE/SBH assay. For each SNP

locus there are typically two different primers that can be used for genotyping. As

shown in [28] for the case of SNP genotyping using tag arrays, exploiting this degree of

freedom significantly increases achievable multiplexing rates. Therefore, we next extend

our definitions to capture this degree of freedom.

Let Pi be the pool of primers that can be used to genotype the SNP at locus i.

Similarly to Definition 1, we have:

Definition 2 A set of primer pools P = {P1, . . . , Pn} is said to be strongly r-decodable

if and only if there is a primer pi in each pool Pi such that {p1, . . . , pn} is strongly

r-decodable with respect to the respective extension sets Epi, i = 1, . . . , n.

Primers p1, p2, . . . , pn above are called the representative primers of pools P1, P2, . . . , Pn,

respectively.

The SNP partitioning problem can then be formulated as follows:

Minimum Pool Partitioning Problem (MPPP): Given primer pools P = {P1, . . . , Pn},

associated extension sets Ep, p ∈ ∪ni=1Pi, probe set X, and redundancy r, find a parti-

tioning of P into the minimum number of strongly r-decodable subsets.
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A natural strategy for solving MPPP, similar to the greedy algorithm for the well-

known set cover problem, is to find a maximum strongly r-decodable subset of pools,

remove it from P, and then repeat the procedure until no more pools are left in P .

This greedy strategy for solving MPPP has been shown to empirically outperform other

algorithms for solving the similar partitioning problem for PEA assays [43]. In the case of

SBE/SBH, the optimization involved in the main step of the greedy strategy is formalized

as follows:

Maximum r-Decodable Pool Subset Problem (MDPSP): Given primer pools

P = {P1, . . . , Pn}, associated extension sets Ep, p ∈ ∪ni=1Pi, probe set X, and redundancy

r, find a strongly r-decodable subset P ′ ⊆ P of maximum size. In addition, for each pool

Pi ∈ P ′, find its representative primer.

Unfortunately, as shown in next theorem, MDPSP is NP-hard even for the case when

the redundancy parameter is 1 and each pool has exactly one primer.

Theorem 4 MDPSP is NP-hard, even when restricted to instances with r = 1 and

|P | = 1 for every P ∈ P.

Proof. We will use a reduction from the maximum induced matching problem in

bipartite graphs, which is defined as follows:

Maximum Induced Matching (MIM) Problem in Bipartite Graphs: Given a

bipartite graph G = (U ∪ V,E), find maximum size subsets U ′ ⊆ U , V ′ ⊆ V , with

|U ′| = |V ′| such that the subgraph of G induced by U ′ ∪ V ′ is a matching.

The MIM problem in bipartite graphs is known to be NP-hard even for graphs with

maximum degree 3 [25]. Let G = (U ∪ V,E) be such a bipartite graph with maximum

degree 3. Without loss of generality we may assume that every vertex in G has degree

at least 1. We will denote by N(u) the neighborhood of vertex u ∈ U ∪ V , i.e., the set of

vertices adjacent with u in G.

We construct an instance of MDPSP as follows: Let r = 1 and l = dlog2 |V |e. For

every v ∈ V we add to X a distinct probe xv ∈ {A,T}l; note that this can be done

35



since |{A,T}l| = 2l > |V | by our choice of l. For every u ∈ U , with neighborhood

N(u) = {v1, v2, v3}, we construct a primer pu = xv1Cxv2Cxv3 and set Pu = {pu}. We

use a similar construction for vertices u ∈ U with only 1 or 2 neighbors. Note that in

each case the pool Pu consists of a single primer pu of length at most 3l + 2. For each

constructed primer p, the set of possible extensions is defined as Ep = {G,C}. Since the

probes of X contain only A’s and T’s, for every primer pu, u ∈ U ,

SpecX(pu, Epu) = SpecX(pu) = {xv ∈ X| v ∈ N(u)}

Let U ′ ⊆ U , V ′ ⊆ V , |U ′| = |V ′|, be subsets of vertices such that U ′ ∪ V ′ induces a

matching in G. Let P ′ = {Pu| u ∈ U ′}. For every u ∈ U ′, exactly one of u’s neighbors,

denoted vu, appears in V ′, because U ′ ∪ V ′ induces a matching. Furthermore, for each

u′ ∈ U ′ \ {u}, (u′, vu) /∈ E, and therefore xvu /∈ SpecX(pu′ , Epu′ ). Thus, for every u ∈ U ′,

xvu ∈ SpecX(pu) \
⋃

{pu′}∈P ′\{pu}
SpecX(pu′ , Epu′ )

which means that P ′ is a strongly 1-decodable subset of pools of the same size as the

induced matching of G.

Conversely, let P ′ be a strongly 1-decodable subset of P , and let U ′ = {u ∈ U | {pu} ∈

P ′}. Since P ′ is 1-decodable, for every primer pu with {pu} ∈ P ′, there must exist a probe

x ∈ X such that x ∈ SpecX(pu) and x /∈ SpecX(pu′ , Epu′ ) for every {pu′} ∈ P ′ \ {pu}.

Because SpecX(pu) = {xv ∈ X| v ∈ N(u)}, it follows that every vertex u ∈ U ′ has a

neighbor v ∈ V that is not a neighbor of any other u′ ∈ U ′ \ {u}. Let vu be such a

neighbor (pick vu arbitrarily if more than one vertex in V satisfies above property), and

let V ′ = {vu| u ∈ U ′}. It is clear that U ′ ∪ V ′ induce a matching of size |P ′| in G.

Thus, for every integer k, there is a one-to-one correspondence between induced

matchings of size k in G and strongly 1-decodable subsets of k pools in the constructed

instance of MDPSP, and NP-hardness of MDPSP follows. �

The reduction in the proof of Theorem 4 preserves the size of the optimal solution,

and therefore any hardness of approximation result for the MIM in bipartite graphs will

also hold for MDPSP, even when restricted to instances with r = 1 and |P | = 1 for every

P ∈ P . Since Duckworth et al. [15] proved that it is NP-hard to approximate MIM in

bipartite graphs with maximum degree 3 within a factor of 6600/6659, we get:
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Input: Pools P = {P1, . . . , Pn}, extension sets Ep, p ∈ ∪ni=1Pi, probe set X, and
redundancy r
Output: Strongly r-decodable subset of pools P ′ ⊆ P and set R of representative
primers for the pools in P ’

0. P ′ ← ∅, R← ∅
1. For each P ∈ P do

2. For each p ∈ P do

3. If R ∪ {p} satisfies (3.3)
Then

4. P ′ ← P ′ ∪ P
4. R← R ∪ {p}
5. Exit inner For

End If

End For

End For

Figure 3.2: The Sequential Greedy algorithm.

Theorem 5 It is NP-hard to approximate MDPSP within a factor of 6600/6659, even

when restricted to instances with r = 1 and |P | = 1 for every P ∈ P.

3.3 Algorithms

In this section we describe three heuristic approaches to MDPSP. The first one is a naive

greedy algorithm that sequentially evaluates the primers in the given pools in an arbitrary

order. The algorithm picks a primer p to be the representative of pool P ∈ P if p together

with the representatives already picked satisfy condition (3.3). The pseudocode of this

algorithm, which we refer to as Sequential Greedy, is given in Figure 3.2.

The next two algorithms are inspired by the MinGreedy algorithm in [15], which

approximates MIM in d-regular graphs within a factor of d− 1. For the MIM problem,

the MinGreedy algorithm picks at each step a vertex u of minimum degree and a vertex

v, which is a minimum degree neighbor of u. All the neighbors of u and v are deleted

and the edge (u, v) is added to the induced matching. The algorithm stops when the

graph becomes empty.

Each instance of MDPSP can be represented as a bipartite hybridization graph G =

((
⋃n
i=1 Pi) ∪ X,E), with the left side containing all primers in the given pools and the

right side containing the array probes, i.e., X. There is an edge between primer p and
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probe x ∈ X iff x ∈ SpecX(p,Ep). As discussed in Section 3.2, we need to distinguish

between the hybridizations that involve fluorescently labeled nucleotides and those that

do not. Thus, for every primer p, we let N+(p) = SpecX(p) and N−(p) = SpecX(p,Ep)\

SpecX(p). Similarly, for each probe x ∈ X, we let N+(x) = {p| x ∈ N+(p)} and

N−(x) = {p| x ∈ N−(p)}.

We considered two versions of the MinGreedy algorithm when run on the bipar-

tite hybridization graph, depending on the side from which the minimum degree vertex

is picked. In the first version, referred to as MinPrimerGreedy, we pick first a min-

imum degree node from the primers side, while in the second version, referred to as

MinProbeGreedy, we pick first a minimum degree node from the probes side. Thus,

MinPrimerGreedy greedy picks at each step a minimum degree primer p and pairs it

with a minimum degree probe x ∈ N+(p). MinProbeGreedy greedy, selects at each step

a minimum degree probe x and pairs it with a minimum degree primer p in N+(x). In

both algorithms, all neighbors of p and x and their incident edges are removed from G.

Also, at each step, the algorithms remove all vertices u, for which N+(u) = ∅. These

deletions ensure that the primers p selected at each step satisfy condition (3.3). Both

algorithms stop when the graph becomes empty.

As described so far, the MinPrimerGreedy and MinProbeGreedy algorithms work

when each pool contains only one primer and when the redundancy is 1. We extended

the two variants to handle pools of size greater than 1 by simply removing from the

graph all primers p′ ∈ P \ {p} when picking primer p from pool P . If the redundancy r

is greater than 1, then whenever we pick a primer p, we also pick it’s r probe neighbors

from N+(p) with the smallest degrees (breaking ties arbitrarily). The primer neighbors

of all these r probes will then be deleted from the graph. Moreover, at each step, all

primers p for which |N+(p)| < r are removed from the graph. Thus, the algorithm

maintains the invariant that |N+(p)| ≥ r for every primer p and |N+(x)| ≥ 1 for every

probe x. Figures 3.5 and 3.6 give the pseudocode for the MinPrimerGreedy, respectively

the MinProbeGreedy greedy algorithms. For the sake of clarity, they use two subroutines

for removing a primer vertex, respectively a probe vertex, which are described in Figures

3.3 and 3.4.
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remove-primer (p)

Begin

For all x ∈ N+(p) do
N+(x)← N+(x) \ {p}
If |N+(x)| = 0
Then remove-probe (x)
End If

End For

For all x ∈ N−(p) do
N−(x)← N−(x) \ {p}

End For

Delete vertex p from graph G
End

Figure 3.3: The remove-primer subroutine.

Algorithms MinPrimerGreedy and MinProbeGreedy can be implemented efficiently

using a Fibonacci heap for maintaining the degrees of primers, respectively of probes.

Let N be the total number of primers in the n pools, m be the number of probes in X,

and k be the size of the r-decodable set returned by the algorithm. Since each primer

has bounded degree, the sorting of probe degrees requires O(k) total time. The total

number of edges in the hybridization graph is O(N + m). Since by using a Fibonacci

heap, finding a minimum degree primer (probe) can be done in O(logN) (respectively

O(logm)) and each primer degree update can be done in amortized O(1) time, it follows

that the total runtime for MinPrimerGreedy algorithm is O(k logN +N +m), and the

total runtime for MinProbeGreedy algorithm is O(k logm+N +m).

3.4 Experimental Results

We considered two types of data sets:

• Randomly generated datasets containing between 1,000 to 200,000 pools with 1 or

2 primers of length between 10 and 30.

• Two-primer pools representing over 9 million reference SNPs in human chromo-

somes 1-22, X, and Y extracted from the NCBI dbSNP database build 125. We

disregarded reference SNPs for which available flanking sequence was insufficient
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remove-probe (x)

Begin

For all p ∈ N+(x) do
N+(p)← N+(p) \ {x}
If |N+(p)| < r
Then remove-primer (p)
End If

End For

For all p ∈ N−(x) do
N−(p)← N−(p) \ {x}

End For

Delete vertex x from graph G
End

Figure 3.4: The remove-probe subroutine.

for determining two non-degenerate primers of desired length (due, e.g., to the

presence of degenerate bases near the SNP locus).

We used two types of array probe sets. First, we used probe sets containing all

k-mers, for k between 8 and 10. All k-mer arrays are well studied in the context of

sequencing by hybridization. However, a major drawback of all k-mer arrays is that the

k-mers have a wide range of melting temperatures, making it difficult to ensure reliable

hybridization results. For short oligonucleotides, a good approximation of the melting

temperature is obtained using the simple 2-4 rule of Wallace [46], according to which the

melting temperature of a probe is approximately twice the number of A and T bases,

plus four times the number of C and G bases. As in [5], we define the weight of a DNA

string to be the number of A and T bases plus twice the number of C and G bases.

For a given integer c, a DNA string is called a c-token if it has a weight c or more and

all its proper suffixes have weight strictly less than c. Since the weight of a c-token is

either c or c + 1, it follows that the 2-4 rule computed melting temperature of all c-

tokens varies in a range of about 4◦C. In our experiments we used probe sets consisting

of all c-tokens, with c varying between 11 and 13. The considered values of k and c

were picked such that the resulting number of probes is representative of current array

manufacturing technologies: there are roughly 65,000 8-mers, 262,000 9-mers, 1 million
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Input: Pools P = {P1, . . . , Pn}, extension sets Ep, p ∈ ∪ni=1Pi, probe set X, and
redundancy r
Output: Strongly r-decodable subset of pools P ′ ⊆ P and set R of representative
primers for the pools in P ’

Construct hybridization graph G
P ′ ← ∅
R← ∅
While G is not empty do

Find a minimum degree primer p, and let P be the pool of p
P ′ ← P ′ ∪ {P}
R← R ∪ {p}
For each (p′) ∈ P \ {p} do

remove-primer(p′)
End For

Let |N+(p)| = k and let {x1, . . . , xk} be the probes in N+(p), indexed
in increasing order of their degrees
For each x ∈ {x1, . . . , xr} do

For each (p′) ∈ N+(x) ∪N−(x) do
remove-primer(p′)

End For

Delete vertex x from G
End For

For each x ∈ {xr+1, . . . , xk} ∪N−(p) do
remove-probe(x)

End For

End While

Figure 3.5: MinPrimerGreedy greedy algorithm.

10-mers, 86,000 11-tokens, 236,000 12-tokens, and 645,000 13-tokens – the smaller probe

sets can be spotted using current oligonucleotide printing robots, while the larger probe

sets can be synthesized in situ using photolithographic techniques.

3.4.1 Results on Synthetic Datasets

In a first set of experiments on the randomly generated datasets we compared the three

MDPSP algorithms on instances with primer length set to 20, which is the typical length

used, e.g., in genotyping using tag arrays. In these experiments the set of possible exten-

sions was considered to be {A,C,T,G} for all primers. Such a conservative choice gives

an estimate of multiplexing rates achievable by SBE/SBH assays in more demanding

genomic analyses such as microorganism identification by DNA barcoding [12], in which

41



Input: Pools P = {P1, . . . , Pn}, extension sets Ep, p ∈ ∪ni=1Pi, probe set X, and
redundancy r
Output: Strongly r-decodable subset of pools P ′ ⊆ P and set R of representative
primers for the pools in P ’

Construct hybridization graph G
P ′ ← ∅
R← ∅
While G is not empty do

Find a minimum degree probe x
Find a minimum degree primer p in N+(x), and let P be the pool of p
P ′ ← P ′ ∪ {P}
R← R ∪ {p}
For each p′ ∈ P \ {p} do

remove-primer(p′)
End For

Let |N+(p)| = k and let {x1, . . . , xk} be the probes in N+(p), indexed
in increasing order of their degrees
For each x ∈ {x1, . . . , xr} do

For each p′ ∈ N+(x) ∪N−(x) do
remove-primer(p′)

End For

Delete vertex x from G
End For

For each x ∈ {xr+1, . . . , xk} ∪N−(p) do
remove-probe(x)

End For

End While

Figure 3.6: MinProbeGreedy greedy algorithm.

a primer (typically referred to as a distinguisher in this context) may be extended by

any of the DNA bases in different microorganisms. The results of these experiments

for all k-mer and all c-token probe sets are presented in Tables 3.1 and 3.2, respec-

tively. The results show that using the flexibility of picking primers from either strand of

the genomic sequence yields an improvement of up to 10% in the number of r-decodable

pools. The MinProbeGreedy algorithm typically produces better results compared to the

MinPrimerGreedy variant. On the other hand, neither Sequential Greedy nor MinProbe-

Greedy dominates the other algorithms for all range of instance parameters – Sequential

Greedy generally gives the better results for k-mer experiments with high redundancy

values, while MinProbeGreedy generally gives better results for k-mer experiments with
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large number of pools and low redundancy and for c-token experiments.

In the second set of experiments we ran the three MDPSP algorithms on datasets

with the same primer length of 20, pool size of 2, and with the number of possible

extensions of each primer set to 4 as in DNA-barcoding applications, and to 2 as in SNP

genotyping. The results for all k-mer and all c-token probe sets are given in Tables 3.3

and 3.4. The relative performance of the algorithms is similar to that observed in the

first set of experiments. As expected, taking into account the reduced number of possible

extensions increases the size of computed decodable pool subsets, often by more than

5%.

In the third set of experiments we explored the degree of freedom given by the primer

length. For any fixed array probe set and redundancy requirement, we need a minimum

primer length to be able to satisfy constraints (3.3). Increasing the primer length be-

yond this minimum primer length is often beneficial, as it increases the number of array

probes that hybridize with the primer. However, if primer length increases too much,

an increasing number of these probes become non-specific, and the multiplexing rate

starts to decline. Figure 3.7 gives the tradeoff between primer length and the size of

the strongly r-decodable pool subsets computed by the three MDPSP algorithms for

pools with 2 primers, 2 possible extensions per primer and all 10-mers, respectively all

13-tokens, as array probes. We notice that the optimal primer length increases with the

redundancy parameter.

3.4.2 Results on dbSNP Data

To stress-test our methods, we extracted a total of over 9 million 2-primer pools corre-

sponding to reference SNPs in human chromosomes 1-22, X, and Y in the NCBI dbSNP

database build 125. We constructed a dataset for each of the 24 chromosomes by cre-

ating a 2-primer pool for each reference SNP for which dbSNP contains at least 20

non-degenerate base pairs of flanking sequence on both sides (the number of reference

SNPs and extracted pools for each chromosome are given in Table 3.5). Since these large

sets of pools must be partitioned between multiple SBE/SBH experiments, we used a

simple MPPP algorithm which iteratively finds maximum r-decodable pool subsets using

the sequential greedy algorithm.
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Figures 3.8 and 3.9 give the cumulative coverage percentage for the first 50 arrays

of all 10-mers, respectively all 13-tokens, on the set of pools extracted from the human

chromosome 1. In these experiments we used redundancy between 1 and 5, and primer

length 14 or 20. While the MDPSP size in the first few iterations of our MPPP algorithm

is comparable to those reported for randomly generated datasets in Section 3.4.1, the

number of SNPs assayed per array decreases constantly with array number – as we

need to assay more and more “difficult” SNPs. Somehow unexpectedly, the results also

suggest using primers of different lengths in different SBE/SBH experiments: while a

primer length of 14 seems to be optimal for the first few arrays, longer primers improve

the degree of multiplexing when only hard to differentiate SNPs remain, especially for

high redundancy.

Finally, in Table 3.5 we give the number of arrays (containing either all 10-mers or

all 13-tokens) required to cover 90%, respectively 95% of the extracted reference SNPs,

when using primers of length 20. In practical association studies a much lower SNP

coverage (and hence much fewer arrays) would be required due to the high degree of

linkage disequilibrium between the SNPs in the human population [37].
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Table 3.1: Size of the strongly r-decodable pool subset computed by the three MDPSP
algorithms for primer length 20 and set of possible extensions {A,C,T,G}, with redun-
dancy r ∈ {1, 2, 5} and all k-mer probe sets for k ∈ {8, 9, 10} (averages over 10 test
cases).

r # Algorithm k=8 k=9 k=10
pools 1 primer 2 primers 1 primer 2 primers 1 primer 2 primers

Sequential 1000 1000 1000 1000 1000 1000
1000 MinPrimer 1000 1000 1000 1000 1000 1000

MinProbe 1000 1000 1000 1000 1000 1000
Sequential 2000 2000 2000 2000 2000 2000

2000 MinPrimer 2000 2000 2000 2000 2000 2000
MinProbe 2000 2000 2000 2000 2000 2000
Sequential 7740 8574 9991 10000 10000 10000

10000 MinPrimer 7714 8319 9991 9999 10000 10000
1 MinProbe 7768 8803 9991 10000 10000 10000

Sequential 9967 11071 19436 19948 19999 20000
20000 MinPrimer 9889 10999 19447 19745 19999 20000

MinProbe 9886 11107 19458 19989 19999 20000
Sequential 12486 12656 43279 47688 93632 98630

100000 MinPrimer 13864 15324 42980 48021 93642 96712
MinProbe 13993 15672 43273 48418 93837 99601
Sequential 12635 12658 49062 51646 140820 157908

200000 MinPrimer 15476 17010 50347 56017 139787 154028
MinProbe 15822 17630 50459 56676 141614 160532

Sequential 1000 1000 1000 1000 1000 1000
1000 MinPrimer 1000 1000 1000 1000 1000 1000

MinProbe 1000 1000 1000 1000 1000 1000
Sequential 1997 2000 2000 2000 2000 2000

2000 MinPrimer 1997 2000 2000 2000 2000 2000
MinProbe 1997 2000 2000 2000 2000 2000
Sequential 6210 6901 9934 9999 10000 10000

10000 MinPrimer 6002 6463 9932 9977 10000 10000
2 MinProbe 6174 6890 9938 9998 10000 10000

Sequential 7463 8192 17948 19274 19992 20000
20000 MinPrimer 7052 7662 17812 18455 19992 20000

MinProbe 7435 8068 18004 19288 19993 20000
Sequential 9254 9644 31845 34855 82315 90627

100000 MinPrimer 8917 9605 30043 32700 81056 85852
MinProbe 9404 10273 31805 34481 82522 90935
Sequential 9674 9953 35514 37891 109450 122470

200000 MinPrimer 9658 10333 33479 36247 104891 114624
MinProbe 10326 11246 35228 38498 109252 122986

Sequential 995 1000 1000 1000 1000 1000
1000 MinPrimer 995 999 1000 1000 1000 1000

MinProbe 995 1000 1000 1000 1000 1000
Sequential 1872 1973 1998 2000 2000 2000

2000 MinPrimer 1860 1898 1998 2000 2000 2000
MinProbe 1866 1946 1998 2000 2000 2000
Sequential 3745 4161 8674 9483 9972 10000

10000 MinPrimer 3376 3635 8484 8881 9969 9998
5 MinProbe 3480 3845 8564 9233 9970 10000

Sequential 4289 4705 12204 13750 19498 19967
20000 MinPrimer 3748 4029 11393 12360 19435 19804

MinProbe 3943 4286 11680 12960 19468 19931
Sequential 5241 5520 17920 19612 52078 59021

100000 MinPrimer 4450 4726 15580 16781 47922 52711
MinProbe 4818 5171 16521 17990 49329 55573
Sequential 5534 5775 19767 21251 62791 70334

200000 MinPrimer 4724 4990 16959 18116 56160 61406
MinProbe 5177 5531 18175 19757 58565 65344
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Table 3.2: Size of the strongly r-decodable pool subset computed by the three MDPSP
algorithms for primer length 20 and set of possible extensions {A,C,T,G}, with redun-
dancy r ∈ {1, 2, 5} and all c-token probe sets for c ∈ {11, 12, 13} (averages over 10 test
cases).

r # Algorithm c=11 c=12 c=13
pools 1 primer 2 primers 1 primer 2 primers 1 primer 2 primers

Sequential 991 1000 999 1000 1000 1000
1000 MinPrimer 992 999 999 1000 1000 1000

MinProbe 993 1000 999 1000 1000 1000
Sequential 1881 1982 1986 2000 1999 2000

2000 MinPrimer 1890 1959 1987 1998 1999 2000
MinProbe 1906 1994 1988 2000 1999 2000
Sequential 5745 6993 8006 9218 9420 9927

10000 MinPrimer 5556 6401 8005 8782 9472 9801
1 MinProbe 6385 7972 8436 9688 9550 9980

Sequential 7968 9733 12458 15191 16656 18931
20000 MinPrimer 7490 8798 12242 14080 16673 18204

MinProbe 9190 11548 13684 17094 17430 19613
Sequential 13708 16042 26407 32202 45064 56064

100000 MinPrimer 12564 14736 24482 29336 42824 51540
MinProbe 16820 20277 31414 39202 51448 65877
Sequential 16241 18516 33278 39552 61351 76037

200000 MinPrimer 14967 17278 30762 36618 57530 70048
MinProbe 20574 24329 40580 49300 72230 91488

Sequential 965 998 997 1000 1000 1000
1000 MinPrimer 965 986 997 999 1000 1000

MinProbe 972 998 997 1000 1000 1000
Sequential 1711 1905 1940 1995 1995 2000

2000 MinPrimer 1697 1815 1942 1981 1995 2000
MinProbe 1766 1948 1951 1997 1996 2000
Sequential 4216 5107 6578 7891 8616 9611

10000 MinPrimer 3926 4571 6344 7252 8572 9214
2 MinProbe 4876 6059 7138 8610 8896 9783

Sequential 5482 6589 9450 11615 14060 16839
20000 MinPrimer 5024 5901 8919 10551 13699 15613

MinProbe 6635 8151 10796 13540 15152 17980
Sequential 8587 9839 17469 20811 32223 39839

100000 MinPrimer 7897 9071 16133 19192 30138 36595
MinProbe 10990 12695 21738 26341 38246 48131
Sequential 9899 11114 21192 24696 41783 50811

200000 MinPrimer 9149 10418 19730 23155 39125 47357
MinProbe 12782 14541 26957 31714 51198 63112

Sequential 787 906 947 992 992 1000
1000 MinPrimer 767 837 941 971 992 999

MinProbe 794 905 947 990 992 1000
Sequential 1187 1433 1646 1870 1914 1991

2000 MinPrimer 1112 1284 1600 1753 1903 1960
MinProbe 1204 1437 1652 1856 1914 1986
Sequential 2262 2713 4046 4988 6284 7662

10000 MinPrimer 2067 2467 3732 4495 5939 6976
5 MinProbe 2363 2875 4154 5118 6324 7651

Sequential 2779 3279 5347 6540 9139 11399
20000 MinPrimer 2553 2998 4908 5956 8504 10308

MinProbe 2957 3562 5520 6808 9222 11530
Sequential 4020 4536 8753 10211 17580 21359

100000 MinPrimer 3738 4250 8122 9494 16252 19645
MinProbe 4509 5208 9284 11078 18048 22119
Sequential 4538 5035 10286 11738 21762 25859

200000 MinPrimer 4264 4749 9609 11054 20226 24058
MinProbe 5221 5926 11149 12986 22602 27186
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Table 3.3: Size of the strongly r-decodable pool subset computed by the three MDPSP
algorithms for primer length 20 and 2 primers per pool, with number of possible exten-
sions |Ep| ∈ {2, 4}, redundancy r ∈ {1, 2, 5} and all k-mer probe sets for k ∈ {8, 9, 10}
(averages over 10 test cases).

r # Algorithm k=8 k=9 k=10
SNPs |Ep| = 4 |Ep| = 2 |Ep| = 4 |Ep| = 2 |Ep| = 4 |Ep| = 2

Sequential 1000 1000 1000 1000 1000 1000
1000 MinPrimer 1000 1000 1000 1000 1000 1000

MinProbe 1000 1000 1000 1000 1000 1000
Sequential 2000 2000 2000 2000 2000 2000

2000 MinPrimer 2000 2000 2000 2000 2000 2000
MinProbe 2000 2000 2000 2000 2000 2000
Sequential 8574 8950 10000 10000 10000 10000

10000 MinPrimer 8319 8752 9999 10000 10000 10000
1 MinProbe 8803 9358 10000 10000 10000 10000

Sequential 11071 11673 19948 19981 20000 20000
20000 MinPrimer 10999 11898 19745 19873 20000 20000

MinProbe 11107 12051 19989 19998 20000 20000
Sequential 12656 13813 47688 50643 98630 99478

100000 MinPrimer 15324 16551 48021 52263 96712 98209
MinProbe 15672 16800 48418 52712 99601 99885
Sequential 12658 13890 51646 55694 157908 166796

200000 MinPrimer 17010 18216 56017 60962 154028 164696
MinProbe 17630 18783 56676 61488 160532 173910

Sequential 1000 1000 1000 1000 1000 1000
1000 MinPrimer 1000 1000 1000 1000 1000 1000

MinProbe 1000 1000 1000 1000 1000 1000
Sequential 2000 2000 2000 2000 2000 2000

2000 MinPrimer 2000 2000 2000 2000 2000 2000
MinProbe 2000 2000 2000 2000 2000 2000
Sequential 6901 7325 9999 10000 10000 10000

10000 MinPrimer 6463 6977 9977 9993 10000 10000
2 MinProbe 6890 7443 9998 9999 10000 10000

Sequential 8192 8639 19274 19670 20000 20000
20000 MinPrimer 7662 8348 18455 18988 20000 20000

MinProbe 8068 8808 19288 19661 20000 20000
Sequential 9644 10175 34855 36886 90627 94420

100000 MinPrimer 9605 10398 32700 35771 85852 90098
MinProbe 10273 11093 34481 37743 90935 94868
Sequential 9953 10535 37891 40060 122470 130911

200000 MinPrimer 10333 11143 36247 39619 114624 125287
MinProbe 11246 12068 38498 41857 122986 134342

Sequential 1000 1000 1000 1000 1000 1000
1000 MinPrimer 999 1000 1000 1000 1000 1000

MinProbe 1000 1000 1000 1000 1000 1000
Sequential 1973 1989 2000 2000 2000 2000

2000 MinPrimer 1898 1933 2000 2000 2000 2000
MinProbe 1946 1975 2000 2000 2000 2000
Sequential 4161 4405 9483 9722 10000 10000

10000 MinPrimer 3635 3970 8881 9211 9998 9999
5 MinProbe 3845 4204 9233 9546 10000 10000

Sequential 4705 4924 13750 14739 19967 19985
20000 MinPrimer 4029 4391 12360 13378 19804 19905

MinProbe 4286 4690 12960 14110 19931 19973
Sequential 5520 5727 19612 20634 59021 63631

100000 MinPrimer 4726 5114 16781 18352 52711 57521
MinProbe 5171 5581 17990 19741 55573 61043
Sequential 5775 5970 21251 22193 70334 75361

200000 MinPrimer 4990 5375 18116 19732 61406 67565
MinProbe 5531 5939 19757 21555 65344 72313
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Table 3.4: Size of the strongly r-decodable pool subset computed by the three MDPSP
algorithms for primer length 20 and 2 primers per pool, with number of possible exten-
sions |Ep| ∈ {2, 4}, redundancy r ∈ {1, 2, 5} and all c-token probe sets for c ∈ {11, 12, 13}
(averages over 10 test cases).

r # Algorithm c=11 c=12 c=13
SNPs |Ep| = 4 |Ep| = 2 |Ep| = 4 |Ep| = 2 |Ep| = 4 |Ep| = 2

Sequential 1000 1000 1000 1000 1000 1000
1000 MinPrimer 999 999 1000 1000 1000 1000

MinProbe 1000 1000 1000 1000 1000 1000
Sequential 1982 1990 2000 2000 2000 2000

2000 MinPrimer 1959 1968 1998 1998 2000 2000
MinProbe 1994 1998 2000 2000 2000 2000
Sequential 6993 7324 9218 9412 9927 9953

10000 MinPrimer 6401 6776 8782 9034 9801 9866
1 MinProbe 7972 8280 9688 9782 9980 9990

Sequential 9733 10358 15191 15843 18931 19197
20000 MinPrimer 8798 9489 14080 14797 18204 18573

MinProbe 11548 12187 17094 17599 19613 19746
Sequential 16042 17216 32202 34459 56064 59498

100000 MinPrimer 14736 15817 29336 31608 51540 55031
MinProbe 20277 21599 39202 41665 65877 69188
Sequential 18516 19789 39552 42556 76037 81443

200000 MinPrimer 17278 18483 36618 39500 70048 75470
MinProbe 24329 25757 49300 52534 91488 97154

Sequential 998 998 1000 1000 1000 1000
1000 MinPrimer 986 990 999 1000 1000 1000

MinProbe 998 999 1000 1000 1000 1000
Sequential 1905 1931 1995 1998 2000 2000

2000 MinPrimer 1815 1852 1981 1986 2000 2000
MinProbe 1948 1962 1997 1999 2000 2000
Sequential 5107 5431 7891 8231 9611 9716

10000 MinPrimer 4571 4924 7252 7621 9214 9381
2 MinProbe 6059 6372 8610 8833 9783 9851

Sequential 6589 7036 11615 12312 16839 17409
20000 MinPrimer 5901 6388 10551 11255 15613 16231

MinProbe 8151 8674 13540 14184 17980 18396
Sequential 9839 10552 20811 22486 39839 42814

100000 MinPrimer 9071 9819 19192 20864 36595 39542
MinProbe 12695 13562 26341 28190 48131 51125
Sequential 11114 11894 24696 26659 50811 54858

200000 MinPrimer 10418 11212 23155 25122 47357 51390
MinProbe 14541 15467 31714 34015 63112 67567

Sequential 906 932 992 996 1000 1000
1000 MinPrimer 837 868 971 981 999 999

MinProbe 905 928 990 994 1000 1000
Sequential 1433 1497 1870 1896 1991 1995

2000 MinPrimer 1284 1350 1753 1800 1960 1974
MinProbe 1437 1511 1856 1885 1986 1990
Sequential 2713 2944 4988 5343 7662 8000

10000 MinPrimer 2467 2668 4495 4825 6976 7324
5 MinProbe 2875 3081 5118 5436 7651 7988

Sequential 3279 3552 6540 7040 11399 12143
20000 MinPrimer 2998 3273 5956 6424 10308 11007

MinProbe 3562 3817 6808 7314 11530 12240
Sequential 4536 4912 10211 11140 21359 23232

100000 MinPrimer 4250 4610 9494 10352 19645 21421
MinProbe 5208 5602 11078 11932 22119 23977
Sequential 5035 5443 11738 12809 25859 28234

200000 MinPrimer 4749 5128 11054 12022 24058 26297
MinProbe 5926 6363 12986 13987 27186 29439
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Figure 3.7: Size of the strongly r-decodable pool subset computed by the three MDPSP
algorithms as a function of primer length, for pools with 2 primers, 2 possible extensions
per primer, and array probes consisting of all 410 10-mers (a), respectively all 645,376
13-tokens (b) (averages over 10 test cases).
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Figure 3.8: Cumulative coverage rates for the first 50 10-mers arrays used to decode the
SNPs in Chromosome 1 with primer length 14 or 20 and redundancy r ∈ {1, 2, 5}.
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Figure 3.9: Cumulative coverage rates for the first 50 13-tokens arrays used to decode
the SNPs in Chromosome 1 with primer length 14 or 20 and redundancy r ∈ {1, 2, 5}.
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Table 3.5: Number of arrays needed to cover 90 − 95% of the reference SNPs that have
unambiguous primers of length 20.

Chr # # # 10-mer arrays # 13-token arrays
ID Ref. Extracted r=1 r=2 r=5 r=1 r=2 r=5

SNPs Pools 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

1 786058 736850 5 7 8 11 15 24 10 14 17 23 39 56
2 758368 704415 5 6 7 9 14 18 9 12 14 18 32 42
3 647918 587531 5 6 7 8 13 16 8 10 12 15 26 35
4 690063 646534 5 6 7 9 14 17 8 10 12 15 26 34
5 590891 550794 5 6 6 8 12 16 7 10 12 15 26 34
6 791255 742894 10 20 14 29 30 54 15 29 23 38 49 73
7 666932 629089 6 9 8 12 16 25 10 15 16 22 36 48
8 488654 456856 4 5 5 7 10 12 7 8 10 13 22 29
9 465325 441627 4 6 6 8 11 17 7 10 11 16 26 36
10 512165 480614 4 6 6 8 11 16 8 10 12 16 27 38
11 505641 476379 4 6 6 8 11 15 8 10 12 15 26 35
12 474310 443988 4 6 6 8 11 18 7 10 11 15 25 36
13 371187 347921 3 4 5 6 9 11 5 7 8 10 16 22
14 292173 271130 3 4 4 5 7 10 5 7 8 10 16 23
15 277543 258094 3 4 4 5 7 11 5 7 8 10 17 24
16 306530 288652 4 6 5 9 9 18 7 10 11 15 25 35
17 269887 249563 3 5 4 8 9 18 7 10 11 15 25 37
18 268582 250594 3 3 4 5 7 9 4 6 6 8 14 18
19 212057 199221 4 6 5 9 11 21 8 11 12 17 29 43
20 292248 262567 3 4 4 5 7 11 6 8 9 12 20 27
21 148798 138825 2 3 3 3 5 6 3 4 5 6 10 13
22 175939 164632 3 4 3 6 6 13 6 8 9 12 21 29
X 380246 362778 4 6 6 8 10 15 6 9 9 13 19 26
Y 50725 49372 2 2 2 2 3 3 2 2 2 3 4 5
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Chapter 4

Conclusions

In the first part of this thesis we have studied methods for improving the multiplexing

rate in SNP genotyping assays involving multiple universal tag arrays. We observed that

significant improvements in multiplexing rate can be achieved by combining primer selec-

tion with tag assignment, since different primers hybridize to different sets of tags. This

integrated optimization is shown to lead to a reduction of up to 50% in the number of re-

quired arrays. Our heuristics currently focus on preventing primer-to-tag hybridizations,

but they can be extended to avoid other undesired hybridizations, such as primer-to-

antitag hybridizations. In ongoing work we seek to establish non-trivial approximation

guarantees for algorithms solving the pooled tag array multiplexing problem.

In the second part of the thesis, we have proposed a new genotyping assay architec-

ture combining multiplexed solution-phase single-base extension (SBE) reactions with

sequencing by hybridization (SBH) using universal DNA arrays such as all k-mer arrays.

Our contributions include a study of multiplexing algorithms for SBE/SBH genotyping

assays and preliminary experimental results showing the achievable tradeoffs between

the number of array probes and primer length on one hand and the number of SNPs

that can be assayed simultaneously on the other. We proved that the problem of select-

ing a maximum size subset of SNPs that can be unambiguously genotyped in a single

SBE/SBH assay is NP-hard, and proposed efficient heuristics with good practical per-

formance. Our heuristics take into account the freedom of selecting primers from both

strands of the genomic DNA. In addition, our heuristics can enforce user-specified re-

dundancy constraints facilitating reliable genotyping in the presence of hybridization

errors. Simulation results on datasets both randomly generated and extracted from the
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NCBI dbSNP database suggest that the SBE/SBH architecture provides a flexible and

cost-effective alternative to genotyping assays currently used in the industry, enabling

genotyping of up to hundreds of thousands of user-specified SNPs per assay.

Establishing the complexity of MPPP and finding approximation algorithms for

MPPP and MDPSP are interesting open problems.

54



Bibliography

[1] Affymetrix, Inc. GeneFlex Tag Array Technical Note No. 1, available online

at http://www.affymetrix.com/support/technical/technotes/genflex technote.pdf,

2001.

[2] Affymetrix, Inc. Custom and application-specific genotyping with

the Affymetrix GeneChip MegAllele System, available online at

http://www.affymetrix.com/support/technical/other/parallele brochure.pdf,

2005.

[3] Affymetrix, Inc. GeneChip Human Mapping 500K Array Set, available online

at http://www.affymetrix.com/support/technical/datasheets/500k datasheet.pdf,

2005.

[4] A. Alderborn, A. Kristofferson, and U. Hammerling. Determination of single-

nucleotide polymorphisms by realtime pyrophosphate DNA sequencing. In Genome

Research, volume 10, pages 1249–1258, 2000.

[5] A. Ben-Dor, R. Karp, B. Schwikowski, and Z. Yakhini. Universal DNA tag systems:

a combinatorial design scheme. Journal of Computational Biology, 7(3-4):503–519,

2000.

[6] A. BenDor, T. Hartman, B. Schwikowski, R. Sharan, and Z. Yakhini. Towards

optimally multiplexed applications of universal DNA tag systems. In Proc. 7th

Annual International Conference on Research in Computational Molecular Biology,

pages 48–56, 2003.

55



[7] A. Braun, D.P. Little, and H. Koster. Detecting CFTR gene mutations by using

primer oligo base extension and mass spectrometry. In Clinical Chemistry, vol-

ume 43, pages 1151–1158, 1997.

[8] S. Brenner. Methods for sorting polynucleotides using oligonucleotide tags. US

Patent 5,604,097, 1997.

[9] International Human Genome Sequencing Consortium. Initial sequencing and anal-

ysis of the human genome. Nature, 409:860–921, 2001.

[10] International Human Genome Sequencing Consortium. Finishing the euchromatic

sequence of the human genome. Nature, 431:931–945, 2004.

[11] B. DasGupta, K.M. Konwar, I.I. Mandoiu, and A.A. Shvartsman. Highly scalable

algorithms for robust string barcoding. In Proc. 2005 International Workshop on

Bioinformatics Research and Applications (IWBRA’05), 2005.

[12] B. DasGupta, K.M. Konwar, I.I. Măndoiu, and A.A. Shvartsman. Highly scalable

algorithms for robust string barcoding. International Journal of Bioinformatics

Research and Applications, 1(2):145–161, 2005.

[13] R. Dramanac and R. Crkvenjakov. DNA sequencing by hybridization. Yugoslav

patent application, 1987.

[14] T.G. Drummond, M.G. Hill, and J.K. Barton. Electrochemical DNA sensors. In

Nature Biotechnology, volume 21, pages 1192–1199, 2003.

[15] W. Duckworth, D.F. Manlove, and M. Zito. On the approximability of the maximum

induced matching problem. In Journal of Discrete Algorithms, volume 3, pages 79–

91, 2005.

[16] W.E. Evans and H.L. McLeod. Pharmacogenomics - drug disposition, drug targets,

and side effects. In The New England Journal of Medicine, volume 348, pages 538–

549, 2003.

56



[17] N.P. Gerry, N.E. Witowski, J. Day, R.P. Hammer, G. Barany, and F. Barany. Uni-

versal DNA microarray method for multiplex detection of low abundance point

mutations. J. Mol. Biol., 292(2):251–262, 1999.

[18] S.A. Heath and F.P. Preparata. Enhanced sequence reconstruction with DNA mi-

croarray application. In Proc. 7th Annual International Conference on Computing

and Combinatorics (COCOON), pages 64–74, 2001.

[19] J.N. Hirschhorn, P. Sklar, K. Lindblad-Toh, Y.-M. Lim, M. Ruiz-Gutierrez, S. Bolk,

B. Langhorst, S. Schaffner, E. Winchester, and E. Lander. SBE-TAGS: An array-

based method for efficient single-nucleotide polymorphism genotyping. PNAS,

97(22):12164–12169, 2000.

[20] E. Hubbell. Multiplex sequencing by hybridization. Journal of Computational Bi-

ology, 8(2):141–149, 2001.
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