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Abstract

Personalized cancer vaccines are emerging as one of the most promising approaches to immunotherapy
of advanced cancers. However, only a small proportion of the neoepitopes generated by somatic DNA
mutations in cancer cells lead to tumor rejection. Since it is impractical to experimentally assess all
candidate neoepitopes prior to vaccination, developing accurate methods for predicting tumor-rejection
mediating neoepitopes (TRMNs) is critical for enabling routine clinical use of cancer vaccines. In this
paper we introduce Positive-unlabeled Learning using AuTOml (PLATO), a general semi-supervised
approach to improving accuracy of model-based classifiers. PLATO generates a set of high confidence
positive calls by applying a stringent filter to model-based predictions, then rescores remaining candidates
by using positive-unlabeled learning. To achieve robust performance on clinical samples with large
patient-to-patient variation, PLATO further integrates AutoML hyper-parameter tuning, classification
threshold selection based on spies, and support for bootstrapping. Experimental results on real datasets
demonstrate that PLATO has improved performance compared to model-based approaches for two key
steps in TRMN prediction, namely somatic variant calling from exome sequencing data and peptide
identification from MS/MS data.

1 Background

Personalized cancer vaccines are emerging as a promising alternative to nonspecific treatments such as
chemotherapy in the management of advanced cancers [1, 2]. This approach harnesses the power of the
patient’s own immune system to attack cells that express immunogenic peptides called neoepitopes. Neoepi-
topes are generated as a result of somatic DNA mutations that arise in cancer cells, hence making the
immune response tumor-specific. However, only a small proportion of the potential neoepitopes lead to
tumor rejection [3, 4, 5, 6]. Methods for predicting tumor-rejection mediating neoepitopes (TRMNs) are the
subject of much active research, including large consortium efforts such as the Tumor Neoantigen Selection
Alliance [7].

Existing bioinformatics pipelines for neoepitope and TRMN prediction (e.g., [8, 9, 10, 11]) include two
main steps: (1) calling tumor-specific somatic variants from matched tumor-normal exome or whole-genome
sequencing data, and (2) predicting which mutated peptides generated by non-synonymous somatic variants
are presented to the immune system by the Major Histocompatibility Complex (MHC) alleles of the patient.
Recent experimental work using a mouse tumor model [12] supports the utility of incorporating a third step,
which prioritizes for vaccination the mutated peptides detected by tandem mass-spectrometry (MS/MS) in
elutions of peptide-MHC complexes recovered from the surface of tumor cells.

Although many bioinformatics tools exist for each of these steps, there is still significant room for im-
provement. In particular, although many somatic variant callers have been developed based on diverse
statistical models, agreement between them remains low [13, 14]. Key impediments to achieving consistently
high accuracy with model-based methods include the large patient-to-patient variation in tumor purity and
heterogeneity, sequencing library preparation artifacts, sequencing errors, and data processing errors such as
incorrect read alignment. Several machine learning methods for somatic mutation calling have been recently
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Table 1: Variant calling performance on sequencing datasets P1-P4 generated for four ovarian cancer
patients.

DataSet Caller #calls TP FP TN FN TPR PPV F1

P1 SNVQ 515 48 114 0 0 100 29.63 45.71
P: 65 Strelka 435 48 34 80 0 100 58.54 73.85
U: 29758 2CP 65 41 8 106 7 85.42 83.67 84.54
Reseq: 162 PLATO 587 42 6 104 10 80.77 87.5 84
P2 SNVQ 597 147 65 3 2 98.66 69.34 81.44
P: 187 Strelka 619 149 59 9 0 100 71.63 83.47
U: 31210 2CP 187 133 39 29 16 89.26 77.33 82.87
Reseq: 217 PLATO 449 144 43 25 5 96.64 77.01 85.71
P3 SNVQ 629 61 13 8 1 98.39 82.43 89.71
P: 76 Strelka 306 62 11 10 0 100 84.93 91.85
U: 30289 2CP 76 57 1 20 5 91.94 98.28 95
Reseq: 83 PLATO 429 62 3 18 0 100 95.38 97.64
P4 SNVQ 482 48 23 87 2 96 67.61 79.34
P: 67 Strelka 380 50 94 16 0 100 34.72 51.55
U: 30176 2CP 67 45 2 108 5 90 95.74 92.78
Reseq: 160 PLATO 490 48 7 103 2 96 87.27 91.43

developed to address this challenge [15, 16, 17, 18, 19, 20, 21, 22]. However, most of these methods adopt a
supervised learning paradigm and generally require large amounts of training data.

In this paper we introduce a novel machine learning approach aimed at increasing the sensitivity of any
existing model-based pipeline for somatic variant calling while maintaining a high positive predictive value.
To achieve robust performance despite the significant patient-to-patient variation present in clinical samples,
we adopt a semi-supervised approach that learns salient attributes from the data itself, without a need for
prior training datasets. Our approach, referred to as Positive-unlabeled Learning using AuTOml (PLATO),
is illustrated in Figure 1 (see also the flowchart in Figure 2). PLATO takes as input the list of unfiltered
candidate somatic variant calls generated using an existing model-based pipeline along with a subset of
highly confident calls obtained by applying stringent thresholds. PLATO adopts a Positive-Unlabeled (PU)
learning approach, in which the set of highly confident calls are used as positive examples and the remaining
candidate calls are used as unlabeled examples. Real cancer datasets have typical unlabeled:positive ratios
of 1000:1 or higher. The vast majority of unlabeled examples are a priori expected to be true negatives
(sequencing errors or germline variants). PLATO takes advantage of this skewed distribution to generate
likely negative datasets by informed undersampling, i.e., randomly picking points that are furthest from the
positive set according to the Gower distance in a space defined by categorical and numerical features such
as confidence scores and allele coverage information generated by the model-based pipeline and sequence
properties extracted from the genome and alignment files. PLATO then trains a classifier to discriminate
between the positive and likely negative examples, and uses this classifier to label remaining data points.
Hyper-parameter tuning is performed by cross-validation using the AutoML service provided by Microsoft
Azure. Additionally, PLATO uses a “spy” approach for robust classification threshold selection, and performs
a user specified number of bootstraps, reporting only variants with 50% or higher bootstrap support.

2 Results

2.1 Somatic variant calling from multi-technology exome sequencing data

To assess PLATO’s accuracy we used matched normal-tumor exome sequencing data generated for four
ovarian cancer patients (identified in this article as P1 to P4) using two different sequencing technologies,
Illumina and Ion Torrent. The unlabeled set given as input to PLATO was generated using the Consensus
Caller Cross-Platform (CCCP) Galaxy tool available as part of the GeNeo immunogenomics toolbox [23].
CCCP incorporates two state-of-the-art somatic mutation callers, SNVQ [24] and Strelka [25], and has the
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Figure 1: Schematic representation of supervised classification (a) vs. PLATO’s PU learning approach (b).
Supervised classification requires training data and can perform poorly when the distributions of training
and test data do not match. PU learning uses an existing model-based classifier with stringent thresholds
and informed undersampling to train a classifier from the data itself.
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Figure 2: PLATO flowchart.

ability to process multi-technology sequencing data. Positive calls were generated by applying the 2CP filter
[26] on the raw output of CCCP. 2CP requires that at least one of the two callers make a high confidence call
from each of the two sequencing technologies. The only exception is when one of the sequencing technologies
yields no read coverage, in which case both callers must make confident calls from the reads generated by the
complementary technology. The ground truth for a subset of the predicted somatic variants was established
by taking the consensus of calls made from high-depth targeted re-sequencing of amplicons generated using
the AccessArray system from three or more replicates per patient of both tumor and normal tissue. The
first column of Table 1 gives the number of resequenced variants for each patient along with the sizes of
the P and U sets. In all cases, the resequenced set included all variants that passed the 2CP filter and
for which AccessArray primers could be successfully designed using the primer design tool in GeNeo. The
resequenced sets also included additional SNVs called using a random forest classifier at varying levels of
bootstrap support. For each compared method we computed the number of true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN) relative to the set of variant calls for which the ground
truth was available. The reported true positive rate, TPR := TP/(TP + FN), positive predictive value,
PPV := TP/(TP + FP ), and F1 score, F1 := 2 · TPR · PPV/(TPR+ PPV ), were also computed relative
to the ground truth available for each method.
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Figure 3: F1 scores obtained by running PLATO with N = 20 bootstraps. (a) Random forest classification
with spies-based classification threshold vs. 0.5 default, (b) AutoML classification with spies vs. 0.5 default,
and (c) AutoML with spies vs. random forest with spies. P1-P4 denote the sequencing datasets generated
for four different ovarian cancer patients.

2.1.1 Effect of classification threshold selection and classification algorithm

The users of PLATO can choose between automatic classification threshold selection based on spies or using
the underlying classifier’s default threshold (typically 0.5). Also, in principle, the PLATO framework can be
used in conjunction with any supervised classification algorithm. AutoML already integrates a wide range
of supervised classification methods, dynamically evaluating them on each dataset using a cross-validation
approach to avoid over-fitting. However, using AutoML does come with an added computational cost. To see
if this added cost is warranted, we compared the AutoML-based implementation of PLATO with a baseline
implementation based on random forests.

Figures 3(a)-(b) show that, for both the random forest and AutoML implementations, using spies-based
classification thresholds yields F1 scores close to and often better than those obtained by using the classifier’s
default threshold. This holds independently of the bootstrap support required for positive classification.
Furthermore, Figure 3(c) shows that, when using spies-based thresholds, the AutoML-based implementation
of PLATO has F1 score comparable to or better than those of the random forest implementation at virtually
all bootstrap support cutoffs.

2.1.2 Comparison with model-based callers

Table 1 gives detailed accuracy results on the four ovarian cancer datasets, comparing PLATO with model-
based callers SNVQ [24] and Strelka [25], as well as the 2CP filter of CCCP [26]. PLATO results in this
table were obtained by using AutoML as classifier, spies-based classification threshold selection, N = 20
bootstraps, and 50% bootstrap support. On all four datasets, the F1 score of PLATO is comparable to or
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Figure 4: Expected TP count at different multiplexing rates for SNVQ, Strelka, 2CP, and PLATO run using
AutoML, spies-based classification threshold selection, and 50% bootstrap support. The dots represent
TP counts from the actual AccessArray resequencing experiment reported in Table 1. P1-P4 denote the
sequencing datasets generated for four different ovarian cancer patients.

better than that of 2CP, which in turn is comparable to or better than that of SNVQ and Strelka. Unlike
SNVQ and Strelka, PLATO always retains a high PPV, comparable to or better than that of 2CP. This is
important, since PLATO also makes between 2.4× and 9× more calls than the very stringent 2CP filter.
Assuming a constant PPV this suggests that substantially more SNVs are expected to be confirmed when
resequencing candidates called by PLATO on the AccessArray. Figure 4 shows for each caller the expected
TP count assuming a constant PPV for up to 480 primer pairs multiplexed on a 48.48 AccessArray IFC.
For reference, Figure 4 also includes dots representing the counts from the actual AccessArray resequencing
experiment reported in Table 1.

2.1.3 Feature importance for SNV calling

Figure 5(a) gives the importance reported by AutoML for the top 10 features used for SNV calling, averaged
for each dataset over 20 bootstrap runs (for feature descriptions see the appendix). Not surprisingly, the top
four features are the binary somatic calls made for each sequencing technology (Illumina and Ion Torrent)
by the two callers integrated in CCCP (SNVQ and Strelka). Binary calls made by SNVQ from the normal
Illumina and Ion Torrent exomes and dbSNP status follow close behind in importance. The variation in
feature importance from dataset to dataset is remarkably high, underscoring the need for semi-supervised
methods such as PLATO that can adapt to the idiosyncrasies of each dataset. Figure 5(b) gives boxplots
of the classification cutoffs selected using the spy approach over the 20 bootstraps runs performed for each
of the four datasets. Most likely due to the over-representation of negatives in the list of CCCP candidates,
the spy-based cutoffs are always higher than the 0.5 default. Furthermore, the cutoff distributions vary from
patient to patient, again underscoring PLATO’s ability to adapt to each dataset.
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Figure 5: Average feature importance for SNV calling (a), and boxplots of the classification cutoffs selected
using the spy approach (b) over the 20 bootstraps runs performed for the P1-P4 ovarian cancer datasets.

2.2 Peptide identification from MS/MS data

For peptide identification, we evaluated our method on twenty datasets generated by [27] and retrieved from
the ProteomeXchange repository using project identifier PXD004894. We retrieved the RAW MS/MS files
for five different melanoma patients (identified as mel3, mel4, mel5, mel8, and mel12). For each patient
we retrieved four MS/MS files, corresponding to two biological replicates per patient (p1/p2) and two
independent MS/MS runs per replicate (identified by the date of the run, 2014-03-04/2014-03-05 or 2014-03-
06). Table 2 gives the number of peptides identified at a q-value cutoff of 0.01 by MS-GF+, Percolator, and
PLATO. Although both Percolator and MS-GF+ can compute PSM and Peptide level q-values, the q-values
for all three methods were computed by our implementation of the procedure described in the Methods
section to ensure that differences in peptide counts between the different methods are not due to variations
in the q-value computation method.

For comparison, Table 2 also includes the number of peptides identified in [27] using the MaxQuant search
engine with the same FDR cutoff. While we provide these numbers as a baseline, they should be considered
with caution, because MaxQuant was used to search a different human proteome database. For MS-GF+
searches we used 20,585 protein sequences retrieved from Uniprot in 2019 (see the appendix for details), while
[27] searched a database containing 85,919 protein sequences retrieved in 2014. As shown in Table 2 and
visualized as improvement over the MaxQuant baseline in Figure 6, both PLATO and Percolator significantly
outperform MaxQuant and MS-GF+ in terms of the number of peptides identified at 1% peptide-level FDR.
Although their perfomance is comparable, PLATO has a slight edge over Percolator, outperforming it on 15
out of the 20 datasets while being outperformed only 5 times.

2.2.1 Feature importance for peptide identification

The top 15 features ranked by average AutoML importance are shown in Figure 7 (for feature descriptions
see the appendix). The importance score of the lnEValue dominates the scores of the other features by more
than one order of magnitude, and has relatively small sample-to-sample variation. Interestingly, the amino
acids at known anchor positions for MHC class I binding have relatively low importance scores, most likely
due to the fact that clinical MS/MS samples are comprised of peptides presented by up to six distinct MHC
class I alleles, each with potentially different anchor position specificities.

3 Discussion

Experimental validation results on sequencing data from four ovarian cancer patients demonstrate the effec-
tiveness of PLATO when combined with the existing Consensus Caller Cross-Platform (CCCP) pipeline for
somatic variant calling [23]. Since the PU learning framework is broadly applicable, we also applied PLATO
to improve the rate of confident peptide identification from tandem mass-spectrometry data. Specifically, we
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Table 2: Number of peptides identified at 1% FDR from 20 MS/MS datasets generated by [27]. MHC-
bound peptides were eluted from melanoma samples collected from five different patients (identified as mel3,
mel4, mel5, mel8, and mel12), with two biological replicates (p1/p2) per patient, each analyzed on two
independent MS/MS runs (identified by the date in the sample ID). For each MS/MS dataset, the largest
number of identified peptides is typeset in boldface.

Sample ID Max MS- Perco- PLATO
Quant GF+ lator

2014-03-04-mel3p1 2533 2967 3748 3898
2014-03-04-mel3p2 2770 3341 4467 4412
2014-03-06-mel3p1 2441 2704 3632 3681
2014-03-06-mel3p2 2594 3140 4271 4157
2014-03-04-mel4p1 2634 3108 3929 4073
2014-03-04-mel4p2 1765 3073 4004 3757
2014-03-06-mel4p1 2401 2824 3526 3682
2014-03-06-mel4p2 1745 2694 3856 3954
2014-03-05-mel5p1 3010 2517 3742 3923
2014-03-05-mel5p2 3342 2561 4023 4127
2014-03-06-mel5p1 2934 2643 3929 4059
2014-03-06-mel5p2 3060 2592 4070 4014
2014-03-05-mel8p1 3375 3057 4006 4297
2014-03-05-mel8p2 3764 2976 4511 4556
2014-03-06-mel8p1 3331 3023 4375 4454
2014-03-06-mel8p2 4139 3444 4801 4839
2014-03-04-mel12p1 1948 1601 2724 2870
2014-03-04-mel12p2 2013 1408 2855 3121
2014-03-06-mel12p1 2004 1301 3028 3005
2014-03-06-mel12p2 2628 1601 2942 3356

combined PLATO with the open-source MS-GF+ database search engine [28], and used it to rescore peptide-
spectrum matches (PSMs) using MS-GF+ features such as the match-score and spectrum charge, along with
sequence defined features such as amino-acid composition and context. The use of PLATO increases the
number of identified peptides at a fixed false discovery rate (FDR) compared to both model-based database
search engines MS-GF+ and MaxQuant as well as the Percolator method, an existing rescoring approach
based on support vector machines [29].

We have made available user-friendly web-based tools for peptide identification from MS/MS data by
running the MS-GF+ and Percolator algorithms under the “Immunopeptidomics” section of the GeNeo
Galaxy toolbox for Genomics Guided Neoepitope Prediction [8]. More information about these tools is
provided in the appendix. A Python script that can be used to run PLATO on the output files generated by
MS-GF+ is also available at github.com/esherafat/PLATO. Integration of PLATO into the GeNeo toolbox
[8] is ongoing.

In future work we plan to assess PLATO’s robustness to intra-tumor heterogeneity using large-scale
exome sequencing datasets such as [30] and explore further improvements in peptide identification accuracy
by incorporating additional features in the PLATO search. Finally, we plan to explore supervised and semi-
supervised methods for predicting TRMNs. Improving TRMN prediction accuracy is critical for enabling
routine clinical use of cancer vaccines since it is impractical to experimentally assess all candidate neoepitopes
prior to vaccination [31].

4 Conclusion

In this paper we introduced PLATO, a novel semi-supervised approach to improving accuracy of model-
based classifiers. PLATO generates a set of high confidence positive calls by applying a stringent filter to
model-based predictions, then rescores remaining candidates by using positive-unlabeled learning. PLATO
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Figure 6: Percentage increase in the number of identified peptides over MaxQuant results reported in [27]
using 1% FDR on the 20 MS/MS datasets from Table 2

further integrates AutoML hyper-parameter tuning, classification threshold selection based on spies, and
bootstrapping to achieve robust performance on clinical samples with large patient-to-patient variation. Al-
though the PU-learning framework implemented by PLATO is broadly applicable, in this paper we focused
on its application and evaluation in the context of two problems arising in personalized cancer immunother-
apy: somatic variant calling from matched tumor-normal exome sequencing data and peptide identification
from immunopeptidomic MS/MS data. This allowed us to leverage the ability to conduct experimental
validation of somatic variant calls as part of an ongoing clinical trial and rely on well-established techniques
for controlling false discovery rate based on template-decoy competition in the case of peptide identification
from MS/MS data. Experimental results on real datasets show improved PLATO performance compared to
model-based approaches for both applications.

5 Methods

5.1 Positive-unlabeled learning

Semi-supervised learning is used when available training data is a combination of labeled and unlabeled
samples. The key idea of semi-supervised learning is to use the unlabeled examples to modify, refine or
prioritize the hypotheses derived from the labeled data alone. Positive-unlabeled learning is an important
subcategory of semi-supervised learning, where only unlabeled and positive samples are available. One
popular technique for PU learning is to predict a set of likely negatives among the unlabeled samples and
then apply standard supervised machine learning methods to the set of positives and likely negatives. The
PU learning framework implemented in PLATO is illustrated in Figure 2. Below we detail the key steps of
this workflow.
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5.1.1 Feature extraction and imputation

For variant calling, the sets P and U were generated from the output of the Consensus Caller Cross-Platform
(CCCP) pipeline [23]. The set of positives was taken to be the set of variants passing the 2CP filter [26]
that comes with the CCCP pipeline, and all other SNV candidates were included in U . Both positive and
unlabeled samples were represented using a total of 110 features, 52 extracted from the output of the CCCP
pipeline (see Table S3) and 58 generated using SomaticSeq [16] from the BAM files containing Illumina
tumor and normal exome alignments (full list included in the appendix). This broad range of features
included somatic variant calls made by the two somatic variant callers integrated in CCCP (SNVQ [24] and
Strelka [25]), the coverage in tumor and normal samples, variant allele frequency, strand bias, membership
in the list of common polymorphisms catalogued in the dbSNP database [32], average base and alignment
quality, genomic region mappability, etc. The unfiltered output of CCCP includes a large percentage of
missing values, typically due to low read coverage from one of the sequencing technologies. To deal with
these missing values, prior to performing informed undersampling we removed the samples and features for
which more than half of the corresponding entries were missing. Additionally, for the remaining samples
we imputed missing features using the rfImpute function implemented by the randomForest CRAN package
[33].

For peptide identification from MS/MS data, P and U were generated from the list of best peptide-
spectrum matches (PSMs) generated using the MS-GF+ search engine for each spectrum (see the appendix
for details). P was taken to be the set of PSMs identified by MS-GF+ at a False Discover Rate (FDR) cutoff
of 1% (as estimated by target-decoy competition, see below), while U consisted of the remaining PSMs.
PLATO was run using 27 features extracted from the MS-GF+ output (see Table S4). No imputation was
performed for the MS/MS data.

5.1.2 Informed undersampling and feature selection

In both of our applications (SNV calling from matched tumor-normal sequencing data and peptide identifi-
cation from tandem mass-spec data) the number of unlabeled samples vastly exceeds the number of labeled
positives. For example, cancer datasets have a typical unlabeled:positive ratio of 1000:1 or higher. The vast
majority of unlabeled examples are a priori expected to be true negatives (sequencing errors or germline
variants). Ideally, we would like to train a classifier that predicts with high accuracy both the minority
and the majority class. However, most classifiers tend to over-predict the majority class when they are
trained with imbalanced data. One solution to this issue is to generate a balanced training dataset by using
undersampling.

In PLATO we use undersampling to create a balanced training dataset consisting of the positive samples

10



and an equally-sized set of likely negatives selected from the unlabeled samples. Due to the high imbalance in
the unlabeled data, randomly sampling from the unlabeled samples is likely to produce a set consisting mostly
of negative samples. However, some positive samples are also likely to be picked, and the randomly selected
points may not be very well-separated from positive samples in the underlying feature space. Therefore our
approach is to use informed undersampling, where we use the positive samples to inform the selection of
likely negatives from the unlabeled set. Specifically, given sets P and U of positive and unlabeled samples,
we generate the set N ⊆ U of likely negatives as N =

⋃b
i=1Ei, where |Ei| = |P |/b. Each set Ei is computed

by randomly selecting a batch of m samples from U , computing the average distance of each sample to the
samples in P , and including in Ei the |P |/b unlabeled samples with the greatest average distance. Since the
data has both categorical and numerical features, the Gower distance is chosen as the distance measure. We
chose to generate the likely negative set N by sampling multiple batches since the majority class might not
be homogeneous (e.g., for SNV calling the negatives may represent sequencing errors or germline variants),
and using multiple batches increases the chance of selecting representative samples from all regions of the
majority class. For all experiments reported in this paper we used b = 10 and m = |P |. We did not conduct
extensive empirical evaluation of these choices, but reasoned that they provide a good tradeoff between
having enough subsamples to give a good representation of the search space and keeping the computational
costs low by avoiding too many pairwise distance computations.

For somatic variant calling, once a balanced training dataset is generated by informed undersampling,
PLATO uses a random forest classifier to rank all extracted features and selects the features with above
median rank. This feature selection approach falls under the category of embedded methods, and is often
used to enhance generalization and reduce running time of subsequent model training. We chose to use ran-
dom forest-based feature selection over alternatives such as unsupervised dimensionality reduction methods
like Principal Component Analysis (PCA) since the method works well with both numeric and categorical
features and retains interpretability. Random forest-based feature selection is also highly scalable. This is
an important consideration in PLATO, which performs this step for multiple bootstrap samples to increase
classification robustness, as detailed below. Performing feature selection independently for each bootstrap
also reduces the risk of overfitting, as different sets of features may be selected for different bootstrap runs.

Due to the lower number of available features, no feature selection was performed for the MS/MS data.

5.1.3 Bootstrapping and spy-based cutoffs

For robustness, PLATO implements PU-learning based on informed undersampling within a bootstrapping
framework and implements a scheme of automatic classification threshold selection based on spies (see the
flowchart in Figure 2). In each bootstrap iteration PLATO performs the following steps:

• Selects a set of likely negative equal to the size of 90% of positive data points using the informed
undersampling method described above.

• Creates a training set by combining 90% of positive samples with the selected set of likely negatives.

• Builds a classifier using AutoML using this training set.

• Applies the classifier to the 10% of positive samples that were not included in training (“spy” samples)
along with the other unlabeled samples.

• Classifies an unlabeled sample as positive, if its score is higher than the minimum score of the spy
samples.

The above steps are repeated a user specified number of times (N bootstraps). A sample in U is finally
classified as positive if it scores higher than the spy samples in a user-selected percentage of bootstrap
runs, otherwise its final classification is negative. The idea of using “spies” was initially introduced in the
text classification context [34]. As shown in the Results section, using automatically selected classification
thresholds based on spies results in similar or better performance on clinical datasets than using the default
classifier threshold, independent of the bootstrap support.

In general, model selection and hyperparameter tuning are complex tasks. Since exhaustively evaluating
all combinations is unfeasible, we used the AutoML service integrated in Microsoft Azure to efficiently search
the model space. In AutoML the user has the choice of executing an experiment on a local PC, a VM in
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the cloud, or a large cluster. In this work, we stored the data and executed all experiments locally. In each
bootstrap of PLATO, AutoML was run on the balanced training dataset consisting of 90% of positives and
an equally sized set of likely negatives generated by informed undersampling by selecting the experiment
type as classification, defining the cross-validation scheme as 10-fold cross validation, and the primary metric
as accuracy. For each experiment type, AutoML generates a set of initial pipeline parameters and executes
a number of experiments with different parameters. In each experiment, it measures the primary metric
using cross-validation and picks a new set of pipeline parameters until it reaches a threshold on execution
time or the number of experiments. In the end, it builds an ensemble of different models to achieve optimal
performance on the test set. Both voting and stack ensemble classifiers are currently supported. By default,
they appear as the final iterations of each run. In order to have a powerful ensemble, AutoML initializes
a list of up to five best scoring models (checking that their scores are within 5% of the best score) using
the Caruana et al. algorithm [35]. In subsequent iterations, a new model is added to an existing ensemble
only if it improves its accuracy based on the user selected metric. The voting ensemble classifier in AutoML
uses soft-voting and makes predictions based on a weighted average of predicted class probabilities. The
stack ensemble classifier has a two-layer implementation. It takes the same models as the voting ensemble
as the first layer, and the second layer trains a meta-model to find the optimal combination of models
from the first layer. The default meta-model for classification tasks in AutoML is LogisticRegression. In
our experiments, the algorithms that were run through AutoML iterations included BernoulliNaiveBayes,
ExtremeRandomTrees, LightGBM, RandomForest, and SGD. However, the best-fitted models selected by
AutoML were always Voting and Stack ensemble classifiers. For example, in the peptide identification
problem the Voting ensemble was chosen as the best model 90% of the time and the Stack ensemble was
selected 10% of the time. We have chosen 10 as the number of AutoML iterations per bootstrap based on
preliminary experiments showing that more than 10 iterations yield diminishing improvements in accuracy.

5.2 Processing mass-spectrometry data and assessing the false discovery rate

RAW files were converted to MGF format using RawConverter 1.1.0.19 [36]. We used the MS-GF+ search
engine [28] to search the MGF files against the human proteome, with Unspecific Cleavage, and the TDA
(Target-Decoy Analysis) option turned on. The decoy database generated by MS-GF+, consisting of reversed
target peptides, was concatenated with the targets for FDR estimation. The MS-GF+ MZID output files
were converted to PIN (Percolator INput) format using the msgf2pin utility from Percolator. The PIN files
were post-processed using Percolator as well as PLATO. Further details on MS-GF+ and Percolator settings
can be found in the appendix.

For estimating the false discovery rate (FDR) of peptide identifications from MS/MS data we adopted
the commonly used target-decoy competition (TDC) approach. The first decision that needs to be made
when using TDC is whether or not to search the target and decoy databases separately, or to concatenate
them before searching. In the latter setting, each spectrum is matched with either a target or a decoy;
in this way, the targets and decoys compete to match with each spectrum. As advocated in [37], we use
concatenated searches in this study. Assuming that a higher score is better, for concatenated searches the
FDR at a certain score threshold t can be estimated as in [29, 38]:

FDR(t) =
1 + Number of decoy PSMs with score ≥ t

Number of target PSMs with score ≥ t
(1)

We control the FDR at level Q by finding the lowest score threshold t such that FDR(t) < Q, and only
taking target PSMs with score greater than or equal to t. In this study, we controlled FDR at 1%.

Unfortunately, controlling the FDR at a level of α for PSMs does not imply control at the same level for
peptides. As discussed in [39], a peptide present in the sample will, on average, be matched by a greater
number of spectra than an absent peptide. To address this, if a peptide matches multiple spectra, we
eliminate all but the best scoring PSM for that peptide. Once we have “uniquified” the peptides, we can
apply the same q-value cutoff procedure as for PSMs. To ensure reproducibility and fair comparisons, we
created a Galaxy tool to control FDR, publicly available at neo.engr.uconn.edu/?tool id=FDR custom filter,
and used it to filter the results of all compared methods (MS-GF+, Percolator, and PLATO) for which raw
search results were generated as part of our empirical evaluation. More details on the precise procedure for
controlling FDR at both the PSM and Peptide level as well as the Galaxy tool can be found in the appendix.
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S1 Supplementary Methods, Figures, and Tables

S1.1 MS-GF+ and percolator commands and settings

For the experiments reported in the paper we used MS-GF+ version v2020.03.14. Detailed command
lines and parameters are provided below.

S1.1.1 MS-GF+ indexing command

When searching against a proteome multiple times the MS-GF+ developers recommend using the BuildSA
tool to index the proteome. Note that unlike the tide-index command in Crux, MS-GF+ indexing does
not actually generate the peptide database to be searched. Rather, it builds suffix arrays for the proteins;
this is why we do not specify any enzyme settings at this stage. The MS-GF+ index command we used was:

java -Xmx3500M -cp MSGFPlus.jar edu.ucsd.msjava.msdbsearch.BuildSA -d FASTA_INPUT -tda 2

S1.1.2 MS-GF+ search settings

When running the MS-GF+ search, our pipeline used commands of the following form:

java -Xmx10000M -jar MSGFPlus.jar -ignoreMetCleavage 1 -s MGF_INPUT

-d FASTA_INPUT -tda 1 -o MZID_OUTPUT -addFeatures 1 -m FRAGMENTATION -e 0 -inst INSTRUMENT

-mod MOD_FILE

A summary of the MS-GF+ options is provided in Table S1.

S1.1.3 msgf2pin settings

When running the msgf2pin utility to convert the MS-GF+ MZID output to a Percolator Input (PIN)
file, our pipeline used the following command:

msgf2pin MZID_INPUT -o PIN_OUTPUT -F FASTA_INPUT -e no_enzyme -P XXX_ -m 1 -z

Table S1: MS-GF+ search options.
Option Value Description
-Xmx 10000M Tells the JVM to set the maximum heap size to 10GB
-ignoreMetCleavage 1 A (hidden) setting to turn off methionine cleavage 1

-s MGF INPUT The MGF File to search
-d FASTA INPUT The FASTA file to search
-tda 1 Create (and search) a combined target-decoy database
-o MZID OUTPUT Filename of MZID output
-addFeatures 1 Include additional features that Percolator will use; see [40]

for more information
-m 3 Sets the fragmentation method; in this case it’s 3, since the

data was generated with HCD fragmentation
-e 0 Use non-specific cleavage when creating peptides to search
-inst 3 Sets the instrument type

in this case, it’s 3, since
the data was generated with a Q-Exactive instrument

-mod MOD FILE A file containing the post-translational modifications to
include in the search. We used Cysteine
Carbamidomethylation as a fixed modification since
iodoacetamide was used in the experiments of [27].
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Table S2: msgf2pin search options.
Option Value Description

MZID INPUT Mzid file to convert to PIN
-o PIN OUTPUT filename of the PIN output
-F FASTA INPUT Proteome that was searched against
-e no enzyme Type of enzyme used for in silico digestion.

Used no enzyme if there non-specific digestion.
-P XXX In the Mzid file, each peptide is associated with

at least one protein sequence. Each protein sequence has an accession,
and decoy proteins have an accession that starts with “XXX ”

-m 1 Maximum number of matches per spectra
-z Displays PTM as mass delta, rather than UNIMOD Accession

Table S2 gives a summary of the options used by this command. Note that we used a slightly mod-
ified version of msgf2pin, the source code of which can be found here: https://github.com/mrForce/

msgf2pin-PTM-Mass-Delta. We added the “-z” option, so that post-translational modifications would be
annotated with mass deltas, rather than UNIMOD accession codes. This is because, at one point, we were
working with a version of Percolator that wasn’t compatible with UNIMOD accession. Note that, although
msgf2pin is part of the Percolator package, we used it as a standalone utility.

S1.1.4 Percolator command

Percolator commands were of the form:

crux percolator --output-dir OUTPUT_DIR PIN_INPUT

We are currently using Percolator version 3.02.0 in Crux version 3.20-d57cff.

S1.2 Galaxy Search tool

We created a publicly available Galaxy tool that allows users to run MS-GF+ and Percolator through
a web-based user-friendly interface. The tool can be accessed at https://neo.engr.uconn.edu/?tool_

id=msgfplus_runner; the tool version used in this study was 20.06. Figure S1 shows a screenshot of the
interface.

The Galaxy search tool supports two search types. The first is called “Unfiltered Search”, where the
selected MGF file is searched against the selected proteome (concatenated with any user provided FASTA
files). The second type is called “Filtered Search”. Briefly the base proteome (and any uploaded FASTA
files) are broken into peptides with lengths between 8 and 13 amino acids. The user specifies a set of MHC-
I/HLA-I alleles, and the peptides are scored using NetMHC. For each allele-length combination, the top k
percent scoring peptides are used in the search, where k is a user specified parameter. In this study, we only
used the Unfiltered Search.

The user can give the search a name, and select which proteome to search. For this study, we used a Uniprot
Human proteome consisting of one protein per gene, which was downloaded from ftp://ftp.uniprot.org/

pub/databases/uniprot/current_release/knowledgebase/reference_proteomes/Eukaryota/UP000005640_

9606.fasta.gz in April 2019. Currently, this is the only proteome offered for searching, though more pro-
teomes will be added in the future.

1This setting is not mentioned in the MS-GF+ documentation. See this bug report for more information: https://github.
com/MSGFPlus/msgfplus/issues/51
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Figure S1: Interface for the Galaxy MS/MS search tool.

The tool has four outputs. The first is the PIN file generated by msgf2pin, except with the second row
removed. This second row contains information that Percolator needs, but is otherwise not useful to us. The
second output are the target and decoy PSMs scored by Percolator. The third is a log file, which is useful
for debugging (and also shows exactly how MS-GF+, msgf2pin and Percolator were ran). The fourth is an
archive file, which contains, among other things, the MZID output from MS-GF+, the PIN file passed to
Percolator, and the output files of the Percolator run. It also contains the FASTA that MS-GF+ searched.

Published Galaxy histories including runs for the 20 MS/MS melanoma datasets analyzed in this paper
(grouped by patient) are available at:

• https://neo.engr.uconn.edu/u/jordan/h/bassani-mel3-public

• https://neo.engr.uconn.edu/u/jordan/h/bassani-mel4-public

• https://neo.engr.uconn.edu/u/jordan/h/bassani-mel5-public

• https://neo.engr.uconn.edu/u/jordan/h/bassani-mel8-public

• https://neo.engr.uconn.edu/u/jordan/h/bassani-mel12-public

S1.3 FDR Filtering

To fairly assess the number of discoveries each tool makes at a given FDR cutoff, we wrote a Galaxy
tool to control FDR at both the PSM and Peptide level. The tool takes as input a tab-seperated value file,
and the user specifies which columns contain the peptide, score and label (target or decoy), and the score
direction (whether a bigger score is better or worse), as well as an FDR cutoff. The tool will have one output
for PSM level FDR filtering, and another for Peptide level FDR filtering. For the Peptide level, it uniquifies
the peptides by selecting the best scoring PSM for each peptide, and discards poorer scoring PSMs for that
peptide. From then on, the procedure is the same for PSM or Peptide level FDR filtering:
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1: groups← Group PSMs by score
2: sortedGroups← Sort groups by score, from best to worst
3: numDecoys← 0
4: numTargets← 0
5: endIndex← −1
6: i← 0
7: for score, group← groups do
8: for psm← group do
9: if psm is target then numTargets← numTargets+ 1

10: else if psm is decoy then numDecoys← numDecoys+ 1
11: end if
12: end for
13: if numTargets = 0 then

fdr ← 1
14: else

fdr ← numDecoys+1
numTargets

15: end if
16: if fdr < α then
17: endIndex← i
18: end if
19: i← i+ 1
20: end for

The target PSMs in the groups up to endIndex are then controlled at FDR-level α. The grouping is
necessary because frequently, there will be PSMs with the same score, and they must either be accepted
or rejected together as a group. For Percolator, we used the “percolator score” column as the score. For
MS-GF+, we used the lnEV alue in the msgf2pin output. This is simply the negative logarithm of a PSM’s
E-Value. Note that MS-GF+ provides Q-values, which can also be used for FDR control; however, their
Q-values are computed based on the Spectral E-Value. The reason for this discrepancy is that we forked
Percolator version 3.04 to create the custom version of msgf2pin (see the “msgf2pin settings” subsection
above), and that version wasn’t able to output both lnEV alue and lnSpecEV alue.

As for MS/MS searches, we created a Galaxy tool that allows users to run the FDR filter through a
web-based user-friendly interface. The FDR filter tool (version 20.06) can be accessed at https://neo.

engr.uconn.edu/tool_runner?tool_id=FDR_custom_filter; Figure S2 displays a screenshot of its user
interface.

S1.4 PLATO feature descriptions

For SNV calling PLATO used 52 features generated by the CCCP pipeline (described in Table S3) along
with the following 58 additional features extracted using SomaticSeq [16] from the BAM files contain-
ing Illumina tumor and normal exome alignments: Consistent Mates, Inconsistent Mates, MaxHomopoly-
mer Length, N ALT FOR, N ALT REV, N DP, N REF FOR, N REF REV, nBAM ALT BQ, nBAM ALT Clipped Reads,
nBAM ALT Concordant, nBAM ALT Discordant, nBAM ALT MQ, nBAM ALT NM, nBAM Clipping FET,
nBAM Concordance FET, nBAM MQ0, nBAM NM Diff, nBAM Other Reads, nBAM Poor Reads, nBAM REF BQ,
nBAM REF Clipped Reads, nBAM REF Concordant, nBAM REF Discordant, nBAM REF MQ, nBAM REF NM,
nBAM StrandBias FET, nBAM Z Ranksums BQ, nBAM Z Ranksums EndPos, nBAM Z Ranksums MQ,
SiteHomopolymer Length, T ALT FOR, T ALT REV, T DP, T REF FOR, T REF REV, tBAM ALT BQ,
tBAM ALT Clipped Reads, tBAM ALT Concordant, tBAM ALT Discordant, tBAM ALT MQ, tBAM ALT NM,
tBAM Clipping FET, tBAM Concordance FET, tBAM MQ0, tBAM NM Diff, tBAM Other Reads, tBAM Poor Reads,
tBAM REF BQ, tBAM REF Clipped Reads, tBAM REF Concordant, tBAM REF Discordant, tBAM REF MQ,
tBAM REF NM, tBAM StrandBias FET, tBAM Z Ranksums BQ, tBAM Z Ranksums EndPos, tBAM Z Ranksums MQ.
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Figure S2: Interface for the Galaxy FDR filter tool.

Table S3: CCCP output features used by PLATO for SNV calling.

Feature Description

Platform Platform supporting the call (Illumina, Proton, or Both)
Ref allele Reference allele
dbSNP Yes/No common polymorphism according to dbSNP
Alt in dbSNP Alternative allele in dbSNP

Alt SNVQ N ILL
Alternative allele for the SNVQ call from normal exome Illumina
alignments

Alt SNVQ T ILL Alternative allele for the SNVQ call from tumor exome Illumina alignments
Geno SNVQ T ILL Genotype for the SNVQ call from tumor exome Illumina alignments

Alt Strelka T ILL
Alternative allele for the Strelka call based on tumor/normal exome
Illumina alignments

Geno Strelka T ILL
Genotype for the Strelka call based on tumor/normal exome Illumina
alignments

SNV in SNVQ N ILL Yes/No SNV called by SNVQ run on normal exome Illumina alignments
SNV in SNVQ T ILL Yes/No SNV called by SNVQ run on tumor exome Illumina alignments

Som SNVQ T/N ILL
Yes/No somatic SNV called by the SNVQ subtraction method based on
tumor/normal exome Illumina alignments

Som Strelka T/N ILL
Yes/No somatic SNV called by Strelka based on tumor/normal exome
Illumina alignments

Total Cov N ILL Total coverage in normal exome Illumina alignments
A Cov N ILL Coverage of allele A in normal exome Illumina alignments
C Cov N ILL Coverage of allele C in normal exome Illumina alignments
G Cov N ILL Coverage of allele G in normal exome Illumina alignments

Continued on next page
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Table S3 – Continued from previous page
Feature Description

T Cov N ILL Coverage of allele T in normal exome Illumina alignments
Total Cov T ILL Total coverage in tumor exome Illumina alignments
A Cov T ILL Coverage of allele A in tumor exome Illumina alignments
C Cov T ILL Coverage of allele C in tumor exome Illumina alignments
G Cov T ILL Coverage of allele G in tumor exome Illumina alignments
T Cov T ILL Coverage of allele T in tumor exome Illumina alignments
Alt SNVQ N ILL Alternative allele for the SNVQ call from normal exome Proton alignments
Alt SNVQ T ION Alternative allele for the SNVQ call from tumor exome Proton alignments
Geno SNVQ T ION Genotype for the SNVQ call from tumor exome Proton alignments

Alt Strelka T ION
Alternative allele for the Strelka call based on tumor/normal exome
Proton alignments

Geno Strelka T ION
Genotype for the Strelka call based on tumor/normal exome Proton
alignments

SNV in SNVQ N ION Yes/No SNV called by SNVQ run on normal exome Proton alignments
SNV in SNVQ T ION Yes/No SNV called by SNVQ run on tumor exome Proton alignments

Som SNVQ T/N ION
Yes/No somatic SNV called by the SNVQ subtraction method based on
tumor/normal exome Proton alignments

Som Strelka T/N ION
Yes/No somatic SNV called by Strelka based on tumor/normal exome Proton
alignments

Total Cov N ION Total coverage in normal exome Proton alignments
A Cov N ION Coverage of allele A in normal exome Proton alignments
C Cov N ION Coverage of allele C in normal exome Proton alignments
G Cov N ION Coverage of allele G in normal exome Proton alignments
T Cov N ION Coverage of allele T in normal exome Proton alignments
Total Cov T ION Total coverage in tumor exome Proton alignments
A Cov T ION Coverage of allele A in tumor exome Proton alignments
C Cov T ION Coverage of allele C in tumor exome Proton alignments
G Cov T ION Coverage of allele G in tumor exome Proton alignments
T Cov T ION Coverage of allele T in tumor exome Proton alignments
Total Cov T ILL RNA Total coverage in tumor RNA-Seq Illumina alignments
A Cov T ILL RNA Coverage of allele A in tumor RNA-Seq Illumina alignments
C Cov T ILL RNA Coverage of allele C in tumor RNA-Seq Illumina alignments
G Cov T ILL RNA Coverage of allele G in tumor RNA-Seq Illumina alignments
T Cov T ILL RNA Coverage of allele T in tumor RNA-Seq Illumina alignments
Total Cov T ION RNA Total coverage in tumor RNA-Seq Proton alignments
A Cov T ION RNA Coverage of allele A in tumor RNA-Seq Proton alignments
C Cov T ION RNA Coverage of allele C in tumor RNA-Seq Proton alignments
G Cov T ION RNA Coverage of allele G in tumor RNA-Seq Proton alignments
T Cov T ION RNA Coverage of allele T in tumor RNA-Seq Proton alignments

For peptide identification PLATO used the 25 features listed in Table S4, which were extracted from the
MS-GF+ output.
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Table S4: Features used by PLATO for peptide identification from MS/MS data.

Feature Description

CalcMass Theoretical mass of peptide (sum of amino acid masses)
Mass Spectrum precursor mass
dM Theoretical mass minus observed mass
absdM Absolute value of dM
IsotopeError The number of additional neutrons in the peptide

compared to the monoisotopic mass
MeanErrorTop7 Mean mass error of 7 most intense peaks
sqMeanErrorTop7 Square root of MeanErrorTop7
StdevErrorTop7 Standard deviation of mass errors of 7 most intense peaks
Charge1, Charge2, Charge3 Spectrum charge
DeNovoScore Score of best scoring peptide for the spectrum.

This is among all possible peptides, not just those in the database
RawScore The PSM score assigned by MS-GF+
Energy Difference between RawScore and DeNovoScore
ScoreRatio Ratio of RawScore to maximum possible score (aka DeNovoScore)
lnEValue Negative one times the natural logarithm of the

database level E-value [40]. See Kim and Pevzner [28]
for a detailed description of how E-value is calculated by MS-GF+

lnExplainedIonCurrentRatio Logarithm of the total intensity of identified fragment ions
divided by total intensity of all ions

lnNTermIonCurrentRatio Logarithm of total intensity of identified N-terminal fragment ions
divided by total intensity of all ions

lnCTermIonCurrentRatio Logarithm of total intensity of identified C-terminal fragment ions
divided by total intensity of all ions

lnMS2IonCurrent Logarithm of sum of intensities of all fragment ions
PepLen Peptide length
P1 and P6 The amino acids before and after the peptide in its protein
P2 and P3 The first two amino acids of the peptide
P4 and P5 The last two amino acids of the peptide
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