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Abstract. Accurate allele specific expression estimation requires the
availability of a diploid transcriptome, which makes it a challenging prob-
lem. Most existing methods rely on simple counting of alleles coverage
at heterozygous Single Nucleotide Polymorphic sites. In this work, we
present RNA-PhASE, a pipeline for Allele Specific gene and isoform
Expression estimation from RNA-Seq Reads. The pipeline integrates
methods for SNV detection and phasing with a new diploid version of
an Expectation Maximization algorithm for gene/isoform estimation.
Within this pipeline, we couple an existing phasing algorithm with a
novel method for coverage based phasing.

1 Introduction

Most current methods for estimating gene/isoform expression levels from high-
throughput whole transcriptome sequencing (RNA-Seq) data rely on mapping
the reads to a reference genome and/or transcriptome and do not consider the
difference between the two parental alleles (diploid transcriptome). The diploid
transcriptome can be easily inferred when a diploid genome is available, as in
recent studies of cis- and trans-regulation [8] and parent-of-origin effects [5] that
use hybrids of inbred species or strains. However, reconstructing the diploid
genome of human subjects remains a difficult task [3]. Hence, existing studies
of allele-specific gene expression rely on simple alleles coverage analysis for het-
erozygous Single Nucleotide Polymorphic (SNP) sites within transcripts. Such
approaches typically do not allow inference of allele-specific expression of indi-
vidual gene isoforms, result in less robust estimates since they use only RNA-Seq
reads that overlap heterozygous SNP sites, and are affected by systematic read
mapping biases toward reference alleles [1][6].

In this work, we integrate a recent method for SNV detection and genotyping
from RNA-Seq data [4] with the scalable haplotype reconstruction method [2]
and a diploid version of the Expectation Maximization (EM) algorithm for iso-
form expression estimation of [9] into a pipeline for estimation of allele-specific
isoform expression levels. Our pipeline, RNA-PhASE, does not require genome
sequencing data, but can incorporate such data when available. Inferring the two
haplotypes and re-mapping the reads against the diploid transcriptome resolves
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the above mentioned bias towards reference alleles, while the EM model improves
inference accuracy by using all reads, including those that map to more than one
isoform, incorporating additional sources of disambiguation information such as
the distribution of RNA-Seq fragment lengths, and correcting biases introduced
by library preparation and sequencing protocols.

Preliminary results show the ability of the proposed pipeline to accurately
infer allele specific isoform expression levels for synthetic hybrids with varying
levels of heterozygosity, generated by pooling whole brain RNA-Seq reads of
different mouse strains studied as part of the Sanger Institute Mouse Genomes
Project [7].

2 Methods

The RNA-PhASE pipeline, depicted in Figure 1, starts by mapping the RNA-Seq
reads against a haploid reference transcriptome and reference genome. Align-
ments from both mappings are merged together, according a set of rules de-
scribed in [5], and the resulting set of alignments are used to call SNVs. The
merging method, referred to as HardMerge, keeps a read if it aligns uniquely to
the genome only, uniquely to the transcriptome only, or to both provided that
the two alignments agree. Results have shown that this hybrid method results
in calling SNVs with very high confidence. We introduce a local alignment ver-
sion of HardMerge that works on the base level, discarding read bases mapped
to multiple locations. It then generates alignments from contiguous stretches of
non-ambiguously mapped bases. This modification enables HardMerge to handle
local alignments of long RNA-Seq reads generated by technologies like 454 and
ION Torrent.SNVs are then called using SNVQ [4], which uses Bayes rule to call
the genotype with the highest probability while taking base quality scores into
account.

For haplotyping, we couple an efficient Single Individual Haplotyping algo-
rithm, RefHap [2], with a novel method for coverage based phasing. Our new
method merges phased blocks in the RefHap output, and it phases called SNVs
that were not phased by RefHap because they are not in close proximity with
other SNVs and consequently there is no read evidence that can be used to
phase them. In coverage based phasing, for two successive heterozygous SNVs
i and j, the i’s allele with highest coverage is paired with j’s allele with highest
coverage in the same haplotype, and similarly lowest coverage alleles are paired
in the other haplotype. When one or both SNVs have equal coverage for the two
alleles, phasing is done arbitrarily. i and j can be two SNVs for which the phase
was not resolved by RefHap. Alternatively, j can be first SNV in a phased block
and i is the last in the most adjacent SNV preceding j.

Alelle Specific Expression (ASE) levels are estimated through realigning the
reads against the diploid transcriptome and feeding the mapping results into a
diploid version of IsoEm [9], an EM algorithm that makes use of information
such as insert size, quality scores, and read pairing, if available, to handle read
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Fig. 1. RNA-PhASE: Pipeline for Allele Specific Expression inference from RNA-Seq
data through calling and phasing expressed Single Neucloetide Variations

mapping ambiguities. Finally, allelic expression imbalance is inferred through
applying Fisher’s Exact test.

3 Experimental Results

We test RNA-PhASE against synthetic hybrids data created by merging whole
brain RNA-Seq reads from the Sanger Institute Mouse Genomes project. Four
synthetic hybrids data sets were created by merging equal number of reads from
C57BL/6NJ with each of the following strains: BALB/cJ, A/J, CAST/EiJ, and
SPRET/EiJ. The four strains were selected to provide the test of RNA-PhASE
performance with varying levels of heterozygosity. As a measure of strain vari-
ation compared to C57BL/6NJ, and thus heterozygosity level of the synthetic
hybrids, we use the number of genomic SNVs reported in [7]. The strains are
listed here in an increasing variation order, compared to C57BL/6NJ.

Testing is done on two levels. First, we test the ability of the diploid IsoEM
to accurately estimate ASE given the diploid transcriptome. This is done by
creating diploid transcriptomes for the hybrids using the SNVs reported in [7].
The inferred expression level for each allele of an isoform or gene is compared with
the expression level of that isoform/gene estimated from the corresponding strain
reads when processed separately. We measure Pearson coefficient of correlation,
error fractions (EF) and median percent errors (MPE). EF at a certain threshold
t is the percentage of isoforms (or genes) with relative error larger than given
threshold t, where the relative error is calculated as the difference in estimated
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to actual expression levels divided by the actual expression level. MPE is the
threshold t for which EF is 50%. Figure 2 and tables 1 and 2 show these results.

Fig. 2. Isoform and Gene Error Fractions. Error Fractions at different threshold val-
ues for expression levels estimated for strains in synthetic hybrids vs. corresponding
separate strain.

The second level of testing is for the whole pipeline, starting from the syn-
thetic hybrid reads and haploid reference. In this case, a direct comparison of
the ASE from the hybrids against the corresponding separate strain expression
levels will not be feasible. Results accuracy will be determined by comparing
which isoforms and/or genes are detected to have allelic imbalance in the hybrid
vs. the corresponding separate strains. The allelic imbalance will be determined
using Fisher’s Exact test. These results are currently being generated.

Table 1. Pearson correlation coefficient for gene and isoform expression levels esti-
mated for strains in synthetic hybrids vs. corresponding separate strains. IE: Isoform
Expression; GE: Gene Expression

Hybrid
C57BLxStrain C57BL IE Strain IE C57BL GE Strain GE

C57BLxBALBc 0.705 0.675 0.706 0.675
C57BLxAJ 0.855 0.902 0.856 0.903
C57BLxCAST 0.872 0.824 0.924 0.882
C57BLxSPRET 0.952 0.726 0.951 0.725
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Table 2. MPE for isoform expression levels estimated for strains in synthetic hybrids
vs. corresponding separate strains.

Hybrid
C57BLxStrain C57BL Strain

C57BLxBALBc 0.3874 0.9075
C57BLxAJ 0.6281 0.4339
C57BLxCAST 0.2276 0.1840
C57BLxSPRET 0.1871 0.1753
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