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Abstract

A major application of RNA-Seq is to perform differential gene expression
analysis. Many tools exist to analyze differentially expressed genes in the presence
of biological replicates. Frequently, however, RNA-Seq experiments have no or
very few biological replicates and development of methods for detecting
differentially expressed genes in these scenarios is still an active research area.

In this paper we introduce a novel method, called IsoDE, for differential gene
expression analysis based on bootstrapping. We compared IsoDE against four
existing methods: Fisher’s exact test, GFOLD, edgeR and Cuffdiff on RNA-Seq
datasets generated using three different sequencing technologies, both with and
without replicates. Experiments on MAQC RNA-Seq datasets without replicates
show that IsoDE has consistently high accuracy as defined by the qPCR ground
truth, frequently higher than that of the compared methods, particularly for low
coverage data and at lower fold change thresholds. In experiments on RNA-Seq
datasets with up to 7 replicates, IsoDE has also achieved high accuracy.
Furthermore, unlike GFOLD and edgeR, IsoDE accuracy varies smoothly with the
number of replicates, and is relatively uniform across the entire range of gene
expression levels.

The proposed non-parametric method based on bootstrapping has practical
running time, and achieves robust performance over a broad range of
technologies, number of replicates, sequencing depths, and minimum fold change
thresholds.
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Introduction
RNA-Seq has become the new standard for the analysis of differential gene expres-

sion [1] [2] [3] due to its wider dynamic range and smaller technical variance [4]

compared to traditional microarray technologies. However, simply using the raw

fold change of the expression levels of a gene across two samples as a measure

of differential expression can still be unreliable, because it does not account for

read mapping uncertainty or capture, fragmentation, and amplification variabil-

ity in library preparation and sequencing. Therefore, the need for using statistical

methods arises. Traditionally, statistical methods rely on the use of replicates to

estimate biological and technical variability in the data. Popular methods for ana-

lyzing RNA-Seq data with replicates include edgeR [5], DESeq [6], Cuffdiff [7], and

the recent NPEBSeq [8].

Unfortunately, due to the still high cost of sequencing, many RNA-Seq studies

have no or very few replicates [9]. Methods for performing differential gene expres-

sion analysis of RNA-Seq datasets without replicates include variants of Fisher’s
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exact test [4]. Recently, Feng et al. introduced GFOLD [10], a non-parametric em-

pirical Bayesian-based approach, and showed that it outperforms methods designed

to work with replicates when used for single replicate datasets.

In this work, we present a novel method for differential gene expression analy-

sis for RNA-Seq data, called IsoDE. Our method uses the traditional bootstrap-

ping approach [11] to resample RNA-Seq reads, in conjunction with the accurate

Expectation-Maximization IsoEM algorithm [12] to estimate gene expression levels

from the samples. Experimental results on RNA-Seq datasets generated using three

different technologies (Illumina, ION Torrent, and 454) from two well-characterized

MAQC [13] samples show that IsoDE has consistently high accuracy, comparable

or better than that of Fisher’s exact test, GFOLD, Cuffdiff, and edgeR (we did not

compare directly with NPEBSeq since installation was not successful). Notably, and

unlike other methods, IsoDE maintains high accuracy (sensitivity and PPV around

80%) on low coverage RNA-Seq datasets and at lower fold change thresholds.

Recent studies such as Rapaport et al. [14] have reiterated the fact that increas-

ing the number of replicate samples significantly improves detection power over

increased sequencing depth. We explored the effect of the number of replicates on

prediction accuracy using a RNA-Seq dataset [15] with 7 replicates for each of two

conditions (control and E2-treated MCF-7 cells). Although all methods generally

benefit from the use of additional replicates, GFOLD and edgeR show a marked

discontinuity when transitioning from 1 to 2 replicates. In contrast, IsoDE accuracy

varies smoothly with changes in the number of replicates.

Methods
Bootstrap sample generation

As most differential expression analysis packages, IsoDE starts with a set A of

RNA-Seq read alignments for each condition. Bootstrapping can be used in con-

junction with any method for estimating individual gene expression levels from

aligned RNA-Seq reads, estimation typically expressed in fragment per kilobase of

gene length per million reads (FPKM). In IsoDE, we use the IsoEM algorithm [16],

an expectation-maximization (EM) algorithm that takes into account gene isoforms

in the inference process to ensure accurate length normalization. Unlike some of the

existing estimation methods, IsoEM uses non-uniquely mapped reads, relying on

the distribution of insert sizes and base quality scores (as well as strand and read

pairing information if available) to probabilistically infer their origin. Previous ex-

periments have shown that IsoEM yields highly accurate FPKM estimates with

lower runtime compared to other commonly used inference algorithms [17].

The first step of IsoDE is to generate M bootstrap samples by randomly resam-

pling with replacement from the reads represented in A. When a read is selected

during resampling, all its alignments from A are included in the bootstrap sample.

The number of resampled reads in each bootstrap sample equals the total number

of reads in the original sample. However, the total number of alignments may dif-

fer between bootstrap samples, depending on the number of alignments of selected

reads and the number of times each read is selected. The IsoEM algorithm is then

run on each bootstrap sample, resulting in M FPKM estimates for each gene. The

bootstrap sample generation algorithm is summarized below:
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1 Sort the alignment file A by read ID

2 Compute the number N of reads and generate a list L containing read IDs in

the alignment file A

3 For i = 1, . . . ,M do:

(a) Randomly select with replacement N read IDs from L, sort selected read

IDs, and extract in Ai all their alignments with one linear pass over A

(if a read is selected m times, its alignments are repeated m times in Ai)

(b) Run IsoEM on Ai to get the ith FPKM estimate for each gene

Bootstrap-based testing of differential expression

To test for differential expression, IsoDE takes as input two folders which contain

FPKM estimates from bootstrap samples generated for the two conditions to be

compared. In case of replicates, a list of bootstrap folders can be provided for each

condition (one folder per replicate, normally with an equal number of bootstrap

samples) – IsoDE will automatically merge the folders for the replicates to get a

combined folder per condition, then perform the analysis as in the case without

replicates.

In the following we assume that a total of M bootstrap samples is generated for

each of the compared conditions. We experimented with two approaches for pairing

the FPKMs estimated from the two sets of bootstrap samples. In the “matching”

approach, a random one-to-one mapping is created between the M estimates of first

condition and the M estimates of the second condition. This results in M pairs of

FPKM estimates. In the “all” approach, M2 pairs of FPKM estimates are generated

by pairing each FPKM estimate for first condition with each FPKM estimate for

second condition. When pairing FPKM estimate ai for the first condition with

FPKM estimate bj for the second condition, we use ai/bj as an estimate for the

fold change in the gene expression level between the two conditions. The “matching”

approach thus results in N = M fold change estimates, while the “all” approach

results in N = M2 fold change estimates.

The IsoDE test for differential expression requires two user specified parameters,

namely the minimum fold change f and the minimum bootstrap support b. For a

given threshold f (typically selected based on biological considerations), we calcu-

late the percentage of fold change estimates that are equal to or higher than f when

testing for overexpression, respectively equal to or lower than 1/f when testing for

underexpression. If this percentage is higher than the minimum bootstrap support

b specified by the user then the gene is classified as differentially expressed (DE),

otherwise the gene is classified as non-differentially expressed (non-DE). The actual

bootstrap support for fold change threshold f , as well as the minimum fold change

with bootstrap support of at least b are also included in the IsoDE output to allow

the user to easily increase the stringency of the DE test.

As discussed in the results section, varying the bootstrap support threshold b

allows users to achieve a smooth tradeoff between sensitivity and specificity for a

fixed fold change f (see, e.g., Figure 1). Since different tradeoffs may be desirable

in different biological contexts, no threshold b is universally applicable. In our ex-

periments we computed b using a simple binomial model for the null distribution

of fold change estimates and a fixed significance level α = 0.05. Specifically, we
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assume that under the null hypothesis the fold changes obtained from bootstrap

estimates are equally likely to be greater or smaller than f . We then compute b as

xmin/N , where xmin = min{x : P (X ≥ x) ≤ α} and X is a binomial random

variable denoting the number of successes in N independent Bernoulli trials with

success probability of 0.5. For convenience, a calculator for computing the bootstrap

support needed to achieve a desired significance level given the (possibly different)

numbers of bootstrap samples for each condition has been made available online

(see Availability).

The number M of bootstrap samples is another parameter that the users of IsoDE

must specify. As discussed in the results section, computing the bootstrap support

for all genes takes negligible time, and the overall running time of IsoDE is dom-

inated by the time to complete the 2M IsoEM runs on bootstrap samples. Hence,

the overall runtimes grows linearly with M . Experimental results suggest that the

“all” pairing approach produces highly accurate results with relatively small values

of M (e.g., M = 20), and thus results in practical runtimes, independent of the

number of replicates. We also note that for studies involving pairwise DE analy-

sis of more than two conditions, IsoDE only requires M independently generated

bootstrap samples per condition. Since the time for computing pairwise bootstrap

support values is negligible, the overall running time will grow linearly with the

number of conditions.

Compared methods

The four methods that were compared to IsoDE are briefly described below.

Fisher’s exact test

Fisher’s exact test is a statistical significance test for categorical data which mea-

sures the association between two variables. The data is organized in a 2x2 contin-

gency table according to the two variables of interest. We use Fisher’s exact test

to measure the statistical significance of change in gene expressions between two

conditions A and B by setting the two values in the first row of the table to the

estimated number of reads mapped per kilobase of gene length (calculated from

IsoEM estimated FPKM values) in conditions A and B, respectively. The values

in the second row of the contingency table depend on the normalization method

used. We compared three normalization methods. The first one is total read nor-

malization, where the total number of mapped reads in conditions A and B are

used in the second row. The second is normalization by a housekeeping gene. In

this case, the estimated number of reads mapped per kilobase of housekeeping gene

length in each condition is used. We also test normalization by ERCCs RNA spike-

in controls [18]. FPKMs of ERCCs are aggregated together (similar to aggregating

the FPKMs of different transcripts of a gene), and the estimated number of reads

mapped per kilobase of ERCC are calculated from the resulting FPKM value and

used for normalization. In our experiments, we used POLR2A as a housekeeping

gene.

The calculated p-value, which measures the significance of deviation from the

null hypothesis that the gene is not differentially expressed, is computed exactly

by using the hypergeometric probability of observed or more extreme differences
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while keeping the marginal sums in the contingency table unchanged. We adjust

the resulting p-values for the set of genes being tested using the Benjamini and

Hochberg method [19] with 5% false discovery rate (FDR).

GFOLD

GFOLD [10] is a generalized fold change algorithm which produces biologically

meaningful rankings of differentially expressed genes from RNA-Seq data. GFOLD

assigns reliable statistics for expression changes based on the posterior distribution

of log fold change. The authors show that GFOLD outperforms other commonly

used methods when used for single replicate datasets. We used GFOLD v1.0.7 with

default parameters and fold change significance cutoff of 0.05.

Cuffdiff

Cuffdiff [7] uses a beta negative binomial distribution model to test the significance

of change between samples. The model accounts for both uncertainty resulting from

read mapping ambiguity and cross-replicate variability. Cuffdiff reports fold change

in gene expression level along with statistical significance. In our comparison, we

used Cuffdiff v2.0.1 with default parameters.

edgeR

edgeR [5] is a statistical method for differential gene expression analysis which is

based on the negative binomial distribution. Although edgeR is primarily designed

to work with replicates it can also be run on datasets with no replicates. We used

edgeR on counts of uniquely mapped reads, as suggested in [15]. We followed the

steps provided in the edgeR manual for RNA-Seq data. calcNormFactors(), esti-

mateCommonDisp(), estimateTagwiseDisp(), and exactTest() were used with de-

fault parameter, when processing the MCF-7 replicates. When processing MAQC

data and a single replicate of MCF-7 data, estimateTagwiseDisp() was not used,

and the dispersion was set to 0 when calling exactTest(). The results where adjusted

for multiple testing using the Benjamini and Hochberg method with 5%.

Mapping RNA-Seq reads

MAQC Illumina reads were mapped onto hg19 Ensembl 63 transcript library; all

other datasets were mapped onto hg19 Ensembl 64 transcript library. Illumina

datasets (MAQC and MCF-7) were mapped using Bowtie v0.12.8 [20]. ION Torrent

reads were mapped using TMAP v2.3.2, and 454 reads were mapped using MOSAIK

v 2.1.33 [21]. For edgeR, non-unique alignments were filtered out, and read counts

per gene were generated using coverageBed (v2.12.0). Read mapping statistics are

detailed in Table 5. Number of mapped reads per kilobase of gene length used in

Fisher’s exact test calculation are based on IsoEM FPKMs.

Ground truth definition

On MAQC dataset the ground truth was defined based on the available qPCR data

from [13]. Each TaqMan assay was run in four replicates for each measured gene.

POLR2A (ENSEMBL gene ID ENSG00000181222) was chosen as the reference gene

and each replicate CT was subtracted from the average POLR2A CT to give the
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log2 difference (delta CT). For delta CT calculations, a CT value of 35 was used for

any replicate that had CT >35. The normalized expression value of a gene g would

be: 2(CT of POLR2A)-(CT of g). We filtered out genes that: (1) were not detected in

one or more replicates in each samples or (2) had a standard deviation higher than

25% for the four TaqMan values in each of the two samples. Of the resulting subset,

we used in the comparison genes whose TaqMan probe IDs unambiguously mapped

to Ensemble gene IDs (686 genes). A gene was considered differentially expressed if

the fold change between the average normalized TaqMan expression levels bin the

two conditions was greater than a set threshold with the p-value for an unpaired

two-tailed T-test (adjusted for 5% FDR) of less than 0.05. We ran the experiment

for fold change thresholds of 1, 1.5, and 2.

For experiments with replicates we used the RNA-Seq data generated from E2-

treated and control MCF-7 cells in [15]. In this experiment, we compared IsoDE

with GFOLD and edgeR. The predictions made by each method when using all 7

replicates for each condition were used as its own ground truth to evaluate predic-

tions made using fewer replicates. The ground truth for IsoDE was generated using

a total of 70 bootstrap samples per condition.

Evaluation metrics

For each evaluated method, genes were classified according to the differential expres-

sion confusion matrix detailed in Table 1. Methods were assessed using sensitivity,

positive predictive value (PPV), F-score, and accuracy, defined as follows:

Sensitivity =
(TPOE + TPUE)

(TOE + TUE)

PPV =
(TPOE + TPUE)

(POE + PUE)

Accuracy =
(TPOE + TPND + TPUE)

(TOE + TND + TUE)

F − score = 2× TPR× SPC
TPR+ SPC

Results and discussion
Datasets

We conducted experiments on publicly available RNA-Seq datasets generated from

two commercially available reference RNA samples and a breast cancer cell line.

To compare the accuracy of different methods, we used RNA-Seq data RNA sam-

ples that were well-characterized by quantitative real time PCR (qRT-PCR) as part

of the MicroArray Quality Control Consortium (MAQC) [13]; namely an Ambion

Human Brain Reference RNA, Catalog # 6050), henceforth referred to as HBRR

and a Stratagene Universal Human Reference RNA (Catalog # 740000) henceforth

referred to as UHRR. To assess accuracy, DE calls obtained from RNA-Seq data

were compared against those obtained as described in the Methods section from

TaqMan qRT-PCR measurements collected as part of the MAQC project (GEO

accession GPL4097).
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We used RNA-Seq data generated for HBRR and UHRR using three different

technologies: Illumina, ION-Torrent, and 454. Details about the datasets and their

SRA accession numbers (or run IDs for ION Torrent datasets) are available in Table

5 in Additional File 1. The ION Torrent runs for each MAQC sample were combined

to generate the results in Table 3, results obtained using pairs of individual ION

Torrent runs are reported in Tables 7 and 8 in Additional File 1.

The MCF-7 RNA-Seq data was generated (from the MCF-7 ATCC human breast

cancer cell line) by Liu et al. [15] using Illumina single-end sequencing with read

length of 50bp. A total of 14 biological replicates were sequenced from two condi-

tions: 7 replicates for the control group and 7 replicates for E2-treated MCF-7 cells.

Sequencing each replicate resulted produced between 25 and 65 millions of mapped

reads. Details about this dataset and accession numbers are also available in Table

5 in Additional File 1.

Bootstrapping support and pairing strategy effects on IsoDE accuracy and runtime

We evaluated both the “matching” and “all” pairing strategies of IsoDE (referred

to as IsoDE-Match and IsoDE-All) for fold change threshold f of 1, 1.5, respectively

2, and bootstrap support threshold b between 40% and 95%. The results of IsoDE-

Match with M = 200 bootstrap replicates per condition are shown in Figure 1.

The results show that, for each tested value of f , varying b results in a smooth

tradeoff between sensitivity and PPV, while the F-score changes very little. For

the remaining experiments we used a bootstrap support level b computed using a

significance level of 0.05 under the binomial null model detailed in the Methods

section. Note the value of b selected in this way depends on the number of number

N of fold change estimates, which in turn depends on both M and the pairing

strategy (N is equal to M for IsoDE-Match, respectively to M2 for IsoDE-All).

To determine the best pairing strategy, we ran IsoDE-Match and IsoDE-All with

number of bootstrap samples M varying between 10 and 200 (results not shown).

For the considered measures, IsoDE-All achieved an accuracy very close to that of

IsoDE-Match when run with a comparable value of N . For example, as shown in

Tables 2-4, IsoDE-All run on M = 20 bootstrap samples (N = 400) had similar

accuracy with the largest number of bootstrap samples we could use with IsoDE-

Match (M = N = 200).

Since for a fixed N IsoDE-Match requires 2N bootstrap samples while IsoDE-All

requires only 2
√
N of them, using IsoDE-All is significantly faster in practice. In-

deed, most of the IsoDE time is spent generating bootstrap samples and estimating

expression levels for each of them using the IsoEM algorithm, with bootstrap sup-

port computation typically taking a fraction of a minute. Figure 2 shows the time

required to generate M = 20, respectively M = 200, bootstrap samples for both

conditions of several MAQC datasets. All timing experiments were conducted on a

Dell PowerEdge R815 server with quad 2.5GHz 16-core AMD Opteron 6380 proces-

sors and 256Gb RAM running under Ubuntu 12.04 LTS. IsoEM is run on bootstrap

samples sequentially, but for each run its multi-threaded code takes advantage of

all available cores (up to 64 in our experimental setup). As expected, the running

time scales linearly with the number of bootstrap samples per condition, and thus

generating M = 20 bootstrap samples per condition is nearly 10 times faster than
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generating M = 200 of them. Overall, IsoDE-Match with M = 20 has reasonable

running time, varying between 1 hour for the smallest 454 dataset to 3.5 hours for

the Illumina dataset.

Results for DE prediction without replicates

We compared IsoDE against GFOLD, Cuffdiff, edgeR, and different normalization

methods for Fisher’s exact test; namely total normalization, housekeeping gene

(POLR2A) normalization, and normalization using External RNA Controls Con-

sortium (ERCC) RNA spike-in controls [18]. Cuffdiff results were considerably worse

on the Illumina MAQC dataset, compared to other methods. Consequently, Cuffdiff

was not included in other comparisons. edgeR was also not included in further com-

parisons due to lack of clear definition of uniquely mapped reads for ION-Torrent

and 454 datasets which were mapped using local read alignment tools. ERCC spike-

ins were available only for ION Torrent samples; therefore, ERCC normalization for

Fisher’s exact test was conducted only for ION Torrent datasets.

Table 2 shows the results obtained for the MAQC Illumina dataset using minimum

fold change threshold f of 1, 1.5, and 2, respectively. Table 3 shows the results

obtained for the combined ION Torrent MAQC dataset for the same values of f .

Table 4 shows the results for the First 454 MAQC dataset, while results for the

Second 454 dataset are presented in Table 6 in Additional File 1. For each fold

change threshold, the best performing method for each statistic is highlighted in

bold.

IsoDE has very robust performance, comparable or better than that of the other

methods for differential gene expression. Indeed, IsoDE outperforms them in a large

number of cases, across datasets and fold change thresholds. Very importantly,

unlike GFOLD and Fisher’s exact test, IsoDE maintains high accuracy (sensitivity

and PPV around 80%) on datasets with small numbers of mapped reads such as

the two 454 datasets. This observation is confirmed on results obtained for pairs of

individual ION-Torrent runs, presented in Tables 7 and 8 in Additional File 1. This

makes IsoDE particularly attractive for such low coverage RNA-Seq datasets.

DE prediction with replicates

We also studied the effect of the number of biological replicates on prediction accu-

racy using the MCF-7 dataset. We performed DE predictions using an increasing

number of replicates. IsoDE was run with a total of 20 bootstrap samples per con-

dition, distributed equally (or as close to equally as possible) among the replicates,

as detailed in Table 9. GFOLD and edgeR were evaluated for 1 through 6 repli-

cates using as ground truth the results obtained by running each method on all 7

replicates (see the Methods section). For IsoDE, we also include the results using

M = 20 bootstrap samples from all 7 replicates as its ground truth is generated

using a much larger number of bootstrap samples (M = 70). Figure 3 shows the

results of the three compared methods for a fold change threshold of 1, results for

fold change thresholds 1.5 and 2 are shown in Figures 5 and 6 in Additional File 1.

Since for this experiment the ground truth was defined independently for each

method, it is not meaningful to directly compare accuracy metrics of different meth-

ods. Instead, we focus on the rate of change in the accuracy of each method as addi-

tional replicates are added. Generally, all methods perform better when increasing
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the number of replicates. However, the accuracy of IsoDE varies smoothly, and is

much less sensitive to small changes in the number of replicates. Surprisingly, this

is not the case for GFOLD and edgeR sensitivity, which drops considerably when

transitioning from 1 to 2 replicates, most likely due to the different statistical models

employed with and without replicates. Although we varied the number of replicates

without controlling the total number of reads as Liu et al. [15], our results strongly

suggest that cost effectiveness metrics such as those proposed in [15] are likely to

depend on to the specific method used for performing DE analysis. Therefore, the

analysis method should be taken into account when using such a metric to guide

the design of RNA-Seq experiments.

Effect of gene abundance

We also studied the effect of gene abundance on the IsoDE, GFOLD, and edgeR

prediction accuracy. We selected the subset of genes that are expressed in at least

one of the two RNA samples. We sorted these genes by the average of the gene’s

expression. We used the FPKM values predicted by IsoEM, the FPKM values pre-

dicted by GFOLD, and the number of uniquely mapped reads, for IsoDE, GFOLD,

and edgeR, respectively. The genes were then divided into quintiles, for each method

independently, where quintile 1 had the genes with the lowest expression levels, and

quintile 5 had the genes with the highest expression levels. Sensitivity, PPV, and

F-score where calculated for each quintile separately.

Figure 4 shows that, for results with both 1 and 6 replicates, sensitivity, PPV, and

F-score of IsoDE are only slightly lower on genes with low expression levels compared

to highly expressed genes (similar results are achieved for intermediate numbers of

replicates and higher fold change thresholds). In contrast, GFOLD shows a marked

difference in all accuracy measures for genes in the lower quintiles compared to those

in the higher quintiles. The sensitivity of edgeR is also lower for genes expressed at

low levels, however it’s PPV is relatively constant across expression levels.

Conclusions
A practical bootstrapping based method, IsoDE, was developed for analysis of dif-

ferentially expressed genes in RNA-Seq datasets. Unlike other existing methods,

IsoDE is non-parametric, i.e., does not assume an underlying statistical distribu-

tion of the data. Experimental results on publicly available datasets both with and

without replicates show that IsoDE has robust performance over a wide range of

technologies, sequencing depths, and minimum fold changes. IsoDE performs par-

ticularly well on low coverage RNA-Seq datasets, at low fold change thresholds, and

when no or very few replicates are available.

Availability

IsoDE has been implemented in Java and can be run on any platform with a Java virtual machine. The source code

and installation instructions are available at http://dna.engr.uconn.edu/software/IsoDE/. A web-based

calculator for computing the bootstrap support based on the desired number of bootstrap samples and significance

level is available at http://dna.engr.uconn.edu/∼software/cgi-bin/calc/calc.cgi.
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Ground truth
Over-Expressed Non-Differential Under-Expressed

Predicted (TOE) (TND) (TUE)

Over-Expressed (POE) TPOE
Non-Differential (PND) TPND
Under-Expressed (PUE) TPUE

Table 1: Confusion matrix for differential gene expression

Fold Change Method Accuracy % Sensitivity % PPV % F-Score %

1

FishersTotal 70.41% 70.79% 91.24% 79.72%
FishersHousekeeping 65.60% 65.22% 95.05% 77.36%
GFOLD 78.13% 80.06% 92.67% 85.90%
Cuffdiff 11.37% 6.96% 100.00% 13.01%
edgeR 73.03% 73.26% 95.56% 82.94%
IsoDE-Match 82.63% 87.46% 83.70% 85.54%
IsoDE-All 82.22% 87.17% 82.82% 84.94%

1.5

FishersTotal 74.05% 78.20% 84.85% 81.39%
FishersHousekeeping 76.68% 73.61% 93.67% 82.44%
GFOLD 79.15% 79.35% 90.41% 84.52

¯
%

Cuffdiff 28.43% 8.60% 100.00% 15.85%
edgeR 80.01% 79.92% 92.07% 85.57%
IsoDE-Match 78.98% 86.23% 84.62% 85.42%
IsoDE-All 79.01% 86.42% 84.49% 85.44%

2

FishersTotal 78.43% 81.86% 82.44% 82.15%
FishersHousekeeping 81.20% 80.00% 88.21% 83.90%
GFOLD 82.94% 78.84% 92.37% 85.07%
Cuffdiff 40.96% 10.47% 100.00% 18.95%
edgeR 83.67% 81.63% 91.17% 86.13%
IsoDE-Match 82.04% 85.58% 85.19% 85.38%
IsoDE-All 81.20% 86.74% 83.07% 84.87%

Table 2: Accuracy, sensitivity, PPV and F-Score in % for MAQC Illumina dataset

and fold change threshold f of 1, 1.5, and 2. The number of bootstrap samples is

M = 200 for IsoDE-Match and M = 20 for IsoDE-All, and bootstrap support was

determined using the binomial model with significance level α = 0.05.

Fold Change Method Accuracy % Sensitivity % PPV % F-Score %

1

FisherTotal 71.68% 72.76% 90.56% 80.69%
FisherHousekeeping 67.15% 66.87% 94.74% 78.40%
FisherERCC 71.39% 72.45% 88.97% 79.86%
GFOLD 75.77% 77.55% 90.43% 83.50%
IsoDE-Match 81.75% 86.38% 82.18% 84.05%
IsoDE-All 81.46% 86.07% 82.13% 84.05%

1.5

FisherTotal 74.16% 78.39% 85.06% 81.59%
FisherHousekeeping 76.06% 73.23% 92.96% 81.93%
FisherERCC 74.31% 78.59% 85.45% 81.87%
GFOLD 75.47% 77.63% 87.88% 82.44%
IsoDE-Match 77.66% 83.94% 84.75% 84.34%
IsoDE-All 77.81% 84.13% 84.45% 84.29%

2

FisherTotal 79.71% 83.02% 84.00% 83.51%
FisherHousekeeping 81.75% 80.70% 88.75% 84.53%
FisherERCC 79.42% 82.56% 84.12% 83.33%
GFOLD 80.58% 76.74% 90.66% 83.12%
IsoDE-Match 81.75% 85.81% 84.63% 85.22%
IsoDE-All 81.61% 86.28% 84.13% 85.19%

Table 3: Accuracy, sensitivity, PPV and F-Score in % for Ion Torrent dataset and

fold change threshold f of 1, 1.5, and 2. The number of bootstrap samples is

M = 200 for IsoDE-Match and M = 20 for IsoDE-All, and bootstrap support

was determined using the binomial model with significance level α = 0.05.
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Fold Change Method Accuracy % Sensitivity % PPV % F-Score %

1

FisherTotal 34.01% 30.50% 95.63% 46.24%
FisherHousekeeping 24.52% 20.12% 94.74% 33.38%
GFOLD 55.62% 54.18% 92.11% 68.23%
IsoDE-Match 75.33% 79.57% 77.41% 78.47%
IsoDE-All 78.85% 84.67% 81.04% 82.82%

1.5

FisherTotal 48.18% 35.37% 89.81% 50.75%
FisherHousekeeping 42.48% 24.86% 97.74% 39.63%
GFOLD 62.19% 58.13% 85.39% 69.17%
IsoDE-Match 64.09% 74.19% 72.52% 73.35%
IsoDE-All 72.85% 79.54% 80.62% 80.08%

2

FisherTotal 57.96% 39.53% 85.43% 54.05%
FisherHousekeeping 55.33% 29.30% 97.67% 45.08%
GFOLD 69.05% 61.16% 83.49% 70.60%
IsoDE-Match 67.15% 76.51% 70.30% 73.27%
IsoDE-All 75.18% 80.93% 78.03% 79.45%

Table 4: Accuracy, sensitivity, PPV and F-Score in % for the First 454 dataset

and fold change threshold f of 1, 1.5, and 2. The number of bootstrap samples is

M = 200 for IsoDE-Match and M = 20 for IsoDE-All, and bootstrap support was

determined using the binomial model with significance level α = 0.05.

Data Sample Reads Mapped Uniquely Mapped Notes
set Length Reads* Reads*

SRX365211 MCF-7 Control 49 24.22 18.57 MCF-7 Control Replicate 1
SRX365212 MCF-7 Control 49 41.85 31.98 MCF-7 Control Replicate 2
SRX365213 MCF-7 Control 49 32.49 24.63 MCF-7 Control Replicate 3
SRX365214 MCF-7 Control 49 32.86 25.13 MCF-7 Control Replicate 4
SRX365215 MCF-7 Control 49 33.05 25.18 MCF-7 Control Replicate 5
SRX365216 MCF-7 Control 49 40.62 30.90 MCF-7 Control Replicate 6
SRX365217 MCF-7 Control 49 64.34 49.05 MCF-7 Control Replicate 7
SRX365204 MCF-7 E1 49 28.58 21.58 MCF-7 E2 Replicate 1
SRX365205 MCF-7 E2 49 23.71 18.26 MCF-7 E2 Replicate 2
SRX365206 MCF-7 E3 49 26.75 20.92 MCF-7 E2 Replicate 3
SRX365207 MCF-7 E4 49 24.95 18.64 MCF-7 E2 Replicate 4
SRX365208 MCF-7 E5 49 28.35 21.52 MCF-7 E2 Replicate 5
SRX365209 MCF-7 E6 49 27.08 20.80 MCF-7 E2 Replicate 6
SRX365210 MCF-7 E7 49 30.66 23.38 MCF-7 E2 Replicate 7

SRX003926 MAQC HBRR 36 6.80 4.8 MAQC Illumina dataset
SRX003927 MAQC UHRR 36 5.80 3.9 MAQC Illumina dataset

SRX002934 MAQC UHRR 253.4 0.52 MAQC First 454 dataset
SRX002935 MAQC HBRR 251.1 0.50 MAQC First 454 dataset
SRX002932 MAQC UHRR 253.6 0.54 MAQC Second 454 dataset
SRX002933 MAQC HBRR 252.0 0.78 MAQC Second 454 dataset

DID-143-282 MAQC HBRR 94.2 1.22 MAQC ION Torrent
LUC-140-265 MAQC HBRR 97.7 1.14 MAQC ION Torrent
GOG-139-281 MAQC HBRR 93.3 1.21 MAQC ION Torrent
LUC-141-267 MAQC HBRR 95.1 1.04 MAQC ION Torrent
POZ-124-266 MAQC HBRR 95.5 1.07 MAQC ION Torrent
DID-143-283 MAQC UHRR 99.8 1.37 MAQC ION Torrent
GOG-140-284 MAQC UHRR 101.1 1.45 MAQC ION Torrent
POZ-125-268 MAQC UHRR 96.8 1.10 MAQC ION Torrent
POZ-126-269 MAQC UHRR 102.1 1.29 MAQC ION Torrent
POZ-127-270 MAQC UHRR 99.8 1.62 MAQC ION Torrent

Table 5: Datasets used in the experimental analysis and their mapping statistics.

Number of Uniquely mapped reads is specified for the datasets analyzed by edgeR.

*In million reads
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Fold Change Method Accuracy % Sensitivity % PPV % F-Score %

1

FisherTotal 34.01% 30.49% 95.63% 46.24%
FisherHousekeeping 24.53% 20.12% 97.74% 33.38%
GFOLD 55.62% 54.18% 92.11% 68.23%
IsoDE-Match 78.39% 83.13% 79.56% 81.30%
IsoDE-All 78.10% 82.66% 79.23% 80.91%

1.5

FisherTotal 48.18% 35.37% 89.81% 50.75%
FisherHousekeeping 42.48% 24.86% 97.74% 39.63%
GFOLD 62.19% 58.13% 85.39% 69.17%
IsoDE-Match 71.09% 79.35% 79.20% 79.27%
IsoDE-All 70.36% 78.59% 79.04% 78.81%

2

FisherTotal 57.96% 39.53% 85.43% 54.05%
FisherHousekeeping 55.33% 29.30% 97.67% 45.08%
GFOLD 69.05% 61.16% 83.49% 70.60%
IsoDE-Match 74.60% 80.47% 78.10% 79.27%
IsoDE-All 71.97% 79.30% 75.61% 77.41%

Table 6: Accuracy, sensitivity, PPV and F-Score in % for the Second 454 dataset

and fold change threshold f of 1, 1.5, and 2. The number of bootstrap samples is

M = 200 for IsoDE-Match and M = 20 for IsoDE-All, and bootstrap support was

determined using the binomial model with significance level α = 0.05.

Fold Change Method Accuracy % Sensitivity % PPV % F-Score %

1

FishersTotal 49.05% 46.44% 97.09% 62.83%
FishersHousekeeping 40.88% 37.62% 98.38% 54.42%
FisherERCC 52.55% 51.70% 88.83% 65.36%
GFOLD 59.27% 59.29% 91.41% 71.92%
IsoDE-All 79.12% 83.75% 79.91% 81.78%

1.5

FisherTotal 60.29% 53.35% 90.29% 67.07%
FisherHousekeeping 57.08% 45.31% 96.34% 61.64%
FisherERCC 57.96% 56.02% 82.07% 66.59%
GFOLD 67.01% 65.58% 87.72% 75.05%
IsoDE-All 72.55% 80.50% 80.34% 80.42%

2

FisherTotal 69.05% 59.53% 86.78% 70.62%
FisherHousekeeping 68.90% 53.49% 94.26% 68.25%
FisherERCC 66.42% 60.23% 80.93% 69.07%
GFOLD 72.85% 66.51% 86.93% 75.36%
IsoDE-All 76.64% 81.40% 81.02% 81.21%

Table 7: Accuracy, sensitivity, PPV and F-Score in % for ION Torrent pair HBRR:

LUC-140 265 and UHRR: POZ-126 269, with fold change threshold f of 1, 1.5,

and 2. The number of bootstrap samples for IsoDE-All is M = 20, and bootstrap

support was determined using the binomial model with significance level α = 0.05.
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[width=16cm]Figure1.pdf

Figure 1: Sensitivity, PPV, and F-Score of IsoDE-Match (M=200 bootstrap sam-

ples per condition) on the Illumina MAQC data, with varying bootstrap support

threshold.

[width=16cm]Figure2.pdf

Figure 2: Running times (in seconds) of IsoDE-Match with M = 200 and IsoDE-All

with M = 20 on several MAQC datasets. The indicated number of reads represents

the total number of mapped reads over both conditions of each dataset, for more

information on the datasets see Table S1.

[width=16cm]Figure3.pdf

Figure 3: Sensitivity, PPV, F-Score, and accuracy of IsoDE-All (with 20 bootstrap

runs per condition), edgeR, and GFOLD on the Illumina MCF-7 data with minimum

fold change of 1 and varying number of replicates.

[width=16cm]Figure4.pdf

Figure 4: Sensitivity, PPV, and F-Score of IsoDE-All (with 20 bootstrap runs per

condition), edgeR, and GFOLD on the Illumina MCF-7 data, computed for quintiles

of expressed genes after sorting in non-decreasing order of average FPKM for IsoDE

and GFOLD and average count of uniquely aligned reads for edgeR. First quintile of

edgeR had 0 differentially expressed genes according to the ground truth (obtained

by using all 7 replicates).

[width=16cm]ReplicatesFC1-5.pdf

Figure 5: Sensitivity, PPV, F-Score, and accuracy of IsoDE-All (with 20 bootstrap

runs per condition), edgeR, and GFOLD on the Illumina MCF-7 data with varying

number of replicates and minimum fold change 1.5.

[width=16cm]ReplicatesFC2.pdf

Figure 6: Sensitivity, PPV, F-Score, and accuracy of IsoDE-All (with 20 bootstrap

runs per condition), edgeR, and GFOLD on the Illumina MCF-7 data with varying

number of replicates and minimum fold change 2.
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Fold Change Method Accuracy % Sensitivity % PPV % F-Score %

1

FishersTotal 51.09% 48.76% 96.04% 64.68%
FishersHousekeeping 46.42% 43.65% 97.58% 60.32%
FisherERCC 55.04% 54.33% 88.86% 67.43%
GFOLD 60.44% 60.84% 83.09% 70.24%
IsoDE-All 79.56% 84.37% 80.50% 82.39%

1.5

FisherTotal 62.34% 56.02% 90.43% 69.19%
FisherHousekeeping 61.61% 52.20% 94.46% 67.24%
FisherERCC 60.44% 57.17% 85.92% 68.66%
GFOLD 64.09% 62.91% 82.87% 71.52%
IsoDE-All 74.60% 80.69% 82.10% 81.39%

2

FisherTotal 69.05% 60.47% 85.81% 70.94%
FisherHousekeeping 70.36% 58.84% 90.03% 71.17%
FisherERCC 67.30% 60.00% 82.96% 69.64%
GFOLD 72.55% 65.12% 86.96% 74.45%
IsoDE-All 76.50% 79.77% 81.28% 80.52%

Table 8: Accuracy, sensitivity, PPV and F-Score in % for ION Torrent pair HBRR:

GOG-139 281 and UHRR: POZ-127 270, with fold change threshold f of 1, 1.5,

and 2. The number of bootstrap samples for IsoDE-All is M = 20, and bootstrap

support was determined using the binomial model with significance level α = 0.05.

Number of Replicates Rep1 Rep2 Rep3 Rep4 Rep5 Rep6 Rep7 Bootstrap Samples Per Condition
1 20 20
2 10 10 20
3 7 7 6 20
4 5 5 5 5 20
5 4 4 4 4 4 20
6 4 4 3 3 3 3 20
7 3 3 3 3 3 3 2 20

Table 9: IsoDE setup for experiments with replicates. IsoDE experiments on the

MCF-7 dataset was performed as follows. First we generated, for each of the 7

replicates of each condition 20, 10, 6, 5, 4, 3, respectively 2 bootstrap samples. We

then used subsets of these bootstrap samples as input for IsoDE to perform DE

analysis with varying number of replicates and a fixed total number M = 20 of

bootstrap samples per condition. In experiment 1 we used 20 bootstrap samples

from first replicate of each condition, in experiment 2 we used 10 bootstrap samples

for each of the first 2 replicates of each condition, and so on.
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