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Abstract.
Motivation: Poultry farms are susceptible to viral infections which cause sig-
nificant economic losses worldwide in terms of impaired growth, reduced egg
production and quality, and even mortality. In the United States where infec-
tions with virulent strains of Newcastle disease and highly pathogenic avian
influenza are not common, the infectious bronchitis virus (IBV) is the biggest
single cause of economic loss. Viral quasispecies sequences reconstruction by an-
alyzing high-throughput sequencing data will contribute to understanding the
roles and interactions of host animal (chicken) and viral genomes for improving
animal health, well-being, and production efficiency which is one of the goals
included in Blueprint for USDA Efforts in Agricultural Animal Genomics(2008-
2017).
Methods: We propose a computational pipeline for quasispecies (closely related
variants to ancestral genome) reconstruction consisting of 3 phases: (1) Read Er-
ror Correction (2) Read Alignment and (3) Reconstruction of Viral Quasispecies.
We vary different parameter values of the pipeline, i.e parameter tuning, to get
better results.
Results: Our experiments show that varying the parameter settings: (1) number
of mismatches between superreads and subreads, (2) number of mismatches in
the overlap between two superreads, (3) mutation rate, to reconstruct IBV qua-
sispecies. We get better results in terms of Average Distance to Clones(ADC),
and Average Prediction Error(APE).

Keywords: viral quasispecies, high-throughput sequencing, next-generation se-
quencing.

Introduction. Viral infections cause a significant burden on animal health,
reducing yields and increasing production costs due to expensive control pro-
grams. Vaccination is a vital part of control programs; however, its effectiveness
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is reduced by the quick evolution of escape viral quasispecies in animal hosts.
Existing techniques for studying quasispecies evolution and response to vaccines
have severely limited sensitivity and often require prior knowledge of sequence
polymorphisms. By generating millions of short reads per run with no need
for culture or cloning, next-generation sequencing (NGS) technologies enable
comprehensive identification of viral quasispecies infecting an animal. However,
analysis of NGS data is challenging due to the huge amount of data on one hand,
and to the short read lengths and high error rates on another.
Methods. Many tools developed for Sanger reads do not work at all or have im-
practical runtimes when applied to NGS data. Even newly developed algorithms
for de novo genome assembly from NGS data are tuned for reconstruction of
haploid genomes, and work poorly when the sequenced sample contains a large
number of closely related sequences, as is the case in viral quasispecies. To ad-
dress these shortcomings we introduce a computational pipeline for accurate re-
construction of viral quasispecies sequences and estimate their frequencies from
HTS data where it incorporates different NGS reads error correction methods,
aligners, and genome assemblers (ViSpA [1], and ShoRAH [2, 3]), using different
tuning parameters. We apply experiments on IBV 454 shotgun reads, collected
from commercial poultry farms. For method validation we use IBV sanger clones
(as ground truth).

The proposed computational pipeline for quasispecies reconstruction, consists
of the following stages:

1. Read Error Correction. 454 Life Sciences can erroneously sequence one
base pair per 1000 [4]. The error rate is strongly related to the presence
and size of homopolymers [5], i.e., genome regions consisting of consecutive
repetition of a single base (for example, TTTTT). We use KEC, SAET, and
ShoRAH programs to do error correction prior to assembly which involve
clustering of reads. ShoRAH clusters the reads in Bayesian fashion using the
Dirichlet process mixture [2]. KEC clusters reads based on kmers [6], while
Saet uses reads quality scores for error correction.

2. Read Alignment. In this step, we use an independent alignment program
to map reads against a reference viral sequence[7]. This aligner can be easily
replaced with another one.

3. Reconstruction of Viral Quasispecies. In this step, we use two assembly
programs ViSpA [1] and ShoRAH [2] to reconstruct quasispecies from aligned
reads and estimate their relative frequecies.

VispA [1] executes the following steps and outputs the quasispecies spec-
trum(i.e. quasispecies sequences and their relative frequencies):

• Preprocess Aligned Reads. ViSpA uses placeholders I and D for
aligned reads containing insertions and deletions, in this process it do
a simplistic error correction. Deletions supported by a single read are
replaced either with the allele present in all the other reads in the same
position if they are the same, or with N(unknown base pair), and removes
insertions supported by a single read.
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• Construct the Read Graph. In the read graph each vertex corre-
sponds to a read and each directed edge connects two overlapping reads.
ViSpA differentiates between two types of reads, super-read and sub-read
which is a substring of the super-read. The read graph consists only of
super-reads.

• Assemble Candidate Quasispecies Sequences. Each candidate qua-
sispecies corresponds to a path in the read graph. ViSpA uses what is
so called max-bandwidth paths for assembly.

• Estimate Frequency of Haplotype Sequences. In this step, ViSpA
uses Expectation Maximaization algorithm to estimate the frequency of
each reconstructed sequence using both super-reads and sub-reads.

ShoRAH [2, 3] executes the following steps and outputs the quasispecies spec-
trum:

• Align Reads. The first step for ShoRAH is producing a Multiple Se-
quence Alignment (MSA) of reads, it use its own aligner to align all
reads to the reference and from the set of pairwise alignments it builds
a MSA.

• Correct Reads from Genotyping Errors (Local Haplotype Re-
construction). While ViSpA uses independent error correction pro-
grams, ShoRAH uses its own error correction method. Sequencing er-
rors are corrected by a Bayesian inference algorithm which estimates the
quality of the reconstruction, although only the maximum likelihood es-
timate is passed on to subsequent steps. ShoRAH implements a specific
probabilistic clustering method based on the Dirichlet process mixture
for correcting technical errors in deep sequencing reads and for highlight-
ing the biological variation in a genetically heterogeneous sample.

• Reconstruct Global Haplotype. This step is similar to assembly of
candidate quasispecies sequences in ViSpA.

• Estimate Frequency. In this step, ShoRAH estimates the frequency
of each candidate sequence.

Compared Methods. We vary different parameter values, what we call param-
eter tuning. The following tuning parameters are used for ViSpA quasispecies
reconstruction:

• n : number of mismatches between superreads and subreads,
• m : number of mismatches in the overlap between two superreads,
• t : mutation rate.

For ShoRAH, we use the default parameters for quasispecies reconstruction.

Gold Standards. Reads samples were collected from infected chickens, and
quasispecies variants (1610 base pair length) were sequenced using life sciences
454 shotgun sequencing, followed by sanger sequencing of individual variants.
We got 10 sanger clones (c1,...,c10) of average length 546 base pairs recovering a
fraction of the full spectrum of quasispecies variants. These clones are considered
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as the gold standards or the ground truth for parameter calibration and com-
parison with different methods. We measured the pairwise edit distance between
all clones, clone(c8) have a large edit distance with others (between 40 and 45)
and is considered as an outlier.

Comparison Measures. Before defining methods validation, we need to define
the following parameters:

Symbol Description

ci: sanger clone i, 1 ≤ i ≤ 10 ;
qj : reconstructed quasispecies j ;
fci : frequency of sanger clone i;
fqj : frequency of reconstructed quasispecies j;
mi: how far is clone i from closest reconstructed quasispecies;
mj : how far is reconstructed quasispecies j from closest clone ;

mi and mj are defined as follows:

mi = min
j

(ci, qj)

mj = min
i

(ci, qj)

To validate different methods, we use the following two measures:

• Average Distance to Clones(ADC)=
∑

ci
mi · fci

• Average Prediction Error (APE)=
∑

qj
mj · fqj

ADC and APE are respectively analogous to sensitivity, and positive pre-
dictive value (PPV). But they are different in sense that ADC and APE have
better quality whenever they are close to 0, while sensitivity and ppv have better
quality when they are close to 1. We disregard one of the clones (c8) in ADC
calculation, since it is an outlier.

Results and Discussion. In our experiments we use different setting values to
get the best values of ADC and APE for different methods (Figure 1).

We say that methodA dominates methodB if both ADC & APE values of
methodA are less than or equal to the corresponding ADC & APE values of
methodB . By looking on Figure 1, we see that methods v125KEC(v:vispa assem-
bler, 1:n, 2:m, 5:t, KEC:correction method), v2210KEC, and v120SAET domi-
nate all other methods, i.e. have the best values in terms of ADC & APE. Our
results suggest that using different methods with different parameter calibra-
tion and parameter settings can improve the solution and predictive power of
quasispecies inference problem in terms of recall, precision, and frequency.
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Fig. 1. Evaluation Diagram for Average Prediction Error and Average Dintance to
Clones.
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