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Abstract.
An interesting approach to study the metabolic differences between species is
metabolic pathway. In this study, we characterize pathways activity levels of two
samples. We applied our proposed methods on RNA-Seq Bugula neritina metage-
nomics data. We successfully identified several differential pathway activity and
we selected 3 of them for qPCR validation.
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1 Introduction

For the past several years, transcriptome sequencing through deep sequencing tech-
nologies or RNA-Seq, has revolutionized sequencing technologies with the many ad-
vantages it provides. Because of RNA-Seq, it is easier to characterize transcripts and
their isoforms, to detect genes without need of prior information in the form of probe,
also RNA-Seq can estimate expression level of transcript over a wide range with good
precision.
The problem of transcriptome quantification has been recently shown extremely im-
portant since an estimated rate of 84% of protein level variation can be explained by
transcription alone without taking in account variation in translation and degradation
[1, 2] while the rate drops to only 73% for microarray data.
This paper primary goal is to develop highly accurate algorithms for metabolic pathway
activity level estimation and testing differential pathway activity. Activity levels will be
inferred using expectation maximization algorithms applied to novel uniform binary
and maximum likelihood models while robust testing of pathway significance will be
achieved by employing a novel graph-based approach.
In contrast to array-based methods, pathway analysis based on RNA-seq data does
not measure gene expression directly but allows inference based on total RNA con-
tent. When applied to metatranscriptome data, the first challenge of pathway analysis
is to decide which metabolic pathways are active in the sampled community (i.e., path-
way activity detection). Recent software tools (MEGAN4 [3] and MetaPathways [4]
using SEED and KEGG [5] annotations) enable the organization of transcripts into
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ortholog groups and pathways by collecting all pathways represented by at least one or-
tholog group. The parsimonious approach MinPath [6] identifies the smallest family of
pathways covering all expressed ortholog groups. A more elaborate MCMC approach
takes into account the co-occurrences of genes in more than one pathway for analyz-
ing metagenomic data [7]. Following pathway detection, the second major challenge of
pathway analysis is to infer pathway activity levels to enable detection of differential
expression. Few existing tools incorporate this step, a major focus of this paper.
Methods that treat pathways as simple gene sets [8, 9] are popular even though they
do not use all information available. In recent years, a number of pathway analysis
methods have been developed that combine knowledge of pathway topology (e.g., gene
position on the pathway, gene-gene interactions, etc) with gene expression data based on
comparative analyses (reviewed in [10]). Such methods have been applied primarily to
experimental studies of single organisms. Despite the inherent pathway architecture of
microbial biochemical function, relatively few analyses of complex metatranscriptomic
datasets incorporate pathway-level inference of metabolic activity. We explore this new
analysis techniques on a particular metagenomics RNA-Seq data from Bugula neritina.
In this paper, we represent metabolic pathways as graphs that use nodes to represent
biochemical compounds, with enzymes associated with edges describing biochemical
reactions. Ideally, a comprehensive pathway analysis method would be able to take into
consideration the position and role of each gene in a pathway, the efficiency with which
a certain reaction is carried out, and the rate limiting conditions. With genome data, it
is possible to consider pathways size, gene length and overlap in gene content among
pathways [7] to compute the relative abundance of pathways and pathway ranking, but
this approach might not work with RNA-Seq data.
Another representation of pathways we will use in this paper is to view the ortholog
group as a set cover. We will use a binary ortholog group expression model to tell if
there is or not RNA-seq evidence for the expression of a given ortholog group in a
given sample.
The validation step of these methods consist of extracting the proteins involve in our
estimated differential pathways activity levels, and analyzing their expression levels
or transcript frequency estimation. We expect to see the differential pathway activity
confirmed at the protein and contigs level. We carry this final analysis through the novel
bootstrapping tool IsoDE [11].
Our experimental study was made on Bugula neritina RNA-Seq data. Using the two
novel computational approaches we implemented, we were able to find differentially
expressed pathways from the data. This result is been validated by quantitative PCR
(qPCR) conducted using a housekeeping gene also identified in the data. Since the
qPCR experiment is time consuming and expensive, the in-vitro analysis is limited to
the following pathways: K04369, K05087 and K16332 selected from our results.

2 Methods

2.1 Binary model of pathway activity

In this section we present an EM-based algorithms for inferring pathway activity levels
based on metatranscriptome sequence data. By de novo co-assembly of RNA-seq data
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and BLAST-ing resulting contigs against protein databases, with a certain confidence,
we can infer the ortholog groups expressed in the sample. From the pathway databases
we can easily extract the enzyme information associated with each pathway. Let w be a
pathway that is considered to be a set of enzymes represented by their ortholog groups
w = {p1, . . . , pk}. Since an ortholog group can have multiple functions and participate
in multiple pathways, the pathways can be viewed as a family of subsets W of the set
of all ortholog groups P . Below we first introduce a uniform binary pathway activity
model based on a discrete ortholog group expression model.

The uniform binary pathway activity model is based on the assumptions of uniformity,
namely that each molecule from an ortholog group participates in each active path-
way with the same probability (i.e., in equal proportions) and of binary activity, which
postulates that a pathway is active if the level of ortholog group activity exceeds a
certain (possibly pathway dependent) threshold. Formally, let δ(w) be a binary vari-
able indicating the activity status of w, i.e., δ(w) = 1 if w is active and δ(w) = 0,
otherwise. Also let the activity level of pathway w be the summation over constituent
ortholog groups g of their participation gw in w. Since we assume that each ortholog
group g is equally likely to participate in each pathway containing it, it follows that
gw = (1 +

∑
w′3p,w′ 6=w δ(w

′))−1 and the activity level fw of pathway w is given by

fw =
∑
g∈w

gw =
∑
g∈w

1

1 +
∑

w′3g,w′ 6=w δ(w
′)

(1)

The binary activity status of w is computed from its activity level fw and the threshold
Tw as follows

δ(w) =

{
0 if fw < Tw
1 if fw ≥ Tw

(2)

The uniform binary model described by equations (1)-(2) can be solved using a simple
iterative algorithm. The algorithm starts with assigning activity status δ(w) = 1 to
each pathway w ∈ W , i.e., ∆0(W ) = {δ0(w)|w ∈ W} ← 1 and then repeatedly
updates the activity level according to (1) and the activity status according to (2). The
procedure terminates when the status sequence∆0(W ) = 1, ∆1(W ), ∆2(W ), . . . starts
to oscilate ∆n+k(W ) = ∆n(W ). In all our preliminary experiments, an oscilation
with period k = 2 is achieved in at most 10 iterations. Also the threshold Tw does not
significantly change the order of pathways sorted with respect to their activity levels
estimated as the mean fw after convergence. This model is better explain by the right
side of Figure 1.

2.2 Graph-based estimation of pathway significance

In our second approach, each pathway can be viewed as a network of enzymes also
called EC numbers (Enzyme Commission number). In this paper, we convert pathways
to graphs - vertice and nodes components - to compute their statistical significance.
We also propose to distinguish active pathways using a permutation model for finding
significant pathway alignments and motifs [12].
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This model assumes that the subset of expressed enzymes in an active annotated path-
way should be connected. The enzyme permutation model finds the average vertex de-
gree in the subgraph induced by expressed enzymes. Then the same parameter is com-
puted for sufficiently many random permutations of enzyme labels. The statistically
significant match should have density higher than in 95% of permutations. Specific
characteristics of the graph taken into account in our analysis are: (1) Number of nodes.
A node represents a protein that got mapped during BLAST. In KEGG, their color is
green as shown in Figure ??, (2) Number of green connected components, (3) Largest
Number of nodes in connected component and (4) Largest Number edges in connected
component.
Using these metrics, we compute the density of the induced graph composed by only
mapped proteins. We obtain the names of those proteins through EC numbers on the
graph. We also compute the density without mapping, assuming all proteins were de-
tected in the organism. Below, we present two graph-based models, the vertex label
swapping and the edge swapping, to analyze pathways. This model is better explain by
the left side of Figure 1.

Model 1: Vertex label swapping
In this model, we keep the same topology but we allow swapping of labels between
two vertices. One known issue of this approach is, vertex with high degree always get
connected. This might lead to too many significant matches.

Model 2: Edge swapping
Because of the bias in the vertex label swapping model, we will also implement the
edge swapping. Here, the plan is to keep the in-degree and out-degree of each node the
same, swapping nodes only if these value does not change. We keep vertex labels the
same.

3 Results and Discussion

3.1 Results

We used KEGG to generate pathways from Trinity contigs and proteins form BLASTX
as input. Then we extracted all pathways along with all mapped protein. KEGG repre-
sents proteins as ko number and we also follow this representation. The next step was
to download all KGML - KGML is an exchange format of KEGG pathway maps- files
associated with the pathways using the API provided by KEGG. To convert KGML
files to graph of node and vertices, we implemented and ran a novel tool called KGML-
Pathway2Graph. Mapping the output of KGMLPathway2Graph with ko numbers from
KEGG analysis of our data, allowed us to compute pathway significance through p-
value.
This analysis was made between sample 1 and sample 2 of the Bugula neritina data.
Sample 1 contains the Symbiont bacteria while this symbioisis relationship is not present
in the Bugula from sample 2. Results are presented in Table 1.
In the auxiliary materials, we present the following results: (1) Transcripts differential
expression (DE) analysis results: DE contigs using IsoDE [11] and Fisher’s exact test
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Fig. 1: Proposed metatranscriptomic analysis flows.

with housekeeping gene), (2) Pathway activity estimation results and finally (3) Differ-
ential Analysis of pathway expression.
From our statistical analysis, We got some pathways which were found differentially
expressed by all methods. The next step is to experimentally validate these results. The
following housekeeping gene - contig code m.4423 - was experimentally detected and
will be used to validate our results. Since the qPCR experiment is time consuming and
expensive, then we will limit the in-vitro analysis to the following pathways: K04369,
K05087 and K16332 .

Pathway P-value1 P-value2 Expression1 Expression2 Diff. Sign. Diff. Act. Inter
KO04068 8542 7871 6094 14160 yes yes yes
KO01230 8458 7766 5975 14097 yes yes yes
KO04020 8204 7592 5841 13713 yes yes yes
KO04145 8088 7472 5766 13567 yes no yes
KO05012 7906 22C A 23s. 22C yes. yes yes

Table 1: P-valuel1 and P-value2 are respectively from Vertex label and Edge swapping
model. Expression1 and Expression2 represent the expression of the pathway activity.
This table presents the most significant divergence in pathway results, using the criteria
described in section 2, they are declared differentially significant.
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3.2 Discussion

Although all the EM and the graph-based methods worked on the same data generated
by KEGG, the input to each approach were very different. Example, running trinity
output of sample1 on KEGG generate about 179 pathways. All of these pathways were
considered for EM methods while only a small subset of 80 was used as input to each
of the graph-based model. Different factor contributed to only about one third of the
pathways to be analyzed in the edge/vertex swapping model: (1) we were not able to
extract the KGML of all pathways from from Kegg; (2) we were not able to convert
all KGML to actual graph and (3) some graph didn’t carry enough mapping to be be
significant (we excluded pathways with less than 3 ortholog group mapped).
Consequently, the graph-based approaches yield considerable less results than EM meth-
ods although results from both models in the graph-based approaches were very con-
sistent. Also, the graph-based analysis appears to be more stringent selecting only the
pathways which are the farthest apart according to our statistic criteria.

4 Conclusions

Biomelcular interactions through tool like KEGG provide huge data and enable us to
have a better understanding of metabolic pathways. Two approaches were designed
to estimate pathway activity as well as pathway significance, a graph-based and an
expectation maximization approach. Our experimental comparisons on Bugula neritina
RNA-seq data is able to show at the protein level, the difference in the pathways activity
of two samples. Our results will undergo a final validation through qPCR analysis.
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