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Abstract

In this thesis we propose new solution methods for designing tag sets for use in universal

DNA arrays. First, we establish upper bounds for an extended version of a previous

formalization. Second, we give integer linear programming formulations for two previous

formalizations of the tag set design problem, and show that these formulations can be

solved to optimality for instance sizes of practical interest by using general purpose

optimization packages. Third, we note the benefits of periodic tags, and establish an

interesting connection between the tag design problem and the problem of packing the

maximum number of vertex-disjoint directed cycles in a given graph. We show that

combining a simple greedy cycle packing algorithm with a previously proposed alphabetic

tree search strategy yields an increase of over 40% in the number of tags compared to

previous methods. Most of the results presented in this thesis have already appeared in

the following publications [31, 30]:

1. I.I. Mandoiu and D. Trinca. Exact and Approximation Algorithms for DNA Tag

Set Design. In Proceedings of the 16th Annual Symposium on Combinatorial Pat-

tern Matching (CPM 2005), June 19–22, 2005, Korea. Lecture Notes in Computer

Science, volume 3537, pages 383–393, Springer-Verlag. Extended version accepted

to Journal of Computational Biology, and also available as ACM Computing Re-

search Repository report cs.DS/0503057.

2. I.I. Mandoiu, C. Prajescu, and D. Trinca. Improved Tag Set Design and Multi-

plexing Algorithms for Universal Arrays. In Proceedings of the 5th International

Conference on Computational Science (ICCS 2005)/ 2005 International Workshop

on Bioinformatics Research and Applications (IWBRA), May 22–25, 2005, At-

lanta, GA, USA. Lecture Notes in Computer Science, volume 3515, pages 994–1002,

Springer-Verlag. Extended version appeared in LNCS Transactions on Computa-

tional Systems Biology, volume 3680, pages 124–137, 2005, Springer-Verlag; also

available as ACM Computing Research Repository report cs.DS/0502054.
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Chapter 1

Introduction

Oligonucleotides are short single-stranded pieces of DNA (typically 15-50 nucleotides)

made by chemical synthesis. In solution, oligonucleotides tend to specifically hybridize

with their Watson-Crick complements ([41]), and form a stable DNA duplex. This speci-

ficity is exploited in molecular hybridization assays, in which oligonucleotides are used

as probes to identify any complementary (or near complementary) DNA from a complex

mixture of target DNA.

Array-based hybridization assays, introduced in the late 1980s [14, 23, 26, 38, 8, 12],

offer the possibility of simultaneously monitoring a multitude (currently up to tens of

thousands) of hybridization reactions. In such an assay, a target-specific set of oligonu-

cleotides is synthesized on a solid support surface (e.g., silicon or glass). A fluorescently

labeled target sample mixture of DNA or RNA fragments is then brought in contact

with the treated surface, and allowed to hybridize with the synthesized oligonucleotides.

Scanning the fluorescent labels of the fragments attached to the array reveals informa-

tion about the content of the sample mixture. Theoretically, the assay conditions are

such that hybridization only occurs in sites on the surface that are Watson-Crick comple-

ments to some substring in the target. In practice, cross-hybridization is a main source

of cross-signal contamination in any array-based hybridization assay.

Array-based hybridization assays show great potential for many different applica-

tions such as SNP genotyping [19], gene expression profiling [3], and resequencing DNA

[24, 19]. Recently, S. Brenner and others [10, 28] suggested an alternative approach

based on universal arrays containing oligonucleotides called antitags. The Watson-Crick

complement of each antitag is called a tag. The tag-antitag pairs are designed so that
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each tag hybridizes strongly to its complementary antitag, but not to any other antitag.

In this approach, the analysis of a DNA sample consists of two steps: solution-phase

hybridization followed by solid-phase hybridization. In the first step, hybridization takes

place between the target DNA in solution and a set of oligonucleotide precursors called

reporter molecules. Each reporter molecule consists of a target-specific part ligated to a

unique tag. Reporter/target hybridization events are registered (e.g., by an enzymatic

reaction). In the second step the modified precursors are introduced to the array. Tags

form duplexes with the corresponding antitags. Thus, the reporter molecules are sorted

into different locations on the array and hybridization events can be determined. This

approach has several advantages:

• Complicated array manufacturing processes are required only for the fixed, univer-

sal component of the assay. These universal components can therefore be mass-

produced, significantly reducing manufacturing costs.

• The assay components that need to be designed for a specific target are involved

in solution phase processes. The underlying nucleic acid chemistry and thermo-

dynamics are better understood than the same aspects of surface-based processes.

Therefore a more efficient and effective design process is facilitated.

As an example, we describe a multiplexed SNP genotyping assay. SNPs (single nu-

cleotide polymorphisms) are differences, across the population, in a single base, within

an otherwise conserved genomic sequence [15]. Genotyping is a process that determines

the variants present in a given sample, over a set of SNPs. This assay uses off-the-shelf

universal components: a universal set of oligonucleotide tags and a universal array of

antitags. The antitags, immobilized on the array, are Watson- Crick complements of the

tags in the mixture. The whole system will be called a DNA Tag/AntiTag system and

in short a DNA TAT system. Consider a set of SNPs to be genotyped. The assay is

performed as follows:

1. A set of reporter molecules (one for each SNP) is synthesized in solution. Each

reporter molecule consists of two parts that are ligated (in string language: concate-

nated) together. The first part is the Watson-Crick complement of the upstream
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sequence that immediately precedes the polymorphic site of the SNP. The second

part of each reporter molecule is a unique tag from the universal set of tags.

2. When an individual is to be genotyped, a sample is prepared that contains the

sequences flanking each of the SNP loci. The sample is mixed with the reporter

molecules. Solution-phase hybridization then takes place. Assuming that specificity

is perfect, this results in the flanking sequences of the SNPs paired only with the

appropriate reporter molecule.

3. Single nucleotides, A,C,T,G, fluorescently labeled with four distinct colors, are added

to the mixture. These labeled nucleotides hybridize to the polymorphic site of each

SNP and are ligated to the corresponding reporter molecule. That is, each reporter

molecule is extended by exactly one labeled nucleotide.

4. The extended reporter molecules are separated from the sample fragments, and

brought into contact with the universal array. Assuming that specificity is perfect,

the tag part of each reporter molecule will only hybridize to its complementary

antitag on the array. Thus the extended reporter molecules sort into the array

sites where the corresponding antitag is present.

5. For each site of the array, the fluorescent colors present at that site are detected.

The colors indicate which bases were used for the extension at the corresponding

SNP site, and thus reveal the SNP variations present in the individual.

1.1 DNA Microarrays

A DNA microarray consists of a solid surface, usually a microscope slide, onto which

DNA molecules have been chemically bonded. The purpose of a microarray is to detect

the presence and abundance of labelled nucleic acids in a biological sample, which will

hybridise to the DNA on the array via Watson-Crick duplex formation, and which can

be detected via the label. In the majority of microarray experiments, the labelled nucleic

acids are derived from the mRNA of a sample or tissue, and so the microarray measures

gene expression. The power of a microarray is that there may be many thousands
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of different DNA molecules bonded to an array, and so it is possible to measure the

expression of many thousands of genes simultaneously.

Making Microarrays

There are two main technologies for making microarrays: robotic spotting and in-situ

synthesis. Spotting is the technology by which the first microarrays were manufactured.

The array is made using a spotting robot via three main steps:

1. Making the DNA probes to put on the array.

2. Spotting the DNA onto the glass surface of the array with the spotting robot.

3. Postspotting processing of the glass slide.

There are three main types of spotted array, which can be subdivided in two ways: by

the type of DNA probe, or by the attachment chemistry of the probe to the glass. The

DNA probes used on a spotted array can either be polymerase chain reaction (PCR)

products or oligonucleotides. In the first case, highly parallel PCR is used to amplify

DNA from a clone library, and the amplified DNA is purified. In the second case, DNA

oligonucleotides are presynthesised for use on the array.

The attachment chemistry can either be covalent or non-covalent. With covalent

attachment, a primary aliphatic amine (NH 2) group is added to the DNA probe and

the probe is attached to the glass by making a covalent bond between this group and

chemical linkers on the glass. With oligonucleotide probes, the amine group can be added

to either end of the oligonucleotide during synthesis, although it is more usual to add it

to the 5′ end of the oligonucleotide. With cDNA probes, the amine group is added to

the 5′ end of the PCR primer from which the probes are made. Thus the cDNA probes

are always attached from the 5′ end. With non-covalent attachment, the bonding of the

probe to the array is via electrostatic attraction between the phosphate backbone of the

DNA probe and NH 2 groups attached to the surface of the glass. The interaction takes

place at several locations along the DNA backbone, so that the probe is tethered to the

glass at many points. Because most oligonucleotide probes are shorter than cDNAs, these

interactions are not strong enough to anchor oligonucleotide probes to glass. Therefore,

non-covalent attachment is usually only used for cDNA microarrays. The DNA probes
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are organised in microtiter well plates, typically 384 well plates. Most modern spotting

robots will use a number of plates to print arrays, so the plates are arranged in a “hotel,”

whereby the robot is able to gain successive access to each of the plates. The spotting

robot itself consists of a series of pins arranged as a grid and held in a cassette. The pins

are used to transfer liquid from the microtiter plates to the glass array.

There are a number of different designs of pins. The first spotting robots used solid

pins; these can only hold enough liquid for one spot on the array, thus requiring the

pin cassette to return to the plate containing probe before printing the next spot. Most

array-making robots today have pins with a reservoir that holds liquid. This enables

higher throughput production of arrays because each probe can be spotted on several

arrays without the need to return the pins to the sample plates. The typical printing

process follows five steps:

1. The pins are dipped into the wells to collect the first batch of DNA.

2. This DNA is spotted onto a number of different arrays, depending on the number

of arrays being made and the amount of liquid the pins can hold.

3. The pins are washed to remove any residual solution and ensure no contamination

of the next sample.

4. The pins are dipped into the next set of wells.

5. Return to step 2 and repeat until the array is complete.

In the final phase of array production, the surface of the array can be fixed so that no

further DNA can attach to it. There are many fixing processes that depend on the precise

chemistry on the surface of the glass. The desired outcome is always the same: we do not

want DNA target from the sample to stick to the glass of the array during hybridisation,

so the surface must be modified so this does not happen. It is also common to modify

the surface so that the glass becomes more hydrophilic because this aids mixing of the

target solution during the hybridisation stage. Some microarray production facilities do

not fix their arrays.

These arrays are fundamentally different from spotted arrays: instead of presynthe-

sising oligonucleotides, oligos are built up base-by-base on the surface of the array. This
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takes place by covalent reaction between the 5′ hydroxyl group of the sugar of the last nu-

cleotide to be attached and the phosphate group of the next nucleotide. Each nucleotide

added to the oligonucleotide on the glass has a protective group on its 5′ position to pre-

vent the addition of more than one base during each round of synthesis. The protective

group is then converted to a hydroxyl group either with acid or with light before the

next roundof synthesis. The different methods for deprotection lead to the three main

technologies for making in-situ synthesised arrays:

1. Photodeprotection using masks: this is the basis of the Affymetrix [1] technology.

2. Photodeprotection without masks: this is the method used by Nimblegen and Febit.

3. Chemical deprotection with synthesis via inkjet technology: this is the method

used by Rosetta [34], Agilent [2] and Oxford Gene Technology [32].

Affymetrix Technology

Affymetrix arrays use light to convert the protective group on the terminal nucleotide

into a hydroxyl group to which further bases can be added. The light is directed to

appropriate features using masks that allow light to pass to some areas of the array but

not to others. This technique is known as photolithography and was first applied to the

manufacture of silicon chips. Each step of synthesis requires a different mask, and each

mask is expensive to produce. However, once a mask set has been designed andmade,

it is straightforward to produce a large number of identical arrays. Thus Affymetrix

technology is well suited for making large numbers of “standard” arrays that can be

widely used throughout the community.

Maskless Photodeprotection Technology

This technology is similar to Affymetrix technology in that light is used to convert the

protective group at each step of synthesis. However, instead of using masks, the light is

directed via micromirror arrays, such as those made by Texas Instruments [39]. These

are solid-state silicon devices that are at the core of some data projectors: an array of

mirrors is computer controlled and can be used to direct light to appropriate parts of

the glass slide at each step of oligonucelotide synthesis. This is the technology used by

Nimblegen and Febit.
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Inkjet Array Synthesis

Instead of using light to convert the protective group, deprotection takes place chemically,

using the same chemistry as a standard DNA synthesiser. At each step of synthesis,

droplets of the appropriate base are fired onto the desired spot on the glass slide via the

same nozzles that are used for inkjet printers; but instead of firing cyan, magenta, yellow

and black ink, the nozzles fire A, C, G, and T nucleotides. One of the main advantages of

micromirror and inkjet technologies over both Affymetrix technology and spotted arrays

is that the oligonucleotide being synthesised on each feature is entirely controlled by the

computer input given to the array-maker at the time of array production. Therefore,

these technologies are highly flexible, with each array able to contain any oligonucleotide

the operator wishes. However, these technologies are also less efficient for making large

numbers of identical arrays.

Synthesis Yields

The different methods of oligonucleotide synthesis have different coupling efficiencies:

this is the proportion of nucleotides that are successfully added at each step of synthe-

sis. Photodeprotection has a coupling efficiency of approximately 95%, whereas acid-

mediated deprotection of dimethoxytrityl protecting groups has a coupling efficiency of

approximately 98%. The effect on the yield of full-length oligos is dependent on the

length of the oligonucleotide being synthesised: the longer the oligonucleotide, the worse

the yield. This dependence is multiplicative, so that even a small difference in coupling

efficiency can make a large difference in the yield of long oligonucleotides. The compo-

sition of the final population of oligonucleotides produced depends on whether or not a

capping reaction is included during synthesis. Capping is used by Affymetrix and pre-

vents further synthesis on a failed oligonucleotide. As a result, all oligonucleotides on a

feature will have the same start, but will be of different lengths (e.g., with a coupling

efficiency of 95%, each feature will be 4.8% monomers, 4.5% dimers, 4.3% trimers, etc.).

In contrast, uncapped oligonucleotides allow further synthesis to take place. Therefore,

all the oligonucleotides on a feature will be of similar length but may contain random

deletions (e.g., with a coupling efficiency of 95% and synthesis of 20 mers, the average

probe length would be 19 bases, with such probes containing one deletion).
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Spot Quality

The quality of the features depends on the method of array production. Spotted array

images can be of variable quality. Affymetrix arrays have the problem that the masks

refract light, so light leaks into overlapping features; Affymetrix compensates for this

with their image-processing software, so the user need not worry about this problem.

Inkjet arrays tend to produce the highest quality features.

1.2 Universal DNA Arrays

Specific hybridization of oligonucleotides and their analogs is a fundamental process that

is employed in a wide variety of research, medical, and industrial applications, including

the identification of disease-related polynucleotides in diagnostic assays, screening for

clones of novel target polynucleotides, identification of specific polynucleotides in blots of

mixtures of polynucleotides, amplification of specific target polynucleotides, therapeutic

blocking of inappropriately expressed genes, DNA sequencing, and the like.

Specific hybridization has also been proposed as a method of tracking, retrieving, and

identifying compounds labeled with oligonucleotide tags. For example, in multiplex DNA

sequencing oligonucleotide tags are used to identify electrophoretically separated bands

on a gel that consist of DNA fragments generated in the same sequencing reaction. In

this way, DNA fragments from many sequencing reactions are separated on the same lane

of a gel which is then blotted with separate solid phase materials on which the fragment

bands from the separate sequencing reactions are visualized with oligonucleotide probes

that specifically hybridize to complementary tags. Similar uses of oligonucleotide tags

have also been proposed for identifying explosives, potential pollutants, such as crude

oil, and currency for prevention and detection of counterfeiting. More recently, systems

employing oligonucleotide tags have also been proposed as a means of manipulating and

identifying individual molecules in complex combinatorial chemical libraries.

The successful implementation of such tagging schemes depends in large part on the

success in achieving specific hybridization between a tag and its complementary probe.

That is, for an oligonucleotide tag to successfully identify a substance, the number of false

positive and false negative signals must be minimized. Unfortunately, such spurious sig-
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nals are not uncommon because base pairing and base stacking free energies vary widely

among nucleotides in a duplex or triplex structure. For example, a duplex consisting

of a repeated sequence of deoxyadenine (A) and thymidine (T) bound to its complement

may have less stability than an equal-length duplex consisting of a repeated sequence

of deoxyguanidine (G) and deoxycytidine (C) bound to a partially complementary tar-

get containing a mismatch. Thus, if a desired compound from a large combinatorial

chemical library were tagged with the former oligonucleotide, a significant possibility

would exist that, under hybridization conditions designed to detect perfectly matched

AT-rich duplexes, undesired compounds labeled with the GC-rich oligonucleotide–even

in a mismatched duplex–would be detected along with the perfectly matched duplexes

consisting of the AT-rich tag. In the molecular tagging system proposed by Brenner et

al., the related problem of mis-hybridizations of closely related tags was addressed by

employing a so-called “commaless” code, which ensures that a probe out of register (or

frame shifted) with respect to its complementary tag would result in a duplex with one

or more mismatches for each of its five or more three-base words, or “codons.”

Even though reagents, such as tetramethylammonium chloride, are available to negate

base-specific stability differences of oligonucleotide duplexes, the effect of such reagents

is often limited and their presence can be incompatible with, or render more difficult,

further manipulations of the selected compounds, e.g. amplification by polymerase chain

reaction (PCR), or the like.

Such problems have made the simultaneous use of multiple hybridization probes in

the analysis of multiple or complex genetic loci, e.g. via multiplex PCR, reverse dot

blotting, or the like, very difficult. As a result, direct sequencing of certain loci, e.g.

HLA genes, has been promoted as a reliable alternative to indirected methods employing

specific hybridization for the identification of genotypes.

The ability to sort cloned and identically tagged DNA fragments onto distinct solid

phase supports would facilitate such sequencing, particularly when coupled with a non

gel-based sequencing methodology simultaneously applicable to many samples in parallel.

Constructing Oligonucleotide Tags from Minimally Cross-Hybridizing

Sets of Subunits
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The nucleotide sequences of the subunits for any minimally cross-hybridizing set are con-

veniently enumerated by simple computer programs following a general algorithm. Such

an algorithm computes all minimally cross-hybridizing sets having subunits composed of

three kinds of nucleotides and having length of four.

Preferably, minimally cross-hybridizing sets comprise subunits that make approxi-

mately equivalent contributions to duplex stability as every other subunit in the set.

In this way, the stability of perfectly matched duplexes between every subunit and its

complement is appoximately equal.

A preferred embodiment of minimally cross-hybridizing sets are those whose subunits

are made up of three of the four natural nucleotides. As will be discussed more fully

below, the absence of one type of nucleotide in the oligonucleotide tags permits target

polynucleotides to be loaded onto solid phase supports by use of the 5′ → 3′ exonuclease

activity of a DNA polymerase.

Oligonucleotide tags and their complements are conveniently synthesized on an auto-

mated DNA synthesizer, using standard chemistries, such as phosphoramidite chemistry

and the like. Alternative chemistries, e.g. resulting in non-natural backbone groups,

such as phosphorothioate, phosphoramidate, and the like, may also be employed pro-

vided that the resulting oligonucleotides are capable of specific hybridization. In some

embodiments, tags may comprise naturally occuring nucleotides that permit processing

or manipulation by enzymes, while the corresponding tag complements may comprise

non-natural nucleotide analogs, such as peptide nucleic acids, or like compounds, that

promote the formation of more stable duplexes during sorting.

When microparticles are used as supports, repertoires of oligonucleotide tags and

tag complements are preferably generated by subunit-wise synthesis via “split and mix”

techniques. Briefly, the basic unit of the synthesis is a subunit of the oligonucleotide tag.

Preferably, phosphoramidite chemistry is used and 3′ phosphoramidite oligonucleotides

are prepared for each subunit in a minimally cross-hybridizing set. Synthesis proceeds in

direct analogy with the techniques employed to generate diverse oligonucleotide libraries

using nucleosidic monomers and the like. Generally, these techniques simply call for the

application of mixtures of the activated monomers to the growing oligonucleotide during
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the coupling steps. Double stranded forms of tags are made by separately synthesizing

the complementary strands followed by mixing under conditions that permit duplex

formation. Such duplex tags may then be inserted into cloning vectors along with target

polynucleotides for sorting and manipulation of the target polynucleotide.

In embodiments where specific hybridization occurs via triplex formation, coding of

tag sequences follows the same principles as for duplex-forming tags; however, there are

further constraints on the selection of subunit sequences. Generally, third strand asso-

ciation via Hoogsteen type of binding is most stable along homopyrimidine-homopurine

tracks in a double stranded target. Usually, base triplets form in T-A*T or C-G*C motifs

(where “-” indicates Watson-Crick pairing and “*” indicates Hoogsteen type of binding);

however, other motifs are also possible. For example, Hoogsteen base pairing permits

parallel and antiparallel orientations between the third strand (the Hoogsteen strand)

and the purine-rich strand of the duplex to which the third strand binds, depending on

conditions and the composition of the strands. Conditions for annealing single-stranded

or duplex tags to their single-stranded or duplex complements are well known.

Oligonucleotide tags may range in length from 12 to 60 nucleotides or basepairs.

Preferably, oligonucleotide tags range in length from 18 to 40 nucleotides or basepairs.

More preferably, oligonucleotide tags range in length from 25 to 40 nucleotides or base-

pairs. Most preferably, oligonucleotide tags are single stranded and specific hybridization

occurs via Watson-Crick pairing with a tag complement.

Attaching Tags to Molecules

Oligonucleotide tags may be attached to many different classes of molecules by a variety

of reactive functionalities well known in the art. When the functionalities and counter-

part reactants are reacted together, after activation in some cases, a linking group is

formed. Moreover, tags may be synthesized simultaneously with the molecules undergo-

ing selection to form combinatorial chemical libraries.

A class of molecules particularly convenient for the generation of combinatorial chem-

ical libraries includes linear polymeric molecules of the form

−(M − L).sub.n−
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wherein L is a linker moiety and M is a monomer that may selected from a wide range

of chemical structures to provide a range of functions from serving as an inert non-

sterically hindering spacer moiety to providing a reactive functionality which can serve

as a branching point to attach other components, a site for attaching labels; a site for

attaching oligonucleotides or other binding polymers for hybridizing or binding to a ther-

apeutic target; or as a site for attaching other groups for affecting solubility, promotion

of duplex and/or triplex formation, such as intercalators, alkylating agents, and the like.

The sequence, and therefore composition, of such linear polymeric molecules may be

encoded within a polynucleotide attached to the tag. However, after a selection event,

instead of amplifying then sequencing the tag of the selected molecule, the tag itself or

an additional coding segment can be sequenced directly–using a so-called “single base”

approach described below–after releasing the molecule of interest, e.g. by restriction di-

gestion of a site engineered into the tag. Clearly, any molecule produced by a sequence

of chemical reaction steps compatible with the simultaneous synthesis of the tag moieties

can be used in the generation of combinatorial libraries.

Solid Phase Supports

Solid phase supports may have a wide variety of forms, including microparticles, beads,

and membranes, slides, plates, micromachined chips, and the like. Likewise, solid phase

supports may comprise a wide variety of compositions, including glass, plastic, sil-

icon, alkanethiolate-derivatized gold, cellulose, low cross-linked and high cross-linked

polystyrene, silica gel, polyamide, and the like. Preferably, either a population of dis-

crete particles are employed such that each has a uniform coating, or population, of

complementary sequences of the same tag (and no other), or a single or a few sup-

ports are employed with spacially discrete regions each containing a uniform coating,

or population, of complementary sequences to the same tag (and no other). In the lat-

ter embodiment, the area of the regions may vary according to particular applications.

Preferably, such regions are spacially discrete so that signals generated by events, e.g.

fluorescent emissions, at adjacent regions can be resolved by the detection system being

employed. In some applications, it may be desirable to have regions with uniform coat-

ings of more than one tag complement, e.g. for simultaneous sequence analysis, or for
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bringing separately tagged molecules into close proximity.

Tag complements may be used with the solid phase support that they are synthe-

sized on, or they may be separately synthesized and attached to a solid phase support

for use. Preferably, tag complements are synthesized on and used with the same solid

phase support, which may comprise a variety of forms and include a variety of linking

moieties. Such supports may comprise microparticles or arrays, or matrices, of regions

where uniform populations of tag complements are synthesized. A wide variety of mi-

croparticle supports may be used, including microparticles made of controlled pore glass

(CPG), highly cross-linked polystyrene, acrylic copolymers, cellulose, nylon, dextran,

latex, polyacrolein, and the like. Microparticle supports further include commercially

available nucleoside-derivatized CPG and polystyrene beads; derivatized magnetic beads;

polystyrene grafted with polyethylene glycol; and the like. Selection of the support char-

acteristics, such as material, porosity, size, shape, and the like, and the type of linking

moiety employed depends on the conditions under which the tags are used. For example,

in applications involving successive processing with enzymes, supports and linkers that

minimize steric hinderance of the enzymes and that facilitate access to substrate are

preferred.

As mentioned above, tag complements may also be synthesized on a single (or a few)

solid phase support to form an array of regions uniformly coated with tag complements.

That is, within each region in such an array the same tag complement is synthesized.

Attaching Target Polynucleotides to Microparticles

An important aspect is the sorting of populations of identical polynucleotides, e.g. from

a cDNA library, and their attachment to microparticles or separate regions of a solid

phase support such that each microparticle or region has only a single kind of polynu-

cleotide. This latter condition can be essentially met by ligating a repertoire of tags to a

population of polynucleotides followed by cloning and sampling of the ligated sequences.

A repertoire of oligonucleotide tags can be ligated to a population of polynucleotides

in a number of ways, such as through direct enzymatic ligation, amplification, e.g. via

PCR, using primers containing the tag sequences, and the like. The initial ligating step

produces a very large population of tag-polynucleotide conjugates such that a single tag
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is generally attached to many different polynucleotides. However, by taking a sufficiently

small sample of the conjugates, the probability of obtaining “doubles,” i.e. the same tag

on two different polynucleotides, can be made negligible. (Note that it is also possible to

obtain different tags with the same polynucleotide in a sample. This case simply leads

to a polynucleotide being processed, e.g. sequenced, twice). As explained more fully

below, the probability of obtaining a double in a sample can be estimated by a Poisson

distribution since the number of conjugates in a sample will be large, e.g. on the order of

thousands or more, and the probability of selecting a particular tag will be small because

the tag repertoire is large, e.g. on the order of tens of thousand or more. Generally,

the larger the sample the greater the probability of obtaining a double. Thus, a design

trade-off exists between selecting a large sample of tag-polynucleotide conjugates–which,

for example, ensures adequate coverage of a target polynucleotide in a shotgun sequenc-

ing operation, and selecting a small sample which ensures that a minimal number of

doubles will be present. In most embodiments, the presence of doubles merely adds an

additional source of noise or, in the case of sequencing, a minor complication in scanning

and signal processing, as microparticles giving multiple fluorescent signals can simply

be ignored. As used herein, the term “substantially all” in reference to attaching tags

to molecules, especially polynucleotides, is meant to reflect the statistical nature of the

sampling procedure employed to obtain a population of tag-molecule conjugates essen-

tially free of doubles. The meaning of substantially all in terms of actual percentages

of tag-molecule conjugates depends on how the tags are being employed. Preferably, for

nucleic acid sequencing, substantially all means that at least eighty percent of the tags

have unique polynucleotides attached. More preferably, it means that at least ninety

percent of the tags have unique polynucleotides attached.

Single Base DNA Sequencing

The mechanism presented can be employed with conventional methods of DNA sequenc-

ing, but for parallel, or simultaneous, sequencing of multiple polynucleotides, a DNA

sequencing methodology is preferred that requires neither electrophoretic separation of

closely sized DNA fragments nor analysis of cleaved nucleotides by a separate analytical

procedure, as in peptide sequencing. Preferably, the methodology permits the stepwise
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identification of nucleotides, usually one at a time, in a sequence through successive

cycles of treatment and detection.

A “single base” method of DNA sequencing which is suitable for use with the method

described and which requires no electrophoretic separation of DNA fragments comprises

the following steps: (a) ligating a probe to an end of the polynucleotide having a pro-

truding strand to form a ligated complex, the probe having a complementary protruding

strand to that of the polynucleotide and the probe having a nuclease recognition site;

(b) removing unligated probe from the ligated complex; (c) identifying one or more nu-

cleotides in the protruding strand of the polynucleotide by the identity of the ligated

probe; (d) cleaving the ligated complex with a nuclease; and (e) repeating steps (a)

through (d) until the nucleotide sequence of the polynucleotide is determined. As is

described more fully below, identifying the one or more nucleotides can be carried out

either before or after cleavage of the ligated complex from the target polynucleotide.

Preferably, whenever natural protein endonucleases are employed, the method further

includes a step of methylating the target polynucleotide at the start of a sequencing

operation.

An important feature of the method is the probe ligated to the target polynucleotide.

Generally, the probes are double stranded DNA with a protruding strand at one end.

The probes contain at least one nuclease recognition site and a spacer region between the

recognition site and the protruding end. Preferably, probes also include a label, which in

this particular embodiment is illustrated at the end opposite of the protruding strand.

The probes may be labeled by a variety of means and at a variety of locations, the only

restriction being that the labeling means selected does not interfer with the ligation step

or with the recognition of the probe by the nuclease.

It is not critical whether protruding strand of the probe is a 5′ or 3′ end. However, it is

important that the protruding strands of the target polynucleotide and probes be capable

of forming perfectly matched duplexes to allow for specific ligation. If the protruding

strands of the target polynucleotide and probe are different lengths the resulting gap can

be filled in by a polymerase prior to ligation. Preferably, the number of nucleotides in

the respective protruding strands are the same so that both strands of the probe and
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target polynucleotide are capable of being ligated without a filling step. Preferably, the

protruding strand of the probe is from 2 to 6 nucleotides long.

The complementary strands of the probes are conveniently synthesized on an auto-

mated DNA synthesizer, using standard chemistries. After synthesis, the complementary

strands are combined to form a double stranded probe. Generally, the protruding strand

of a probe is synthesized as a mixture, so that every possible sequence is represented in

the protruding portion.

Parallel Sequencing

The tagging system can be used with single base sequencing methods to sequence polynu-

cleotides up to several kilobases in length. The tagging system permits many thousands

of fragments of a target polynucleotide to be sorted onto one or more solid phase sup-

ports and sequenced simultaneously. In accordance with a preferred implementation of

the method, a portion of each sorted fragment is sequenced in a stepwise fashion on each

of the many thousands of loaded microparticles which are fixed to a common substrate–

such as a microscope slide–associated with a scanning system. The size of the portion

of the fragments sequenced depends of several factors, such as the number of fragments

generated and sorted, the length of the target polynucleotide, the speed and accuracy of

the single base method employed, the number of microparticles and/or discrete regions

that may be monitored simultaneously; and the like. Preferably, from 12-50 bases are

identified at each microparticle or region; and more preferably, 18-30 bases are identi-

fied at each microparticle or region. With this information, the sequence of the target

polynucleotide is determined by collating the 12-50 base fragments via their overlapping

regions.

Fragments may be generated from a target polynucleotide in a variety of ways, in-

cluding so-called “directed” approaches where one attempts to generate sets of fragments

covering the target polynucleotide with minimal overlap, and so-called “shotgun” ap-

proaches where randomly overlapping fragments are generated. Preferably, “shotgun”

approaches to fragment generation are employed because of their simplicity and inherent

redundancy. For example, randomly overlapping fragments that cover a target polynu-

cleotide are generated in the following conventional “shotgun” sequencing protocol. As
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used herein, “cover” in this context means that every portion of the target polynucleotide

sequence is represented in each size range, e.g. all fragments between 100 and 200 base-

pairs in length, of the generated fragments. Briefly, starting with a target polynucleotide

as an insert in an appropriate cloning vector, the vector is expanded, purified and di-

gested with the appropriate restriction enzymes. Typically, the protocol results in about

500 − 1000 subclones per microgram of starting DNA. The insert is separated from the

vector fragments by preparative gel electrophoresis, removed from the gel by conventional

methods, and resuspended in a standard buffer, such as TE (Tris-EDTA). The restriction

enzymes selected to excise the insert from the vector preferably leave compatible sticky

ends on the insert, so that the insert can be self-ligated in preparation for generating

randomly overlapping fragments. The circularized DNA yields a better random distri-

bution of fragments than linear DNA in the fragmentation methods. After self-ligating

the insert, e.g. with T4 ligase using conventional protocols, the purifed ligated insert

is fragmented by a standard protocol. After fragmentation the ends of the fragments

are repair, and the repaired fragments are separated by size using gel electrophoresis.

Fragments in the 300 − 500 basepair range are selected and eluted from the gel by con-

ventional means, and ligated into a tag-carrying vector as described above to form a

library of tag-fragment conjugates.

1.3 Summary of results

In this thesis we propose new solution methods for designing tag sets for use in universal

DNA arrays. First, we establish upper bounds for an extended version of a previous

formalization. Second, we give integer linear programming formulations for two previous

formalizations of the tag set design problem, and show that these formulations can be

solved to optimality for instance sizes of practical interest by using general purpose

optimization packages. Third, we note the benefits of periodic tags, and establish an

interesting connection between the tag design problem and the problem of packing the

maximum number of vertex-disjoint directed cycles in a given graph. We show that

combining a simple greedy cycle packing algorithm with a previously proposed alphabetic

tree search strategy yields an increase of over 40% in the number of tags compared to
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previous methods. Most of the results presented in this thesis have already appeared in

the following publications [31, 30]:

1. I.I. Mandoiu and D. Trinca. Exact and Approximation Algorithms for DNA Tag

Set Design. In Proceedings of the 16th Annual Symposium on Combinatorial Pat-

tern Matching (CPM 2005), June 19–22, 2005, Korea. Lecture Notes in Computer

Science, volume 3537, pages 383–393, Springer-Verlag. Extended version accepted

to Journal of Computational Biology, and also available as ACM Computing Re-

search Repository report cs.DS/0503057.

2. I.I. Mandoiu, C. Prajescu, and D. Trinca. Improved Tag Set Design and Multi-

plexing Algorithms for Universal Arrays. In Proceedings of the 5th International

Conference on Computational Science (ICCS 2005)/ 2005 International Workshop

on Bioinformatics Research and Applications (IWBRA), May 22–25, 2005, At-

lanta, GA, USA. Lecture Notes in Computer Science, volume 3515, pages 994–1002,

Springer-Verlag. Extended version appeared in LNCS Transactions on Computa-

tional Systems Biology, volume 3680, pages 124–137, 2005, Springer-Verlag; also

available as ACM Computing Research Repository report cs.DS/0502054.
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Chapter 2

Problem Formulations and
Previous Work

Universal DNA tag arrays [10, 29, 18], described in detail in the previous chapter, offer

a flexible and cost-effective alternative to custom-designed DNA arrays for performing a

wide range of genomic analyses. As already pointed out, a universal tag array consists

of a set of DNA strings called tags, designed such that each tag hybridizes strongly to

its own antitag (Watson-Crick complement), but not to any other antitag. A typical

assay based on universal tag arrays performs Single Nucleotide Polymorphism (SNP)

genotyping using the following steps [5, 21]: (1) A set of reporter oligonucleotide probes

is synthesized by ligating antitags to the 5′ end of primers complementing the genomic

sequence immediately preceding the SNP. (2) Reporter probes are hybridized in solution

with the genomic DNA under study. (3) Hybridization of the primer part (3′ end) of

a reporter probe is detected by a single-base extension reaction using the polymerase

enzyme and dideoxynucleotides fluorescently labeled with 4 different dyes. (4) Reporter

probes are separated from the template DNA and hybridized to the universal array. (5)

Finally, fluorescence levels are used to determine which primers have been extended and

learn the identity of the extending dideoxynucleotides.

A main objective of universal array designers is to maximize the number of tags,

which directly determines the number of reactions that can be multiplexed using a single

array. At the same time, tag sets must satisfy a number of stability and non-interaction

constraints [9]. The full set of constraints depends on factors such as the array manufac-

turing technology and the intended application. In this chapter we formalize the most
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important stability and non-interaction constraints using the hybridization model in [6].

Hybridization model. Hybridization affinity between two oligonucleotides is com-

monly characterized using the melting temperature, defined as the temperature at which

half of the duplexes are in hybridized state and the other half are in melted state.

However, accurate melting temperature estimation is computationally expensive, e.g.,

estimating the melting temperature between two non-complementary oligonucleotides

using the near-neighbor model of SantaLucia [36] is an NP-hard problem [22]. A conser-

vative hybridization model based on the observation that stable hybridization requires

the formation of an initial nucleation complex between two perfectly complementary sub-

strings of the two oligonucleotides was formalized by [6, 5]. For nucleation complexes,

hybridization affinity is modeled using the classical 2-4 rule [40], according to which the

melting temperature of the duplex formed by an oligonucleotide with its complement is

proportional to the sum between the number of weak bases (i.e., A and T) and twice the

number of strong bases (i.e., G and C).

Following [6], we define the weight w(x) of a DNA string x = a1a2 . . . ak by w(x) =
∑k

i=1 w(ai), where w(A) = w(T) = 1 and w(C) = w(G) = 2. Throughout the thesis we

assume the following c-token hybridization model: hybridization between two oligonu-

cleotides takes place only if one contains as substring the complement of a substring of

weight c or more of the other, where c is a given constant. The complement of a string

x = a1a2 . . . ak over the DNA alphabet {A, C, T, G} is defined as x̄ = b1b2 . . . bk, where bi

is the Watson-Crick complement of ak−i+1.

Hybridization stability. Current industry designs require a predetermined tag length

l, e.g., GenFlex universal tag arrays manufactured by Affymetrix use l = 20 [1]. The

model proposed in [6] allows tags of unequal length and instead require a minimum tag

weight of h, for a given constant h. In this thesis we consider both types of stability

constraints, and use the parameter α ∈ {l, h} to denote the specific model used for

hybridization stability.
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Pairwise non-interaction constraints. A basic constraint in this category is that

every antitag must not hybridize to non-complementary tags [6]. For a DNA string x and

a set of tags T , let NT (x) denote the number of tags in T that contain x as a substring.

Using the c-token hybridization model, this antitag-to-tag hybridization constraint is

formalized as follows:

(C) For every feasible tag set T , NT (x) ≤ 1 for every DNA string x of weight c or more.

In many assays based on universal tag arrays it is also required to prevent antitag-to-

antitag hybridization, since the formation of antitag-to-antitag duplexes or antitag hair-

pin structures prevents reporter probes from performing their function in the solution-

based hybridization steps [9]. The combined constraints on antitag hybridization are

formalized as follows:

(C̄) For every feasible tag set T , NT (x) + NT (x̄) ≤ 1 for every DNA string x of weight

c or more.

In the following we use the parameter β ∈ {C, C̄} to specify the type of pairwise non-

interaction constraints.

Substring occurrences within a tag. Previous works on DNA tag set design [6]

have imposed the following c-token uniqueness constraint in addition to constraints (C)

and (C̄): a DNA string of weight c or more can appear as a substring of a feasible tag

at most once. This uniqueness constraint simplifies analysis – e.g., it is the key property

enabling the DeBruijn sequence based heuristics in [6]) – but is not required for ensuring

correct assay functionality. In the following we will use the parameter γ ∈ {1,multiple}

to specify whether or not the c-token uniqueness constraint is enforced.

Problem formulation. For every α ∈ {l, h}, β ∈ {C, C̄}, and γ ∈ {1,multiple}, the

maximum tag set design problem with constraints α, β, γ, denoted MTSDP(α|β|γ), is the

following: given constants c and l/h, find a tag set of maximum cardinality satisfying

constraints α, β, and γ.
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Previous work on tag set design. The tag set design problem was identified in

previous work and several formulations and solutions were proposed [16, 10, 28, 37, 18].

These papers differ both in the way hybridization is modeled, and in the algorithmic

approach employed to find a good DNA TAT system. In [16] a TAT system is described

as a part of a strategy for surface-based DNA computing. The authors take a coding

theory approach and choose to model cross-hybridization constraints as general Hamming

distance conditions. A set of 108 8-mers, with a 50% GC content, which differ in at least 4

bases from each other, is constructed, and experimentally tested for cross-hybridization.

In [10] the method of using a DNA TAT system to sort target DNA is presented, together

with several examples of applications. The model assumption is that two oligonucleotides

of length n need to have perfectly complementary substrings of length more than λ in

order to form a reasonably stable duplex. A set of n-mers is said to be a λ-free code

if no two elements of the set have a common substring of length more than λ. Given

n, the design problem implied in [10] is to construct the largest possible λ-free code.

The c-token model for oligonucleotide hybridization and the MTSDP(h|C|1) problem

are formalized in [6]. Ben-Dor et al. also established a constructive upper bound on

the optimal number of tags for this formulation, and gave a nearly optimal tag selection

algorithm based on DeBruijn sequences. Similar upper bounds are established for the

MTSDP(l|C|1) and MTSDP(∗|C̄|1) problems in the next chapter. For a comprehensive

survey of hybridization models, results on associated formulations for the tag set design

problem, and further motivating applications in the area of DNA computing, we direct

the reader to [9].
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Chapter 3

Upper Bounds for MTSDP(∗|C̄|1)

The constructive upperbound is based on counting the minimal strings, called c-tokens,

that can occur as substrings only once in the tags and antitags of a feasible set. Formally,

a DNA string x is called a c-token if the weight of x is c or more, and every proper suffix

of x has weight strictly less than c. The tail weight of a c-token is defined as the weight

of its last letter. Note that the weight of a c-token can be either c or c+1, the latter case

being possible only if the c-token starts with a G or a C. As in [6], we use Gn to denote

the number of DNA strings of weight n. It is easy to see that G1 = 2, G2 = 6, and

Gn = 2Gn−1 +2Gn−2; for convenience, we also define G0 = 1. Using these notations, the

upper bound established by Ben-Dor et al. for MTSDP(h|C|1) can be stated as follows:

Theorem 1 A feasible solution to MTSDP(h|C|1) has at most

2Gc−1 + 6Gc−2 + 8Gc−3

h − c + 1
tags .

Regarding our upper bounds, we first establish two lemmas on self-complementary DNA

strings, i.e., strings x ∈ {A, C, T, G}+ with x = x.

Lemma 1 If x is self-complementary then |x| and w(x) are both even.

Proof. Let x = x1x2 . . . xp be a self-complementary DNA string. If p = 2q + 1, by the

definition of the complement we should have xq+1 = xq+1, which is impossible. Thus,

p = 2q. Since x1 = x2q,x2 = x2q−1,. . ., xq = xq+1, and the weight of complementary

bases is the same, it follows that w(x) = 2
∑q

i=1 w(xi). �

Lemma 2 Let Hn be the number of self-complementary DNA strings of weight n. Hn =

0 if n is odd, and Hn = Gn/2 if n is even.
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Proof. By Lemma 1, self-complementary strings must have even length and weight. For

even n, the mapping x1 . . . xqxq+1 . . . x2q 7→ x1 . . . xq gives a one-to-one correspondence

between self-complementary strings of weight n and strings of weight n/2. �

Now, we prove the following:

Lemma 3 Let c ≥ 4. Then the total number of c-tokens that appear as substrings in

a feasible tag set is at most 3Gc−2 + 6Gc−3 + G c−3

2

if c is odd, and at most 3Gc−2 +

6Gc−3 + 1
2G c

2
if c is even. Furthermore, the total tail weight of c-tokens that appear as

substrings in a feasible tag set is at most 2Gc−1 +4Gc−3 +2G c−3

2

if c is odd, and at most

2Gc−1 + 4Gc−3 + G c−2

2

+ 2G c−4

2

if c is even.

Proof. Let W and S denote weak and strong DNA bases (A or T, respectively G or C), and

let <w> denote the set of DNA strings with weight w. The c-tokens can be partitioned

into the seven classes given in Table 3.1, depending on total token weight (c or c + 1)

and the type of starting and ending bases. This partitioning is defined so that, for every

c-token x, the class of the unique c-token suffix of x can be determined from the class of

x. Note that x̄ is itself a c-token, except when x ∈ S<c − 3>WW ∪ S<c − 4>SW.

Let Ncls denote the number of c-tokens of class cls occurring in a feasible tag set.

c odd

Since W<c − 3>S ∪ S<c − 3>W can be partitioned into 4Gc−3 pairs {x, x̄} of comple-

mentary c-tokens, and at most one token from each pair can appear in a feasible tag

set,

NW<c − 3>S + NS<c − 3>W ≤ 4Gc−3. (3.1)

Table 3.1: Classes of c-tokens.

Class of x c-token suffix of x

W<c − 3>S S<c − 3>W

S<c − 4>S S<c − 4>S

S<c − 3>S S<c − 3>S

W<c − 2>W W<c − 2>W

S<c − 3>W W<c − 3>S

S<c − 3>WW W<c − 3>S

S<c − 4>SW S<c − 4>S
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Similarly, class W<c − 2>W can be partitioned into 2Gc−2 pairs {x, x̄} of complementary

c-tokens, W<c − 3>S ∪ S<c − 3>WW can be partitioned into 4Gc−3 triples {x, x̄A, x̄T}

with x ∈ W<c − 3>S, S<c − 3>W ∪ S<c − 3>WW can be partitioned into 4Gc−3 triples

{x, xA, xT} with x ∈ S<c − 3>W, and S<c − 4>S ∪ S<c − 4>SW can be partitioned into

2Gc−4 6-tuples {x, x̄, xA, xT, x̄A, x̄T} with x ∈ S<c − 4>S. Since at most one c-token

can appear in a feasible tag set from each such pair, triple, respectively 6-tuple,

NW<c − 2>W ≤ 2Gc−2, (3.2)

NW<c − 3>S + NS<c − 3>WW ≤ 4Gc−3, (3.3)

NS<c − 3>W + NS<c − 3>WW ≤ 4Gc−3, (3.4)

NS<c − 4>S + NS<c − 4>SW ≤ 2Gc−4. (3.5)

Using Lemma 2, it follows that S<c − 3>S contains 2G c−3

2

self-complementary c-tokens.

Since the remaining 4Gc−3−2G c−3

2

c-tokens can be partitioned into complementary pairs

each contributing at most one c-token to a feasible tag set,

NS<c − 3>S ≤
1

2

(
4Gc−3 − 2G c−3

2

)
+ 2G c−3

2

= 2Gc−3 + G c−3

2

. (3.6)

Adding inequalities (3.1), (3.3), and (3.4) multiplied by 1/2 with (3.2), (3.5), and (3.6)

implies that the total number of c-tokens in a feasible tag set is at most

2Gc−2 + 8Gc−3 + 2Gc−4 + G c−3

2

= 3Gc−2 + 6Gc−3 + G c−3

2

. (3.7)

Furthermore, adding (3.1), (3.2), and (3.3) with inequalities (3.5) and (3.6) multiplied

by 2 implies that the total tail weight of the c-tokens in a feasible tag set is at most

2Gc−2 + 12Gc−3 + 4Gc−4 + 2G c−3

2

= 2Gc−1 + 4Gc−3 + 2G c−3

2

. (3.8)

c even

Inequalities (3.1), (3.3), and (3.4) continue to hold for even values of c. Since c − 3

is odd, S<c − 3>S contains no self-complementary tokens and can be partitioned into

2Gc−3 pairs {x, x̄},

NS<c − 3>S ≤ 2Gc−3. (3.9)
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By Lemma 2, there are 2G c−4

2

self-complementary tokens in S<c − 4>S. Therefore

S<c − 4>S ∪ S<c − 4>SW can be partitioned into 2G c−4

2

triples {x, xA, xT} with x ∈

S<c − 4>S, x = x̄ and 2Gc−4−G c−4

2

6-tuples {x, x̄, xA, xT, x̄A, x̄T} with x ∈ S<c − 4>S,

x 6= x̄. Since a feasible tag set can use at most one c-token from each triple and 6-tuple,

NS<c − 4>S + NS<c − 4>SW ≤ 2Gc−4 + G c−4

2

. (3.10)

Using again Lemma 2, we get

NW<c − 2>W ≤ 2Gc−2 + G c−2

2

. (3.11)

Adding inequalities (3.1), (3.3), and (3.4) multiplied by 1/2 with (3.9), (3.10), and (3.11)

implies that the total number of c-tokens in a feasible tag set is at most

2Gc−2 + 8Gc−3 + 2Gc−4 + G c−2

2

+ G c−4

2

= 3Gc−2 + 6Gc−3 +
1

2
G c

2
. (3.12)

Finally, adding (3.1), (3.3), and (3.11) with inequalities (3.9) and (3.10) multiplied by 2

implies that the total tail weight of the c-tokens in a feasible tag set is at most

2Gc−2 + 12Gc−3 + 4Gc−4 + G c−2

2

+ 2G c−4

2

= 2Gc−1 + 4Gc−3 + G c−2

2

+ 2G c−4

2

. (3.13)

�

Theorem 2 For every l, h, c with l ≤ h ≤ 2l and c ≥ 4, the number of tags in a feasible

tag set is at most

min

{
3Gc−2 + 6Gc−3 + G c−3

2

l − c + 1
,
2Gc−1 + 4Gc−3 + 2G c−3

2

h − c + 1

}

for c odd, and at most

min

{
3Gc−2 + 6Gc−3 + 1

2G c
2

l − c + 1
,
2Gc−1 + 4Gc−3 + G c−2

2

+ 2G c−4

2

h − c + 1

}

for c even.

Proof. The proof follows from Lemma 3 by observing that every tag contains at least

l − c + 1 c-tokens, with a total tail weight of at least h − c + 1. �
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Chapter 4

Integer Linear Programming
Formulations for MTSDP(∗|C|1)

Before stating our integer linear program formulations, we introduce some additional

notations.

Following [6], a DNA string x of weight c or more is called a c-token if all its proper

suffixes have weight strictly less than c. Clearly, it suffices to enforce constraints (C)

or (C̄) for all c-tokens x. Let N denote the number of c-tokens, and C = {c1, . . . , cN}

denote the set of all c-tokens. The results in [6] imply that N = Θ((1 +
√

3)c). Note

that the weight of a c-token can be either c or c+1, the latter case being possible only if

the c-token starts with a strong base (G or C). We let C0 ⊆ C denote the set of c-tokens

of weight c + 1 that end with a weak base, i.e., c-tokens of the form S<c − 2>W, where

W (S) denotes a weak (strong) base, and <c − 2> denotes an arbitrary string of weight

c − 2. We also let C2 ⊆ C denote the set of c-tokens of weight c that end with a strong

base, i.e., c-tokens of the form <c − 2>S.

Clearly, there is at most one c-token ending at every letter of a tag. It is easy to see

that each c-token x ∈ C0 contains a proper prefix which is itself a c-token, and therefore x

cannot be the first c-token of a tag, i.e., cannot be the c-token with the leftmost ending.

All other c-tokens can appear as first c-tokens. When a c-token in C \ (C0 ∪ C2) is the

first in a tag, then it must be a prefix of the tag. On the other hand, tokens in C2 can

be first both in tags that they prefix and in tags in which they are preceded by a weak

base not covered by any c-token.

The ILP formulation for MTSDP(l|C|1) uses an auxiliary directed graph G = (V,E)
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with V = {s, t} ∪ ⋃
1≤i≤N Vi, where Vi = {vk

i | |ci| ≤ k ≤ l}. G has a directed arc from

vk
i to vk+1

j for every triple i, j, k with |ci| ≤ k ≤ l − 1 for which cj can be obtained from

ci by appending a single nucleotide and removing the maximal prefix that still leaves a

valid c-token. Finally, G has an arc from s to every v ∈ Vfirst, where Vfirst = {v|ci|
i | ci ∈

C \ C0} ∪ {v|ci|+1
i | ci ∈ C2}, and an arc from vl

i to t for every 1 ≤ i ≤ N . Notice that

G has O(lN) vertices. Furthermore, since s has outdegree less than 2N and every other

vertex has outdegree at most 4, it follows that G has O(lN) arcs.

We claim that, for c ≤ l, MTSDP(l|C|1) can be reformulated as the problem of finding

the maximum number of s-t paths in G that collectively visit at most one vertex vk
i for

every i. Indeed, let P be an s-t path and vk
i be the vertex following s in P . If k = |ci|, we

associate to P the tag obtained by concatenating ci with the last letters of the c-tokens

corresponding to the subsequently visited vertices, until reaching t. Otherwise, we must

have ci ∈ C2 and k = |ci| + 1. In this case we associate to P the two tags obtained

by concatenating either A or T with ci and with the last letters of subsequently visited

c-tokens. The claim follows by observing that at most one of the tags associated with

each path can be used in a feasible solution.

Our ILP formulation can be viewed as a generalized version of the maximum integer

flow problem in which unit capacity constraints are imposed on sets of vertices of G in-

stead of individual vertices. The formulation uses 0/1 variables xv and ye for every vertex

v ∈ V \ {s, t}, respectively arc e ∈ E. These variables are set to 1 if the corresponding

vertex or arc is visited by an s-t path corresponding to a selected tag. Let in(v) and

out(v) denote the set of arcs entering, respectively leaving vertex v. The integer program

can then be written as follows:

maximize
∑

v∈Vfirst

xv (4.1)

subject to

xv =
∑

e∈in(v)

ye =
∑

e∈out(v)

ye, v ∈ V \ {s, t} (4.2)

∑

v∈Vi

xv ≤ 1, 1 ≤ i ≤ N (4.3)

xv, ye ∈ {0, 1}, v ∈ V \ {s, t}, e ∈ E. (4.4)

Constraints (4.2) ensure that variables ye set to 1 correspond to a set of s-t paths, and
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that a variable xv is set to 1 if and only if one of these paths passes through v. Antitag-to-

tag hybridization constraints (C) and c-token uniqueness are enforced by (4.3). Finally,

the objective (4.1) corresponds to maximizing the number of selected s-t paths, since

every arc out of s goes to a vertex of Vfirst.

For a token ci = cja ∈ C0, where a ∈ {A, T}, let ĉi = cj ā. Since both ci and ĉi contain

token cj as a prefix, it follows that at most one of them can appear in T . Therefore, the

following valid inequality can be added to the ILP formulation (4.1)–(4.4) to improve its

integrality gap (i.e., the gap between the value of the optimum integer solution and that

of the optimal fractional relaxation):

∑

v∈Vi∪Vj

xv ≤ 1, ci ∈ C0, cj = ĉi, i < j. (4.5)

The formulation of MTSDP(h|C|1) has exactly the same objective and constraints

for a slightly modified graph G. Let us define the tail weight of a c-token ci, denoted

tail(ci), as the weight of the last letter of ci. Also, let hi = h if ci has a tail weight

of 1 and hi = h + 1 if ci has a tail weight of 2. We will require that every tag ending

with token ci has total weight of at most hi – it is easy to see that this constraint is

not affecting the size of the optimum tag set. The modified graph G has vertex set

V = {s, t} ∪
⋃

1≤i≤N Vi, where Vi = {vk
i | w(ci) ≤ k ≤ hi}. G contains a directed arc

from vk
i to v

k+tail(i)
j for every triple i, j, k with |ci| ≤ k ≤ hi − tail(ci) for which cj can

be obtained from ci by appending a single nucleotide and removing the maximal prefix

that still leaves a valid c-token. Finally, G contains arcs from s to every v ∈ Vfirst, where

Vfirst is now equal to {vw(ci)
i | ci ∈ C \ C0} ∪ {vw(ci)+1

i | ci ∈ C2}, plus arcs from every vk
i

to t for every 1 ≤ i ≤ N and hi − tail(ci) < k ≤ hi.
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Chapter 5

Approximation Algorithms for
MTSDP(∗| ∗ |1)

The ILP formulation for MTSDP(l|C|1) (respectively MTSDP(h|C|1)) has O(lN) (re-

spectively O(hN)) variables and constraints, where N = Θ((1 +
√

3)c) is the number of

c-tokens. For small values of c these formulations can be solved to optimality by general

purpose optimization packages. However, as shown in chapter 7, even state-of-the-art

solvers such as CPLEX require a prohibitive amount of time for values of c greater than

8. In this chapter we present two faster algorithm for computing near-optimal tag sets.

To generate feasible sets of tags for MTSDP(∗|C|1) we employ a simple alphabetic

tree search algorithm (see Figure 5.1). A similar algorithm is suggested in [29] for the

problem of finding sets of tags that satisfy an unweighted version of constraint (C2). We

start with an empty set of tags and an empty tag prefix. In every step we try to extend

the current tag prefix t by an additional A. If the added letter completes a c-token that

has been used in already selected tags or in t itself, we try the next letter in the DNA

alphabet, or backtrack to a previous position in the prefix when no more letter choices

are left. Whenever we succeed generating a complete tag, we save it and backtrack to

the last letter of its first c-token. For MTSDP(∗|C̄|1), we not only verify if the added

letter completes an unavailable c-token, but also if it completes the complement of an

unavailable c-token.

The alphabetic tree search algorithm guarantees that the set T of selected tags is

maximal, i.e., there is no tag t such that T ∪ {t} remains feasible for MTSDP(l|C|1).

Hence, every tag of an optimal solution must share at least one c-token with tags in T .
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Since every tag of T has at most l−c/2+1 c-tokens, it follows that the size of T is within

a factor of l − c/2 + 1 of the size of an optimum MTSDP(l|C|1) solution. Similarly, the

approximation factor of the algorithm when applied to MTSDP(h|C|1) is no more than

h − c/2 + 2.

The second algorithm is based on an equivalent ILP formulation of MTSDP(∗|C|1)

using “path” instead of “arc” variables. Let P be the set of all s-t paths in the auxiliary

graph G defined as in the previous chapter. Using a 0/1 variable xp for every path p ∈ P ,

MTSDP(∗|C|1) can be formulated as follows:

maximize
∑

p∈P
xp (5.1)

subject to

∑

p∈P
|p ∩ Vi|xp ≤ 1, 1 ≤ i ≤ N (5.2)

xp ∈ {0, 1}, p ∈ P . (5.3)

The fractional relaxation of ILP (5.1)-(5.3) is obtained by replacing integrality constraints

(5.3) with

xp ≥ 0, p ∈ P . (5.4)

The optimum solution of the fractional relaxation can be efficiently approximated

within any desired accuracy using the algorithm in Figure 5.2, which is a specialization

of the approximation algorithm for packing linear programs in [17]. Briefly, the algorithm

starts by assigning a small weight yi = δ to every set Vi. Then, the algorithm repeatedly

computes minimum-weight s-t paths in G, where the weight of a node is given by the

weight yi of the corresponding set Vi. For every minimum-weight path p, the yi’s cor-

responding to visited sets Vi are multiplied by a factor of (1 + ε |p∩Vi|
maxi |p∩Vi|

). Finally, the

algorithm stops when the weight of every s-t path is greater than or equal to 1.

Since the auxiliary graph G = (V,E) is directed and acyclic, the minimum weight

path can be computed in O(|V |+ |E|) time. Therefore, using the fact that G has O(lN)

vertices and arcs for MTSDP(l|C|1), and O(hN) vertices and arcs for MTSDP(h|C|1),

Theorem 3.1 of [17] gives:
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Input: Positive integers c and l, c ≤ l
Output: Feasible MTSDP(l|C|1) solution T

Mark all c-tokens as available
For every i ∈ {1, 2, . . . , l}, Bi ← A

T ← ∅; Finished ← 0; pos ← 1
While Finished = 0 do

While the weight of B1B2 . . . Bpos < c do

pos ← pos + 1
EndWhile

If the c-token ending B1B2 . . . Bpos is available then

Mark the c-token ending at position pos as unavailable
If pos = l then
T ← T ∪ {B1B2 . . . Bl}
pos ← [the position where the first c-token of B1B2 . . . Bl ends]
I ← {i | 1 ≤ i ≤ pos , Bi 6= G}
If I = ∅ then

Finished ← 1
Else

pos ← max{I}
Bi ← A for all i ∈ {pos + 1, . . . , l}
Bpos ← nextbase(Bpos)

EndIf

Else

pos ← pos + 1
EndIf

Else

I ← {i | 1 ≤ i ≤ pos , Bi 6= G}
If I = ∅ then

Mark all the c-tokens in B1B2 . . . Bpos−1 as available
Finished ← 1

Else

prevpos ← pos

pos ← max{I}
Mark all the c-tokens in Bpos . . . Bprevpos−1 as available
Bi ← A for all i ∈ {pos + 1, . . . , l}
Bpos ← nextbase(Bpos)

EndIf

EndIf

EndWhile

Figure 5.1: The alphabetic tree search algorithm for MTSDP(l|C|1). The nextbase(·)
function is defined by nextbase(A) = T, nextbase(T) = C, and nextbase(C) = G.
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Input: ε > 0
Output: Feasible solution (xp)p∈P to the fractional relaxation of ILP (5.1)-(5.3)

For every p ∈ P, xp ← 0

δ ← (1 + ε)((1 + ε)N)−1/ε

For every i ∈ {1, . . . , N}, yi ← δ
Find a minimum weight s-t path p in G, where weight(v) = yi for every v ∈ Vi, i ∈ {1, . . . , N}
While weight(p) < 1 do

M ← maxi |p ∩ Vi|
xp ← xp + 1

M

For every i, yi ← yi(1 + ε |p∩Vi|
M

)
Find a minimum weight s-t path p in G, where weight(v) = yi for every v ∈ Vi, i ∈ {1, . . . , N}

EndWhile

For every p ∈ P, xp ← xp/
`

log1+ε
1+ε

δ

´

Figure 5.2: The Garg and Könemann algorithm.

Theorem 3 The algorithm shown in Figure 5.2 computes a (1 − ε)2-approximation to

the fractional relaxation in O(lN 2d1
ε log1+ε Ne) (respectively O(hN 2d1

ε log1+ε Ne)) time

for MTSDP(l|C|1) (respectively MTSDP(h|C|1)).

The fractional solution computed by the Garg and Könemann algorithm is then

used to construct a feasible set of tags using a simple method that has been shown

in [13] to work better in practice than classical randomized rounding [33], particularly

when starting from poor approximate solutions such as those obtained by running the

algorithm in Figure 5.2 with a large value of ε. We simply save the list of s-t paths

selected as minimum-weight paths by the Garg and Könemann algorithm (excluding

minimum-weight paths that visit some set Vi more than once, since such paths do not

correspond to valid tags) and then, traversing the list in reverse order, we sequentially

pick tags that correspond to paths visiting only sets Vi not yet appearing in the already

picked tags. Finally, we mark all c-tokens of picked tags as unavailable, and augment

the set T of picked tags with the additional tags found by running the alphabetic tree

search algorithm described in chapter 3.
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Chapter 6

Algorithms for
MTSDP(∗| ∗ |multiple)

In this chapter we describe two algorithms for MTSDP(l|C|multiple); both algorithms

can be easily adjusted to handle the other MTSDP(∗| ∗ |multiple) variants. The first

algorithm (see Figure 6.1 for a detailed pseudocode) is similar to the alphabetic tree

search algorithm described for MTSDP(l|C|1). The algorithm performs an alphabetical

traversal of a 4-ary tree representing all 4l possible tags, skipping over subtrees rooted

at internal vertices that correspond to tag prefixes including unavailable c-tokens. The

difference from the MTSDP(l|C|1) algorithm in chapter 3 lies in the strategy used to

mark c-tokens as unavailable. While the algorithm given in chapter 3 marks a c-token C

as unavailable as soon as it incorporates it in the current tag prefix (changing C’s status

back to “available” when forced to backtrack past C’s tail), the algorithm in Figure 6.1

marks a c-token as unavailable only when a complete tag is found.

We call a tag t periodic if t is the length l prefix of an infinite string x∞, where

x is a DNA string with |x| < |t|. (Note that a periodic tag t is not necessarily the

concatenation of an integer number of copies of its period x as in the standard definition

of string periodicity [27].)

The following lemma shows that tag set design algorithms can restrict the search to

two simple classes of tags.

Lemma 4 For every c and l, there exists an optimal tag set T in which every tag has

the uniqueness property or is periodic. (Note that the two classes of tags are not disjoint,

as there are tags that are both periodic and posses the uniqueness property.)
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Input: Positive integers c and l, c ≤ l
Output: Feasible MTSDP(l|C|multiple) solution T

Mark all c-tokens as available
For every i ∈ {1, 2, . . . , l}, Bi ← A

T ← ∅; Finished ← 0; pos ← 1
While Finished = 0 do

While the weight of B1B2 . . . Bpos < c do

pos ← pos + 1
EndWhile

If the c-token ending B1B2 . . . Bpos is available then

If pos = l then
T ← T ∪ {B1B2 . . . Bl}
Mark all the c-tokens of B1B2 . . .Bl as unavailable
pos ← [the position where the first c-token of B1B2 . . . Bl ends]
I ← {i | 1 ≤ i ≤ pos , Bi 6= G}
If I = ∅ then

Finished ← 1
Else

pos ← max{I}
Bi ← A for all i ∈ {pos + 1, . . . , l}
Bpos ← nextbase(Bpos)

EndIf

Else

pos ← pos + 1
EndIf

Else

I ← {i | 1 ≤ i ≤ pos , Bi 6= G}
If I = ∅ then

Finished ← 1
Else

pos ← max{I}
Bi ← A for all i ∈ {pos + 1, . . . , l}
Bpos ← nextbase(Bpos)

EndIf

EndIf

EndWhile

Figure 6.1: The alphabetic tree search algorithm for MTSDP(l|C|multiple). The
nextbase(·) function is defined by nextbase(A) = T, nextbase(T) = C, and nextbase(C) = G.

Proof. Let T be an optimal tag set. Assume that T contains a tag t that does not

have the uniqueness property, and let ci1 , . . . , cik be the sequence of c-tokens occurring

in t, in left to right order. Since t does not have the uniqueness property, there exist

indices 1 ≤ j < j ′ ≤ ik such that cij = cij′ . Let t′ be the tag formed by taking the first

l letters of the infinite string with c-token sequence (cij , . . . , cij′−1
)∞; note that t′ is a

periodic tag. Since c-tokens cij , . . . , cij′−1
do not appear in the tags of T \ {t}, it follows

that (T \ {t}) ∪ {t′} is also optimal. Repeated application of this operation yields the

lemma. �

Note that a periodic tag whose shortest period has length p contains as substrings
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… li lj

(a) (b)

xixi xixi

Ci

Figure 6.2: Vertices and arcs added to G(φ) for (a) variable xi, and (b) clause li ∨ lj .

exactly p c-tokens, while tags with the uniqueness property contain between l − c + 1

and l − c/2 + 1 c-tokens. Therefore, of the two classes of tags in Lemma 4, periodic

tags (particularly those with short periods) make better use of the limited number of

available c-tokens.

Each periodic tag corresponds to a directed cycle in the graph Hc which has C as its

vertex set, and in which a token ci is connected by an arc to token cj iff ci and cj can ap-

pear consecutively in a tag, i.e., iff cj is obtained from ci by appending a single nucleotide

and removing the maximal prefix that still leaves a valid c-token. Clearly, a vertex-

disjoint packing of n cycles in Hc yields a feasible solution for MTSDP(l|C|multiple)

consisting of n tags, since we can extract at least one tag of length l from each cycle,

and tags extracted from different cycles do not have common c-tokens. This motivates

the following:

Maximum Vertex-Disjoint Directed Cycle Packing Problem: Given a directed

graph G, find a maximum number of vertex-disjoint directed cycles in G.

The next theorem shows that Maximum Vertex-Disjoint Directed Cycle Pack-

ing in arbitrary graphs is unlikely to admit a polynomial approximation scheme. A

stronger inapproximability result was established for arbitrary graphs by Salavatipour

and Verstraete [35], who proved that there is no O(log1−ε n)-approximation for Maxi-

mum Vertex-Disjoint Directed Cycle Packing unless NP ⊆ DTIME(2polylogn).

On the positive side, Salavatipour and Verstraete showed that Maximum Vertex-

Disjoint Directed Cycle Packing can be approximated within a factor of O(
√

n)

via linear programming techniques, matching the best approximation factor known for

the arc-disjoint version of the problem [25].
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Theorem 4 Maximum Vertex-Disjoint Directed Cycle Packing is APX-hard

even for regular directed graphs with in-degree and out-degree of 2.

Proof. We use a reduction from the MAX-2-SAT-3 problem, similar to the one in [11].

An instance φ of MAX-2-SAT-3 consists of a set {c1, . . . , cm} of disjunctive clauses over

a ground set {x1, . . . , xn} of variables. Each clause consists of at most 2 literals (variables

or negations of variable), and each variable appears in at most 3 clauses, counting both

negated and non-negated occurrences. The objective is to find a truth assignment that

satisfies as many of the clauses as possible. It is known that MAX-2-SAT-3 is APX-hard

[4, 7].

Let mi denote the number of occurrences of variable xi in a given instance of MAX-

2-SAT-3. We construct, in polynomial time, a directed graph G(φ) as follows. For each

variable xi we add to G a directed cycle Ci of length 4mi, plus 2mi additional vertices

alternatively labeled by xi and x̄i, used to close a directed cycle of length 3 with each

arc of Ci, as in Figure 6.2(a). For each unary clause we pick a distinct vertex labeled by

the negation of the respective literal and attach a loop to it. Finally, for each 2-literal

clause c we pick 2 vertices labeled by the negations of the literals of c, again without

reusing labeled vertices between clauses, and use a new vertex to connect them via two

length-2 cycles as in Figure 6.2(b). Note that, for every i, at least 2
∑n

i=1 mi of the

labeled vertices remain incident to a single cycle; we will refer to these as “free” labeled

vertices.

We claim that every truth assignment that makes k clauses of φ true can be converted

in polynomial time into a set of k + 2
∑n

i=1 mi vertex disjoint cycles of G(φ), and vice-

versa. Indeed, for a given truth assignment, select (1) the 2mi length-3 cycles passing

through nodes labeled by x̄i for every variable xi that is set to true, (2) the 2mi length-3

cycles passing through nodes labeled by x̄i for every variable xi that is set to false, and

(3) the loop or length-2 cycle passing through a labeled node corresponding to a false

literal. It is easy to verify that these cycles are vertex-disjoint.

Conversely, let C be a set of k + 2
∑n

i=1 mi vertex disjoint cycles of G(φ). If any of

the cycles Ci is in C, we replace it by the length-3 cycle passing through a free labeled

vertex. Similarly, if any of the cycles in C visits two of the arcs of a 3-cycle (or one
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of the arcs of a 2-cycle), we replace it by the 3-cycle (respectively 2-cycle) itself. After

this transformation we have a set of k + 2
∑n

i=1 mi vertex-disjoint loops, 2-cycles, and

3-cycles. We say that a set of cycles is consistent if only one of the labels xi, x̄i appear

in C for every i. If C is consistent, we choose a truth assignment that makes all literals

corresponding to labels in C true. It is easy to see that at least k of the cycles in C

must be loops and 2-cycles, and clauses corresponding to these cycles are satisfied by the

above truth assignment.

Otherwise, we make C consistent by repeating the following transformation. Let i be

an index for which both xi and x̄i appear in C. Without loss of generality, assume that

xi appears in only one clause of φ (recall that, together, xi and x̄i can appear in at most

3 clauses). It follows that there is a single loop or 2-cycle C ∈ C visiting a vertex labeled

by x̄i – all other vertices labeled by x̄i are free. Since the xi’s and x̄i’s alternate around

Ci, the cycles going through vertices labeled by x̄i can be replaced by at least the same

number of 3-cycles going through vertices labeled by xi.

To complete the proof of the theorem, notice that the optimum number of satisfiable

clauses, kopt, is at least m/2, since we can repeatedly assign a variable such that at least

half of the clauses containing it are satisfied. Hence,
∑n

i=1 mi ≤ 2m ≤ 4kopt. If there

exists a polynomial time algorithm with an approximation factor of 1
1−ε for Maximum

Vertex-Disjoint Directed Cycle Packing, we can run it on G(φ) to get a set C of

at least k + 2
∑n

i=1 mi ≥ 1
1−ε(kopt + 2

∑n
i=1 mi) vertex disjoint cycles, and then convert

C as above into a truth assignment satisfying k ≥ 1+8ε
1−ε kopt clauses of φ. �

We use a simple greedy algorithm to solve Maximum Vertex-Disjoint Directed

Cycle Packing for the graph Hc: we enumerate possible tag periods in pseudo-

lexicographic order, and check for each period if all c-tokens are available for the re-

sulting tag. We refer to this algorithm as the greedy cycle packing algorithm, since it is

equivalent to packing cycles greedily in order of length.
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Chapter 7

Experimental Results

Tables 7.1 and 7.2 give empirical results for the MTSDP(l|C|1) and MTSDP(h|C|1)

problems respectively. We give the number of selected tags and runtimes for the following

three algorithms:

• the tree search (TS) algorithm in chapter 3,

• the Garg-Könemann based algorithm described in chapter 5 (denoted LP approx)

which we ran with ε = 0.5, and

• the CPLEX 9.0 commercial solver applied to ILP (4.1)–(4.4).

All compared algorithms were run using a single CPU of a dual 2.8 GHz Dell PowerEdge

2600 Linux server with 4Gb of main memory. Missing LP/ILP entries did not complete

in 10 hours.

Optimum tag sets are found by CPLEX for small values of c. However, even com-

puting the optimum fractional relaxation of ILP (4.1)–(4.4) is impractical for c greater

than 8. In contrast, the Garg-Könemann based algorithm is much more scalable than

CPLEX, and generally produces better solutions than running the tree search algorithm

alone, although we run it with a very large value for ε.

To help assessing the quality of the compared algorithms when the optimum solution

is not available, we also include in Tables 7.1 and 7.2 the c-token count upper bound

established for MTSDP(l|C|1) in chapter 3 and the tail-weight upper bound established

for MTSDP(h|C|1) in [6], as well as the value of the fractional (LP) relaxation of ILP

(4.1)–(4.4). For all cases where the optimum ILP solution could be computed, the

difference between the optimal fractional and integer solution values is smaller than
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Table 7.1: ILP results for MTSDP(l|C|1), i.e., tag set design with specified tag length l,
antitag-to-tag hybridization constraints, and a unique copy of each c-token allowed in a
tag.

l c # Selected Tags Upper Bounds CPU Seconds
TS LP approx ILP LP c-token count TS LP approx LP ILP

4 7 7 8 8.57 9 0.00 0.27 0.13 0.71
5 23 25 28 28.00 29 0.00 0.32 2.27 5.85
6 67 79 85 85.60 96 0.00 0.57 11.40 98.25

10 7 196 232 259 259.67 328 0.00 3.11 86.70 586.67
8 655 793 853 853.33 1194 0.00 63.01 552.74 4321.66
9 2359 2703 – – 4896 0.01 841.64 – –

10 9072 10144 – – 26752 0.04 11019.64 – –

4 3 3 3 3.53 3 0.00 0.32 1.05 58.46
5 9 9 10 10.50 11 0.00 0.40 13.72 381.33
6 26 26 29 29.87 32 0.00 1.26 182.96 12448.61

20 7 75 75 – 88.00 93 0.00 4.79 2675.68 –
8 213 220 – 257.23 275 0.00 49.21 134525.81 –
9 600 641 – – 816 0.00 624.16 – –

10 1667 1854 – – 2432 0.04 7717.13 – –

1, indicating that the LP solution is a very tight upper bound. Furthermore, ILP results

confirm the high quality of the upper bound established for MTSDP(h|C|1) in [6]; the

upper bound established in chapter 3 for MTSDP(l|C|1) appears to be somehow weaker.

Tables 7.3 and 7.4 give the results obtained for MTSDP(∗| ∗ |multiple) by the al-

phabetic tree search algorithm in Figure 6.1 respectively by the greedy cycle packing

algorithm (in our implementation, we impose an upper bound of 15 on the length of the

cycles that we try to pack) followed by running the alphabetic tree search algorithm with

the c-tokens occurring in the selected cycles already marked as unavailable. Performing

cycle packing significantly improves the results compared to running the alphabetic tree

search algorithm alone; as shown in the tables, most of the resulting tags are found in

the cycle packing phase of the combined algorithm.

Across all instances, the combined algorithm increases the number of tags by at least

40% compared to the best available MTSDP(∗|∗|1) algorithm –the improvement is much

higher for smaller values of c. Quite notably, although the number of tags is increased,

the tag sets found by the combined algorithm use a smaller total number of c-tokens.

Thus, these tag sets are less likely to cross-hybridize to the primers used in the reporter

probes, enabling higher tag utilization rates during tag assignment [5].
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Table 7.2: ILP results for MTSDP(h|C|1), i.e., tag set design with specified minimum
tag weight h, antitag-to-tag hybridization constraints, and a unique copy of each c-token
allowed in a tag.

h c # Selected Tags Upper Bounds CPU Seconds
TS LP approx ILP LP tail-weight TS LP approx LP ILP

4 6 5 7 7.00 7 0.00 0.34 0.45 9.04
5 18 18 21 21.09 21 0.00 0.38 5.66 117.62
6 47 52 63 63.20 63 0.00 0.89 54.43 2665.39

15 7 149 155 192 192.00 192 0.00 5.49 544.95 3644.85
8 460 480 – 588.00 590 0.00 99.21 7153.87 –
9 1197 1608 – – 1842 0.00 1788.07 – –

10 3669 4947 – – 5872 0.07 24223.92 – –

4 3 3 3 3.30 3 0.00 0.46 1.88 132.78
5 8 8 9 9.67 9 0.00 0.60 34.66 1137.21
6 22 22 27 27.48 27 0.00 1.26 392.42 18987.09

28 7 64 63 – 78.55 78 0.00 8.89 7711.41 –
8 175 182 – 224.76 224 0.00 111.63 850642.82 –
9 531 515 – – 644 0.00 1606.85 – –

10 1428 1491 – – 1854 0.02 26728.47 – –

Table 7.3: Results for MTSDP(∗|C|multiple), i.e., tag set design with antitag-to-tag
hybridization constraints and multiple copies of a c-token allowed in a tag.

One c-token copy Multiple c-token copies
l/h c LP approx Tree search Cycle packing + Tree search

tags c-tokens tags c-tokens tags c-tokens % cyclic

4 3 51 14 59 17 40 100.0
5 9 146 31 165 40 140 100.0
6 26 402 53 433 72 293 98.6

l = 20 7 75 1096 124 1179 178 928 99.4
8 220 3014 281 3095 383 2411 97.1
9 641 8322 711 8230 961 7102 96.9

10 1854 22693 1835 21400 2344 19691 95.1

4 3 58 14 61 17 40 100.0
5 8 151 32 174 40 140 100.0
6 22 391 44 432 72 300 98.6

h ≥ 28 7 63 1083 118 1200 178 934 99.4
8 182 2996 239 3037 379 2405 96.6
9 515 8025 632 8622 943 6969 96.5

10 1491 22183 1570 22145 2260 19270 94.1
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Table 7.4: Results for MTSDP(∗|C̄|multiple), i.e., tag set design with both antitag-to-tag
and antitag-to-antitag hybridization constraints and multiple copies of a c-token allowed
in a tag.

One c-token copy Multiple c-token copies
l/h c Tree search Tree search Cycle packing + Tree search

tags c-tokens tags c-tokens tags c-tokens % cyclic

4 1 17 10 35 10 25 100.0
5 4 65 17 83 23 85 100.0
6 13 200 30 241 41 171 97.6

l = 20 7 37 537 68 585 97 512 99.0
8 107 1480 147 1619 202 1268 98.0
9 300 3939 362 4124 512 3799 96.3

10 844 10411 934 10869 1204 10089 95.8

4 1 22 10 36 10 25 100.0
5 4 74 17 84 23 85 100.0
6 12 213 29 238 41 178 97.6

h ≥ 28 7 32 559 64 586 97 518 99.0
8 90 1489 135 1632 199 1238 98.0
9 263 4158 329 4314 504 3760 95.8

10 714 10837 809 11250 1163 9937 93.6
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Chapter 8

Conclusions

In this thesis we proposed new solution methods for designing optimal and near-optimal

tag sets for universal DNA arrays. Most notably, we have shown that the use of periodic

tags leads to over 40% more tags compared to best previous methods. Our algorithms use

simple combinatorial ideas and greedy strategies that can be easily extended to handle

more sophisticated hybridization models such as the near-neighbor model of [36], and

can incorporate additional practical design constraints, such as preventing the formation

of hairpin secondary structures, or disallowing specific nucleotide sequences such as runs

of 4 identical nucleotides [29].

In ongoing work we seek to extend our methods to emerging applications of uni-

versal tag arrays in microfluidics-based labs-on-a-chip, as well as DNA-mediated as-

sembly of nanoscale devices such as carbon-nanotube-based field-effect transistors [20].

An interesting open problem is to find tight upper bounds and exact methods for the

MTSDP(∗| ∗ |multiple) formulations. Settling the approximation complexity of Maxi-

mum Vertex-Disjoint Directed Cycle Packing is another interesting problem.
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