
Practical Approximation Algorithms for

Zero- and Bounded-Skew Trees�

Alexander Z. Zelikovsky† Ion I. Măndoiu‡

Abstract

Theskewof an edge-weighted rooted tree is the maximum difference between any two

root-to-leaf path weights. Zero- or bounded-skew trees are needed for achieving synchro-

nization in many applications, including network multicasting [20] and VLSI clock routing

[2, 17]. In these applications edge weights represent propagation delays, and a signal gen-

erated at the root should be received by multiple recipients located at the leaves (almost)

simultaneously. The objective is to find zero- or bounded-skew trees of minimum total

weight, since the weight of the tree is directly proportional to the amount of resources

(bandwidth and buffers for network multicasting, power and chip area for clock routing in

VLSI) that must be allocated to the tree. Charikar et al. [8] have recently proposed the first

strongly polynomial algorithms with proven constant approximation factors, 2e� 5:44 and

16:86, for finding minimum weight zero- and bounded-skew trees, respectively.

In this paper we introduce a new approach to these problems, based on zero-skew

“stretching” of spanning trees, and obtain algorithms with improved approximation factors

of 4 and 14. For the case when tree nodes are points in the plane and edge weights are given

by the rectilinear metric our algorithms find zero- and bounded-skew trees of length at

most 3 and 9 times the optimum. This case is of special interest in VLSI clock routing. An

important feature of our algorithms is their practical running time, which is asymptotically

the same as the time needed for computing the minimum spanning tree.

�A preliminary version of this work appeared in [22].
†Department of Computer Science, Georgia State University, University Plaza, Atlanta, GA 30303, E–mail:

alexz@cs.gsu.edu
‡College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280, E–mail:man-

doiu@cc.gatech.edu

1

1 Introduction

The skewof an edge-weighted rooted tree is the maximum difference between any two root-

to-leaf path weights. Zero- or bounded-skew trees are needed for achieving synchronization

in many applications, including network multicasting [20] and VLSI clock routing [2, 17]. In

these applications edge weights represent propagation delays, and a signal generated at the root

should be received by multiple recipients, referred to assinks, located at the leaves (almost)

simultaneously. The goal is to find zero- or bounded-skew trees of minimum total weight,

since the weight of the tree is directly proportional to the amount of resources (bandwidth and

buffers for network multicasting, power and chip area for clock routing in VLSI) that must be

allocated to the tree.

In order to meet the skew constraints in the above applications, one may increase edge

weights of the underlying network or metric space. This corresponds to adding buffers to a

network link, or wire wiggling, respectively. We will refer to this operation asstretching.

Formally, let(M;d) be an arbitrary metric space. Astretched tree T= (V;E;π;cost) for a set

of sinksS�M is a rooted tree with node setV and edge setE, together with a pair of mappings,

π : V!M andcost: E! IR+, such that

(1) π is a 1–1 mapping between the leaves ofT andS, and

(2) for every edge(u;v) 2 E, cost(u;v)� d(π(u);π(v)).

Informally, every edge(u;v) of a stretched treeT embedded in(M;d) can be stretched by

wiggling such that its length increases fromd(π(u);π(v)) to cost(u;v).

A stretched treeT is azero-skew tree(ZST) if all root-to-leaf paths inT have equal cost;

T is ab-bounded-skew tree(b-BST, or just BST when the boundb is clear from the context) if

the difference between the cost of any two root-to-leaf paths is at mostb.

The two problems that we study in this paper are:

Zero-Skew Tree Problem:Given a set of sinksS in metric space(M;d), find a minimum cost

zero-skew tree forS.

Bounded-Skew Tree Problem:Given a set of sinksS in metric space(M;d) and a bound

b> 0, find a minimum costb-bounded-skew tree forS.

The ZST and BST problems are NP-hard [8]. The restriction of the BST problem to the

rectilinear plane is also known to be NP-hard, but the complexity of the rectilinear ZST problem

is not known—for a fixed tree topology the problem can be solved in linear time by using the

Deferred-Merge Embedding(DME) algorithm independently introduced in [5, 6, 10].

2

Although the rectilinear zero- and bounded-skew tree problems have received much atten-

tion in the VLSI CAD literature [3, 5, 6, 7, 9, 10, 11, 15, 16, 19] (see Chapter 4 of [17] for a

detailed review), the first algorithms with constant approximation factors have been proposed

only recently, by Charikar et al. [8]. They give algorithms with approximation factors of

2e� 5:44 and 16.86 for the ZST and BST problems, respectively. The BST algorithm in [8] re-

lies on an approximation algorithm for the Steiner tree problem in graphs. Using the currently

best Steiner tree approximation of Robins and Zelikovsky [21] and Arora’s PTAS for comput-

ing rectilinear Steiner trees [1], the BST bounds in [8] can be updated to 16.11 for arbitrary

metric spaces, and to 12.53 for the rectilinear plane (see Table 1).

In this paper we introduce a new approach to these problems, based on zero-skew “stretch-

ing” of spanning trees. Our contributions include:

� constructive lower bounds on the cost of the optimum ZST and BST in arbitrary metric

spaces;

� improved approximation for the ZST problem in arbitrary metric spaces, based on a

reduction to thezero-skew spanning tree problem;

� improved approximation for the ZST problem in metrically convex metric spaces,1 based

on skew elimination using Steiner points;

� improved approximation for the BST problem in arbitrary and metrically convex metric

spaces, based on combining an approximate ZST with a minimum spanning tree for the

sinks.

An important feature of our algorithms is their practical running time, which is asymptotically

the same as the time needed for computing a minimum spanning tree. Thus, our algorithms can

easily handle the clock nets with hundreds of thousands of sinks that occur in large cell-based

or multi-chip module designs. For a summary of our results and a comparison to the results of

Charikar et al. [8]2 we refer the reader to Table 1.

The rest of the paper is organized as follows. In next section we prove new lower bounds on

the cost of the optimal ZST and BST. Then, in Section 3, we show how to convert (or “stretch”)

a rooted treeT spanning the setS of sinks into a zero-skew tree forS. We show that such

“stretching” increases the cost by the sum of sink delays, where thedelay in T of a sinks is

the length of the path connectings to its furthest descendant. We also show that, for metrically

1A metric space(M;d) is calledmetrically convexif, for every u;v2 M and 0� λ � 1, there exists a point

w2M such thatd(u;w) = λd(u;v) andd(w;v) = (1�λ)d(u;v).
2The running time in [8] is not explicitly estimated.

3

Problem Zero-Skew Tree Bounded-Skew Tree

Metric General M. Convex Rectilinear General M. Convex Rectilinear

Approximation factor in [8] 2e� 5:44 16:11� 12:53�

Approximation factor in this paper 4 3 14 11 9

Runtime in [8] strongly polynomial strongly polynomial

Runtime in this paper O(n2) O(nlogn) O(n2) O(nlogn)

Table 1: Summary of results and comparison to results of Charikar et al. [8]. Values marked

with asterisks update those reported in [8] by taking in account the currently best Steiner tree

approximation of Robins and Zelikovsky [21] and Arora’s PTAS for computing rectilinear

Steiner trees [1].

convex metric spaces such as the Euclidean or rectilinear planes, it is possible to reduce the

cost increase to half the sum of delays.

In Section 4 we give a Kruskal-like algorithm that builds a rooted spanning treeT whose

total delay does not exceed its length, and whose length is at most twice the cost of an optimal

ZST. These two facts yield an approximation factor of 4 for the ZST problem in arbitrary

metric spaces and an approximation factor of 3 for metrically convex metric spaces. In Section

5 we discuss the implications of combining our ZST heuristics with the DME algorithm when

solving rectilinear instances.

Finally, in Section 6, we describe how to construct approximate bounded-skew trees by

combining an approximate zero-skew tree for a subset of the sinks with subtrees of a minimum

spanning tree (MST) or approximate minimum Steiner tree for the sinks. In combination with

the MST, this gives a 14-approximation algorithm for the bounded-skew tree problem in arbi-

trary metric spaces; the factor is reduced to 11 for arbitrary metrically convex metric spaces,

and to 9 for the rectilinear plane.

2 Constructive lower bounds

In this section, we establish new lower bounds for the ZST and BST problems in an arbitrary

metric space. In contrast to the lower bounds of Charikar et al. [8] these bounds are construc-

tive. A practical advantage of constructive lower bounds is that they can give tighter bounds on

the quality of the computed solution on an instance by instance basis.

The minimum cost of a ZST (BST) forSwill be denoted byZST�(S), respectivelyBST�(S).

In our analysis we will use the following constructive lower bound onZST�(S):

4

Lemma 1 Let S be a set of n sinks. Then, for any enumeration s1;s2; : : : ;sn of the sinks in S,

ZST�(S)�MinDistfs1;s2g+
1
2

n�1

∑
i=2

MinDistfs1; : : : ;si+1g

where MinDistfAg= minu;v2A;u6=vd(u;v).

Proof: For anyr � 0, let N(r) denote the minimum number of closed balls of radiusr of

(M;d) needed to cover all sinks inS. Charikar et al. [8] established that

ZST�(S)�
Z R

0
N(r)dr

whereR is the smallest radiusr for whichN(r) = 1.

Let ri = MinDistfs1; : : : ;si+1g=2 for everyi = 1; : : : ;n�1, andrn = 0. Clearly,R� r1 �

r2 � �� � � rn�1 � rn. Note thatN(r) � i + 1 for everyr < ri , since no two points in the set

fs1; : : : ;si+1g can be covered by the same ball of radiusr. Hence,

Z R

0
N(r)dr �

n�1

∑
i=1

Z ri

ri+1

(i +1)dr =
n�1

∑
i=1

(i +1)(ri� ri+1) = 2r1+
n�1

∑
i=2

ri

and the lemma follows. ut

It can be shown that natural greedy enumerations (e.g., start from a diametrical pair of

points and add each time the point maximizing minimum distance to previously enumerated

points) do not always deliver the maximum to the lower bound established in Lemma 1. The

complexity of finding the best enumeration is an open question.

Below we bound the cost of the optimum BST by comparing it with the cost of the optimum

ZST for a subset of the sinks.

Lemma 2 Let S be a set of sinks. Then, for any W� S and skew bound b> 0,

BST�(S)� ZST�(W)�b � (jWj�1)

Proof: Let T be ab-bounded-skew tree forS. We useT to construct a ZST forW of cost no

larger thancost(T)+b � (jWj �1) as follows. First, notice thatT contains ab-bounded-skew

tree forW, sayT 0, as subtree. LetPu denote the unique path inT 0 connectingu to the root,

and letu0 be a leaf ofT 0 for which cost(Pu0) is maximum. We get a zero-skew tree forW by

adding toT 0 a loop of costcost(Pu0)�cost(Pu) for each leafu 6= u0. SinceT 0 has skew at most

b, each of thejWj�1 added loops has cost at mostb. Thus, the resulting ZST has cost at most

cost(T0)+b � (jWj�1)� BST�(S)+b � (jWj�1). ut

5

3 Zero-skew stretching of spanning trees

Let T = (S;E) be a rooted tree spanning a setSof sinks from metric space(M;d). For any sink

u, let Tu denote the subtree ofT rooted atu. Thedelayin T of u is defined by

delayT(u) = maxflength(Puv) j v leaf inTug

wherePuv denotes the unique path inT connectingu andv, andlength(Puv) = ∑e2Pu;v
d(e).

Let length(T) = ∑e2E d(e) anddelay(T) = ∑u2SdelayT(u). In this section we show that,

for any metric space(M;d), T can be stretched to a zero-skew tree of costlength(T) +

delay(T). The stretched zero-skew tree uses no Steiner points, i.e., has all nodes embedded

at the sinks. We also show that, by using Steiner points, the amount of stretching can be re-

duced to half the delay ofT in case the underlying space is metrically convex.

3.1 Zero-skew stretching in arbitrary metric spaces

The stretching algorithm for arbitrary metric spaces (Algorithm 1) constructs a zero-skew tree

T1 from a given rooted treeT spanningS.3 The construction proceeds in two phases. In the first

phase (Steps 1–3) the following transformation is applied to each sinku (see Figure 1). First,

the childrenv1; : : : ;vk of u are sorted in non-decreasing order ofd(u;vi)+delayT(vi). Thenk

new nodesu1; : : : ;uk are embedded atu and connected tou by a path of total costdelayT(u).

Finally, eachvi is disconnected fromu and reattached toui by an edge of costd(u;vi). The

result of the first phase is a treeT1 in which every sink is either a leaf or has a single child.

In the second phase (Steps 4–5) we convertT1 into a zero-skew tree forSas follows. First,

we change the root ofT1 to r 0 = rt , where wherer is the root ofT andt = degT(r). Notice

that every sinku that is not yet a leaf inT1 is incident to its parent, sayv, and tou1. For

every such sinku the edge(u;v) is replaced inT1 with (uk;v), wherek = degT(u). After this

transformation all sinks become leaves inT1.

Lemma 3 The stretched tree T1 produced by Algorithm 1 is a zero-skew tree with total cost

length(T)+delay(T).

Proof: We will prove that every path inT1 from uk, u2 S, k = degT(u), to a descendant sink

has cost equal todelayT(u); this immediately implies thatT1 is a zero-skew tree. Letv1; : : : ;vk

be the sorted children ofu in T, and letu1; : : : ;uk be the copies ofu added toT1 in Step 3.

3For clarity, in Algorithm 1 we omit curly braces for single element sets and use “�” and “+” instead of “n”

and “[”, respectively.

6

t

@@
��

@@
��

t

ttt

t t t t

v1 v2 � � � vk

w

u

u1 u2 uk

ttt

t

ttt

t t t t

t

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

e
e
e
e
e
e
e

B
B
B
B
B
B
B

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

v1 v2 � � � vk

w= parent(u)

u

v1 v2 � � � vk

w

u

u1 u2 uk

Figure 1: The two-phases of the stretching algorithm for arbitrary metric spaces. In the first

phase, for each sinku, k= degT(u) new nodesu1; : : : ;uk are embedded atu and connected tou

by a path of total costdelayT(u). The childrenvi , i = 1; : : : ;k, are reattached to the new nodes

in non-decreasing order ofd(u;vi)+delayT(vi). In the second phase the parent of each sinku

is reattached touk.

Consider a pathP from uk to a descendant sinks going through edge(ui;w), wherew is the

degT(vi)-th copy ofvi . Inductively we can assume that the cost of the path fromw to s is equal

to delayT(vi). Hence, it suffices to show that the cost of the path fromuk to w is equal to

delayT(u)�delayT(vi). Indeed, the cost of this path is

cost(w;ui)+cost(ui ;ui+1)+ � � �+cost(uk�1;uk)

= d(vi ;u)+
k�1

∑
j=i
f [d(u;vj+1)+delayT(vj+1)] � [d(u;vj)+delayT(vj)] g

= [d(u;vk)+delayT(vk)]�delayT(vi)

= delayT(u)�delayT(vi)

A similar computation shows that the cost of the path fromuk to u is d(u;vk)+delayT(vk) =

delayT(u).

The cost ofT1 is equal tolength(T) after Step 2 of the algorithm. In Step 3 it increases for

each sinku2 S by the cost of the path(u;u1;u2; : : : ;uk), i.e., bydelayT(u). Hence, the total

cost ofT1 is

length(T)+ ∑
u2S

delayT(u) = length(T)+delay(T)

ut

7

Input: Spanning tree T = (S;E), rooted at r, in a metric space (M;d)

Output: Zero-skew tree T1 = (V1;E1;π;cost) for S

1. V1 S; π(v) v for each v2V1

2. E1 E; cost(u;v) d(u;v) for each (u;v) 2 E1

3. For each sink u2 S, do:

k degT(u)

Sort u’s children in T, say v1;v2; : : : ;vk, such that

d(u;v1)+delayT(v1)� d(u;v2)+delayT(v2)� �� � � d(u;vk)+delayT(vk)

// Add k new nodes embedded atu

V1 V1+fu1; : : : ;ukg; π(u1) ��� π(uk) u

// Connect thek new nodes andu with a path

E1 E1+(u;u1); cost(u;u1) d(u;v1)+delayT(v1)

For i = 1; : : : ;k�1 do

E1 E1+(ui;ui+1)

cost(ui;ui+1) [d(u;vi+1)+delayT(vi+1)] � [d(u;vi)+delayT(vi)]

// Reattach childrenvi to the corresponding copies ofu

For i = 1; : : : ;k do

E1 E1� (u;vi)+(ui;vi); cost(ui;vi) cost(u;vi)

4. Change the root of T1 = (V1;E1) from r to rt, where t = degT(r)

5. For each sink u2 S� r, degT(u)> 0, do:

v parentT1(u); k degT(u)

E1 E1� (u;v)+(uk;v); cost(uk;v) cost(u;v)

5. Output T1 = (V1;E1;π;cost)

Algorithm 1: The zero-skew stretching algorithm for arbitrary metric spaces.

8

QQ
��

v

�
�
�
�
�
�
�
�
�
�
� T

T
T
T
T
T
T
T
T
T
T

v v

v

v

v

v

A
A
A
AA�

�
�
�� �

�
�
�
�
�
�
�
�
�
� T

T
T
T
T
T
T
T
T
T
T@

@
@
@
@
@
@

�
�
�
��
A
AA

J
J

A
A
A
AA�

�
�
��

δ ui+1

δ=2

δ=2

ui+1ui

y

x

wi

ui

Figure 2: Loop folding in metrically convex metric spaces.

3.2 Zero-skew stretching in metrically convex metric spaces

Before stating the algorithm, we need to introduce some more notation. A pathP =

(p1; p2; : : : ; pk) in T1 is called critical if it ends at a leaf nodepk and contains no loops.

By construction, it follows that the treeT1 produced by Algorithm 1 has at least one criti-

cal path starting from each node. LetP = (p1; p2; : : : ; pk) be a critical path inT1, and let

length(P) = length(π(p1);π(p2); : : : ;π(pk)). For every 0� δ � length(P), there existi such

that length(π(p1);π(p2); : : : ;π(pi)) � δ < length(π(p1);π(p2); : : : ;π(pi+1)). We denote the

edge(pi ; pi+1) by e(P;δ). Since(M;d) is metrically convex, there is a pointv(P;δ) 2M such

that such that thelength(π(p1); : : : ;π(pi);v(P;δ))= δ andlength(v(P;δ);π(pi+1); : : : ;π(pk))=

length(P)�δ.

The improved stretching algorithm for metrically convex metric spaces (Algorithm 2) first

computes a ZSTT1 using Algorithm 1. Then it “folds” half of each loop along a critical path

of T1 (see Figure 2). Folding can be applied to each loop(ui ;ui+1), sincecost(ui ;ui+1) is at

most the length of the critical pathP from ui+1. Indeed, by Lemma 3, every path fromui+1 to

a descendant leaf has the same cost. Hence,cost(ui ;ui+1)� cost(P). Finally, sinceP does not

contain loops, each edge ofP has cost equal to the distance between the embedding of its ends,

and thuscost(P) = length(P).

Lemma 4 The stretched tree T2 produced by Algorithm 2 has zero-skew and total cost equal to

length(T)+delay(T)=2.

Proof: The total cost of the loops in the stretched treeT1 is equal todelay(T). Step 3 of the

algorithm replaces each loop by an edge with half its cost. Therefore,cost(T2) = length(T)+

delay(T)=2. The treeT2 has zero-skew sinceT1 has zero-skew and loop folding preserves the

cost of all root-to-leaf paths. ut

9

Input: Rooted spanning tree T = (S;E) in a metric space (M;d)

Output: Zero-skew tree T2 = (V2;E2;π;cost) for S

1. Find T1 = (V1;E1;π;cost) using Algorithm 1

2. (V2;E2;π;cost) (V1;E1;π;cost)

3. For each sink u2 Sand i = 0;1; : : : ;degT(u), do:

// Add attachment nodewi on the critical path fromui+1

Find edge (x;y) = e(P;δ=2) on the critical path P from ui+1, where

δ = cost(ui;ui+1)

V2 V2+wi ; π(wi) v(P;δ=2)

E2 E2� (x;y)+(x;wi)+(wi ;y)

cost(x;wi) d(π(x);π(wi)); cost(wi;y) d(π(wi);π(y))

// Replace the loop(ui;ui+1), whereu0� u, with the edge(ui;wi)

E2 E2� (ui ;ui+1)+(ui;wi); cost(ui;wi) δ=2

4. Output T2 = (V2;E2;π;cost)

Algorithm 2: The zero-skew stretching algorithm for metrically convex metric spaces.

10

4 ZST approximation via spanning trees

In the previous section we have shown that any rooted spanning tree can be stretched into a

zero-skew tree whose cost is equal to the length of the spanning tree plus its delay (half the

delay, for metrically convex metric spaces). This motivates the following:

Zero-Skew Spanning Tree Problem:Given a set of pointsS in a (metrically convex) metric

space(M;d), find a rooted spanning treeT on S such thatcost(T) = length(T)+ delay(T)

(respectively,length(T)+delay(T)=2) is minimized.

Note that the minimum spanning tree (MST) onShas the shortest possible length but may

have very large delay—if the MST is a simple path, then its delay may be as much asO(n)

times larger than its length. On the other hand, a star having the least delay may beO(n) times

longer than the MST.

In this section we give an algorithm for finding a rooted spanning tree which has both delay

and length at most two times the minimum ZST cost. Therefore, our algorithm gives factor

4 and 3 approximations for the ZST problem in general and metrically convex metric spaces,

respectively. Simultaneously, our algorithm gives factor 4 and 3 approximations for the zero-

skew spanning tree problem in the respective metric spaces, sincecost(T) cannot be smaller

than the cost of the minimum ZST.

The algorithm (Algorithm 3) can be thought of as a rooted version of the well-known

Kruskal MST algorithm. At all times, the algorithm maintains a collection of rooted trees

spanning the sinks; initially each sink is a tree by itself. In each step, the algorithm chooses

two trees that have the smallest distance between their roots and merges them by linking the

root of one tree as child of the other. In order to keep the delay of the resulting tree small, the

child root is always chosen to be the root with smaller delay.

Lemma 5 delay(T)� length(T)

Proof: Note that, at the end of the Rooted-Kruskal algorithm,h(u) represents exactly the delay

of nodeu in T. Every iteration of the algorithm adds the edge(r; r 0) to E(T), thus increasing

length(T) by d(r; r 0). On the other hand, sinceh(r)� h(r 0) whenh(r) is updated, the iteration

contributes at mostd(r; r 0)+h(r 0)�h(r)� d(r; r 0) to ∑u2Sh(u), i.e., to the total delay ofT. ut

Let n be the number of sinks inS.

Lemma 6 length(T)� 2(1�1=n)ZST�(S)

11

Input: Finite set S�M

Output: Rooted spanning tree T on S

1. Initialization:

ROOTS S; E /0

For each v2 S, h(v) 0

2. While jROOTSj> 1 do:

Find the closest two sinks r; r 0 2 ROOTSwith respect to metric d

If h(r)< h(r 0) then swap r and r 0

E E+(r; r 0)

h(r) maxfh(r); d(r; r 0)+h(r 0)g

ROOTS ROOTS� r 0

3. Output the tree T = (S;E), rooted at the only remaining sink in ROOTS

Algorithm 3: The Rooted-Kruskal algorithm.

Proof: Let s1 be the root ofT, and lets2; : : : ;sn be the remainingn�1 nodes ofT, indexed

in reverse order of their deletion fromROOTS. Since in each iteration the algorithm adds toT

the edge joining a closest pair of points inROOTS,

length(T) =
n�1

∑
i=1

MinDistfs1; : : : ;si+1g

Thus, by Lemma 1,

length(T)� 2 ZST�(S)�MinDistfs1;s2g= 2 ZST�(S)�d(s1;s2)

Since(s1;s2) is the longest edge inT, d(s1;s2)� length(T)=(n�1), and the lemma follows.

ut

Lemmas 3, 5, and 6 give:

Theorem 1 For any metric space and any set of n sinks, running Algorithm 1 on the tree

T produced by the Rooted-Kruskal algorithm gives a zero-skew tree whose cost is at most

4(1�1=n) times larger than ZST�(S).

12

Proof: By Lemma 3, the cost of the embedding is equal tolength(T) + delay(T). But

delay(T)� length(T) by Lemma 5, and the approximation factor follows from Lemma 6.ut

Similarly, Lemmas 4, 5, and 6 give:

Theorem 2 For any metrically convex metric space and any set of n sinks, running Algorithm 2

on the tree T produced by the Rooted-Kruskal algorithm gives a zero-skew tree whose cost is

at most3(1�1=n) times larger than ZST�(S).

Proof: By Lemma 4, the cost of the embedding is now equal tolength(T)+(1=2) �delay(T),

and the theorem follows again from Lemmas 5 and 6. ut

The following example shows that the algorithm in Theorem 1 can produce zero-skew trees

which are 4(1�1=n) times larger than optimal. A similar example shows that the algorithm in

Theorem 2 has a tight approximation factor of 3(1�1=n).

Example 1 Consider a discrete metric space on 2k+1 points,n= 2k of which are sinks. We

label the sinks with 0-1 sequences of lengthk, i.e.,S= fα = bk�1bk�2 : : :b0 j bi 2 f0;1gg. All

sink-to-sink distances are equal to 1 and the distance from the single Steiner point to each of

the sinks is 1=2. In this space, the optimal ZST is a star rooted at the Steiner point, and has

cost equal ton=2. The Rooted-Kruskal algorithm may construct the spanning treeT with root

(11: : :1) and edges(α;α0), such thatα0 is identical toα except that the rightmost 0 inα0 is

replaced with 1 inα. Indeed, at each iteration of Step 2, the algorithm may choose to merge

trees rooted atα andα0 as above. It may chooseα to be the root of the merged tree since

h(α) = h(α0).

Clearly, length(T) = n�1. On the other hand, since we always merge two roots with the

sameh-value, each merge contributes exactly 1 to the total delay ofT. Thus,delay(T) = n�1.

By Lemma 3, the cost of the ZST produced by the algorithm is

length(T)+delay(T) = 2(n�1) = 4(1�1=n) �
n
2

ut

Running time. The running time of the stretching algorithms given in Section 3 is dominated

by the time needed to sort the children of each node; this can be done inO(nlogn) overall.

For arbitrary metrics the Rooted-Kruskal algorithm can be implemented inO(n2) time using

Eppstein’s dynamic closest-pair data structure [12]. In the rectilinear plane (in fact, in any fixed

dimensionalLp space), the running time can be reduced toO(nlogn) time by using the dynamic

closest-pair data structure of Bespamyatnikh [4]. These implementations of the Rooted-Kruskal

algorithm are asymptotically optimal, since the running times match known lower bounds for

computing the first closest pair.

13

vk

uk

v2
v

v

v

u1 u2

v2

u0 = u

v1
v

v

v

u1 u2 uk

vk

v

v

v

v

v

v1

v

u0 = u

v

v

v

v

v

wk�1

C
C
C
C
C
C�

�
�
�
�
�C

C
C
C
C
C�

�
�
�
�
�

@
@@

S
SS

@
@

@
@

@

w1

C
C
C
C
C
C�

�
�
�
�
� C

C
C
C
C
C�

�
�
�
�
�

@
@

@
@

@

C
C
C
C
C
C�

�
�
�
�
�

� � �

C
C
C
C
C
C�

�
�
�
�
�

w0

� � �

QQ
��

Figure 3: When Algorithm 2 is applied to the Rooted-Kruskal spanning tree, the topology of the

stretched tree remains the same since each attachment nodewi belongs to the edge(ui+1;vi+1).

Thus, the total time for running the Rooted-Kruskal algorithm followed by one of the

stretching algorithms given in Section 3 isO(n2) in arbitrary metric spaces, respectively

O(nlogn) in the rectilinear plane. Notice that this matches asymptotically the time needed

for computing a minimum spanning tree for the sinks.

5 Practical considerations for approximating the rectilinear

ZST

In the previous two sections it has been shown that the minimum cost ZST can be approximated

in metrically convex metric spaces within a factor of 3. In order to obtain better ZSTs in

the rectilinear plane, we may combine the stretched spanning tree with the DME algorithm

[5, 6, 10]. The DME algorithm gives the optimal rectilinear ZST for any giventopology, which

is an unweighted binary tree with the leaves labeled by the sinks. Therefore, we may only

shorten the rectilinear ZST if we feed the topology of the stretched spanning tree into the DME

algorithm.

In Section 3 we suggested two different ways of stretching a spanning tree. One may

expect that the topology produced by Algorithm 2 (the loop folding algorithm) is superior to the

topology produced by Algorithm 1. Surprisingly, when stretching the spanning tree produced

by the Rooted-Kruskal algorithm, both algorithms lead to the same topology. As proven below,

every attachment nodewi inserted by Algorithm 2 belongs to the edge(ui+1;vi+1). Hence, loop

folding does not change the topology of the stretched tree (see Figure 3).

14

Theorem 3 Let T be the rooted spanning tree constructed by the Rooted-Kruskal algorithm.

In any metrically convex metric space, the topologies produced by running Algorithms 1 and 2

on T are identical.

Proof: Let the childrenfv1; : : : ;vkg of a nodeu be sorted as in Algorithm 1, i.e., in non-

decreasing order ofd(u;vi)+delayT(vi). For brevity, denotedi = d(u;vi) andDi = delayT(vi).

We will show thatδ = cost(ui ;ui+1) is no greater thandi+1. This will ensure that the attachment

nodewi lies on the edge(ui+1;vi+1) and, therefore, the tree topologies produced by the two

stretching algorithms are the same (see Figure 3). Sinceδ= (di+1+Di+1)�(di+Di), it suffices

to prove that

Di+1� di +Di (1)

We say that indexk precedesindex l if the nodevk has been attached tou beforevl in the

Rooted-Kruskal algorithm. Letp1 be the maximum index precedingi+1, p2 be the maximum

index precedingp1, and so on, until we arrive at an indexpm with Dpm = 0.4 Thendp1 +Dp1

represents the length of the critical path fromu at the time whenvi+1 is linked tou by the

Rooted-Kruskal algorithm, anddpi+1 +Dpi+1 is the length of the critical path fromu at the time

whenvpi is linked tou.

Notice that, since the distance between the closest two sinks inROOTSdoes not decrease

during the Rooted-Kruskal algorithm,

di+1� dp1 � �� � � dpm (2)

Moreover,

Di+1� dp1 +Dp1 (3)

and

Dpj�1 � dpj +Dpj (4)

for every j = 2; : : : ;m�1, since through all attachments nodeu remains the root.

Assume, for a contradiction, that (1) does not hold. We will show by induction onj that

pj > i +1 andDi+1� Dpj for every j = 1; : : : ;m. SinceDpm = 0, the above claim implies that

Di+1 = 0, making (1) trivially true.

To prove the claim, consider firstj = 1. If p1� i, thendp1 +Dp1 � di +Di , and (3) implies

(1). So, it must be the case thati +1< p1. Thendi+1+Di+1� dp1 +Dp1, and (2) implies that

Di+1� Dp1.

4We will always arrive at an indexpm with Dpm = 0, since at least one child ofu has zero delay. Indeed, letv

be the child first connected tou. At the moment when the edge(u;v) is added by the Rooted-Kruskal algorithmu

has zero delay and thusv must also have zero delay. The delay ofv never changes after its removal fromROOTS.

15

Assume now thatDi+1� Dpj�1 for somej � 2. If pj � i, using (4) we get

Di+1� Dpj�1 � dpj +Dpj � di +Di

So, it must be the case thati +1< pj . Thendi+1+Di+1 � dpj +Dpj and, sincedi+1� dpj by

(2), this implies thatDi+1� Dpj . ut

Corollary 1 Combination of the Rooted-Kruskal algorithm with the stretching algorithm for

arbitrary metric spaces (Algorithm 1) and with the DME algorithm gives a 3-approximation

for the rectilinear ZST problem.

6 Approximate bounded-skew trees

In this section we give two approximation algorithms for the BST problem, both built around a

black-box ZST approximation algorithm. In both cases we construct a ZST for an appropriately

chosen subset of the sinks, then extend this ZST to ab-bounded-skew tree for all sinks. In the

first algorithm (Algorithm 4) the extension is done by adding subtrees of an MST on the sinks;

in the second (Algorithm 5) subtrees are extracted from an approximate Steiner tree.

6.1 The MST based algorithm

The first algorithm (Algorithm 4) uses a simple iterative construction to cover the sinks by

disjoint b-skew subtrees of an MSTT0 of S. The algorithm then outputs the union of these

subtrees with a ZSTT1 on their roots. Clearly the resulting treeT 0 is a b-bounded-skew tree

for S. Moreover,cost(T 0)� cost(T1)+ length(T0), since the subtrees are disjoint pieces ofT0.

Hence, if the ZST algorithm used in Step 3 has an approximation factor ofrZST, by Lemma 2

we get that

cost(T 0) � rZSTZST�(W)+ length(T0)

� rZST(BST�(S)+b � (jWj�1))+ length(T0)

For each nodeu 6= r added toW in Step 2 of Algorithm 4, the path from the parent of

u to the sinkv is deleted from the tree. Sincev is a furthest sink, the length of this path is

equal todelayT(parent(u)). By the choice ofu, delayT(parent(u))> b. Thus,b � (jWj�1)�

length(T0), and so

cost(T 0)� rZSTBST�(S)+(rZST+1)length(T0)

16

Input: Finite set S�M, bound b> 0

Output: b-bounded-skew tree for S

1. Find an MST T0 on S, with respect to the metric d, and choose an arbitrary sink r

as root.

2. Find a set W of sinks and a collection of subtrees of T0, (Bu)u2W, as follows:

W /0; T T0

While T 6= /0 do:

Find a sink v of T which is furthest from the root

Find the highest ancestor, say u, of v that still has delayT(u)� b

W W+u; Bu Tu; T T� (u; parent(u))�Bu

3. Find an approximate zero-skew tree, T1, for W

4. Output the tree T 0 = T1[(
S

u2W Bu) rooted at the root of T1

Algorithm 4: The MST based bounded-skew tree algorithm.

Let rMST be theSteiner ratiofor the metric space(M;d), i.e., the supremum, over all sets

of pointsS in (M;d), of the ratio between the length of an MST and the length of a minimum

Steiner tree forS. Since the length of the minimum Steiner tree forS is a lower bound on

BST�(S), we get thatlength(T0)� rMSTBST�(S). Hence, we have the following:

Theorem 4 Algorithm 4 has an approximation factor of rZST+ rMST+ rZSTrMST.

Since the Steiner ratio is at most 2 for any metric space [18], and 3/2 for the rectilinear

plane [13], by using the results in Theorems 1 and 2 we get:

Corollary 2 The approximation factor of Algorithm 4 is 14 in arbitrary metric spaces, 11 in

arbitrary metrically convex metric spaces, and 9 in the rectilinear plane.

Notice that the running time of Algorithm 4 is stillO(nlogn) for the rectilinear plane and

O(n2) for arbitrary metric spaces: The MST in Step 1 can be computed within these time

bounds using Hwang’s [14] rectilinear MST algorithm and Kruskal’s algorithm respectively,

while Step 2 can be implemented in linear time.

17

Input: Finite set S�M, bound b> 0

Output: b-bounded-skew tree for S

1. Find an approximate Steiner tree T0 on S, with respect to the metric d

2. Find a set W of sinks and a collection of subtrees of T0, (Bu)u2W, as follows:

W /0; T T0

While T 6= /0 do:

Pick an arbitrary sink u in T, and let Bu be the subtree of T induced by

vertices within tree distance of at most b from u

W W[fug; T T nBu

3. Find an approximate zero-skew tree, T1, for W

4. Output the tree T 0 = T1[(
S

u2W Bu)

Algorithm 5: The approximate Steiner tree based bounded-skew tree algorithm.

6.2 The approximate Steiner tree based algorithm

The second BST algorithm combines a ZST for a subsetW of the sinks withb-skew subtrees

of an approximate Steiner treeT0 (Algorithm 5).

Theorem 5 The BST problem can be approximated within a factor of rZST + rSMT +

2 rZSTrSMT, given rZST, respectively rSMT, approximation algorithms for the ZST and mini-

mum Steiner tree problems.

Proof: By construction, the distance inT0 between any two sinks inW is at leastb. Consider

the set of open balls of radiusb=2 centered at the sinks inW, with the balls considered in the

metric space induced byT0. Since any two such balls are disjoint, and each of them must cover

at leastb=2 worth of edges ofT0, we get that

bjWj � 2 length(T0) (5)

To estimate the cost of the BST produced by the algorithm, notice that
S

u2W Bu has total

cost of at mostlength(T0). By Lemma 2 and (5), we get:

cost(T 0) � rZSTZST�(W)+ length(T0)

� rZST(BST�(S)+b � (jWj�1))+ length(T0)

18

� rZST(BST�(S)+2 length(T0))+ length(T0)

and the theorem follows by observing thatlength(T0) � rSMTBST�(S) since, as noted above,

the length of the minimum Steiner tree forS is a lower bound onBST�(S). ut

With the currently known approximation factors for Steiner trees and zero-skew trees, The-

orem 4 gives better BST approximations than Theorem 5 for the rectilinear plane, as well as

arbitrary (metrically-convex) metric spaces. However, Theorem 5 may improve upon The-

orem 4 for metric spaces with good Steiner tree approximation (rSMT close to 1) and large

Steiner ratio (rMST close to 2), e.g., for high-dimensionalLp spaces.

7 Conclusions and open problems

We have given approximation algorithms for the ZST and BST problems with improved ap-

proximation factors for general and metrically convex metric spaces, as well as the rectilinear

plane. Our algorithms have a practical running time:O(nlogn) in the rectilinear plane, and

O(n2) in general metric spaces. Preliminary experiments also show that, when combined with

the linear time DME algorithm of [5, 6, 10], our rectilinear ZST algorithm gives results com-

petitive to those obtained by the Greedy DME heuristic of Edahiro [11], which is regarded in

the VLSI CAD community as the best ZST heuristic to date (see [17]).

An interesting open question is to determine the limitations of the spanning-tree based ZST

construction introduced in this paper. One can define thezero-skew Steiner ratioof a metric

space as the supremum, over all sets of sinks, of the ratio between the minimum zero-skew cost

(i.e., length+delay) of a spanning tree and the minimum ZST cost. The results in Section 4

imply that the zero-skew Steiner ratio is at most 4 in arbitrary metric spaces, and at most 3 in

metrically convex metric spaces. On the other hand, we have constructed instances showing

that the zero-skew Steiner ratio can be as large as 3 for arbitrary metric spaces; we conjecture

that the ratio is never larger than 3. Determining the complexity of the zero-skew spanning tree

problem is another interesting open question.

In theplanarversions of the rectilinear ZST and BST problems, one seeks zero, respectively

bounded-skew trees in the rectilinear plane with no self-intersecting edges. Charikar et al. [8]

have given the first constant approximation factors for these versions; it would be interesting to

find algorithms with improved approximation factors.

19

References

[1] A RORA S. Polynomial time approximation schemes for Euclidean TSP and other geometric problems.J.

ACM 45 (1998), pp. 753–782.

[2] BAKOGLU, H. Circuits, Interconnections, and Packaging for VLSI. Addison-Wesley, Reading, Mas-

sachusetts, 1990.

[3] BAKOGLU, H., WALKER, J., AND MEINDL, J. A symmetric clock-distribution tree and optimized high-

speed interconnections for reduced clock-skew in ULSI and WSI circuits. InProc. IEEE International Conf.

on Computer Design(1986), pp. 118–122.

[4] BESPAMYATNIKH, S. An optimal algorithm for closest-pair maintenance.Discrete Comput. Geom. 19

(1998), 175–195.

[5] BOESE, K., AND KAHNG, A. Zero-skew clock routing trees with minimum wirelength. InProc. IEEE

International ASIC Conf.(1992), pp. 17–21.

[6] CHAO, T.-H., HSU, Y.-C., AND HO, J.-M. Zero skew clock net routing. InProc. ACM/IEEE Design

Automation Conf.(1992), pp. 518–523.

[7] CHAO, T.-H., HSU, Y.-C., HO, J.-M., BOESE, K., AND KAHNG, A. Zero skew clock routing with min-

imum wirelength.IEEE Transactions on Circuits and Systems — II: Analog and Digital Signal Processing

39 (1992), 799–814.

[8] CHARIKAR , M., KLEINBERG, J., KUMAR, R., RAJAGOPALAN, S., SAHAI , A., AND TOMKINS, A. Min-

imizing wirelength in zero and bounded skew clock trees. InProc. 10th ACM-SIAM Symposium on Discrete

Algorithms(1999), pp. 177–184.

[9] CONG, J., KAHNG, A., KOH, C., AND TSAO, C.-W. Bounded-skew clock and Steiner routing.ACM

Transactions on Design Automation of Electronic Systems 3(1998), 341–388.

[10] EDAHIRO, M. Minimum skew and minimum path length routing in VLSI layout design.NEC Research and

Development 32(1991), 569–575.

[11] EDAHIRO, M. A clustering-based optimization algorithm in zero-skew routings. InProc. 30th ACM/IEEE

Design Automation Conference(1993), pp. 612–616.

[12] EPPSTEIN, D. Fast hierarchical clustering and other applications of dynamic closest pairs.J. Experimental

Algorithmics 5(2000), 1–23.

[13] HWANG, F. K. On Steiner minimal trees with rectilinear distance.SIAM J. Applied Math. 30(1976),

104–114.

[14] HWANG, F. K. An O(nlogn) algorithm for rectilinear minimal spanning trees.Journal of the ACM 26

(1979), 177–182.

[15] JACKSON, M., SRINIVASAN , A., AND KUH, E. Clock routing for high-performance ICs. InProc.

ACM/IEEE Design Automation Conference(1990), pp. 574–579.

[16] KAHNG, A. B., CONG, J.,AND ROBINS, G. High-performance clock routing based on recursive geometric

matching. InProc. ACM/IEEE Design Automation Conference(1990), pp. 574–579.

20

[17] KAHNG, A. B., AND ROBINS, G. On Optimal Interconnections for VLSI. Kluwer Academic Publishers,

Norwell, Massachusetts, 1995.

[18] KOU, L., MARKOWSKY, G., AND BERMAN, L. A fast algorithm for Steiner trees.Acta Informatica 15

(1981), 141–145.

[19] LI, Y., AND JABRI, M. A zero-skew clock routing scheme for VLSI circuits. InProc. IEEE International

Conf. on Computer-Aided Design(1992), pp. 458–463.

[20] ROUSKAS, G.N.,AND BALDINE , I. Multicast routing with end-to-end delay and delay variation constraints.

IEEE J. on Selected Areas in Communications 15(1997), pp. 346–356.

[21] ROBINS, G., AND ZELIKOVSKY, A. Improved Steiner tree approximation in graphs. InProc. 11th ACM-

SIAM Symp. on Discrete Algorithms(2000), pp. 770–779.

[22] A.Z. Zelikovsky and I.I. Măndoiu. Practical approximation algorithms for zero- and bounded-skew trees. In

Proc. 12th ACM-SIAM Annual Symposium on Discrete Algorithms, pages 407–416, 2001.

21

