Practical Approximation Algorithms for
Zero- and Bounded-Skew Trees

Alexander Z. ZelikovsKy lon |. Mandoiu

Abstract

Theskewof an edge-weighted rooted tree is the maximum difference between any two
root-to-leaf path weights. Zero- or bounded-skew trees are needed for achieving synchro-
nization in many applications, including network multicasting [20] and VLSI clock routing
[2, 17]. In these applications edge weights represent propagation delays, and a signal gen-
erated at the root should be received by multiple recipients located at the leaves (almost)
simultaneously. The objective is to find zero- or bounded-skew trees of minimum total
weight, since the weight of the tree is directly proportional to the amount of resources
(bandwidth and buffers for network multicasting, power and chip area for clock routing in
VLSI) that must be allocated to the tree. Charikar et al. [8] have recently proposed the first
strongly polynomial algorithms with proven constant approximation facters;, 244 and
16.86, for finding minimum weight zero- and bounded-skew trees, respectively.

In this paper we introduce a new approach to these problems, based on zero-skew
“stretching” of spanning trees, and obtain algorithms with improved approximation factors
of 4 and 14. For the case when tree nodes are points in the plane and edge weights are given
by the rectilinear metric our algorithms find zero- and bounded-skew trees of length at
most 3 and 9 times the optimum. This case is of special interest in VLSI clock routing. An
important feature of our algorithms is their practical running time, which is asymptotically
the same as the time needed for computing the minimum spanning tree.

*A preliminary version of this work appeared in [22].
TDepartment of Computer Science, Georgia State University, University Plaza, Atlanta, GA 30303, E-mail:

alexz@cs.gsu.edu
fCollege of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280, E—nma#n-

doiu@cc.gatech.edu

1 Introduction

The skewof an edge-weighted rooted tree is the maximum difference between any two root-
to-leaf path weights. Zero- or bounded-skew trees are needed for achieving synchronization
in many applications, including network multicasting [20] and VLSI clock routing [2, 17]. In
these applications edge weights represent propagation delays, and a signal generated at the root
should be received by multiple recipients, referred tsiaks located at the leaves (almost)
simultaneously. The goal is to find zero- or bounded-skew trees of minimum total weight,
since the weight of the tree is directly proportional to the amount of resources (bandwidth and
buffers for network multicasting, power and chip area for clock routing in VLSI) that must be
allocated to the tree.

In order to meet the skew constraints in the above applications, one may increase edge
weights of the underlying network or metric space. This corresponds to adding buffers to a
network link, or wire wiggling, respectively. We will refer to this operationsaetching
Formally, let(M, d) be an arbitrary metric space. diretched tree = (V, E, 11, cost) for a set
of sinksSC M is a rooted tree with node sétand edge sdf, together with a pair of mappings,

m:V — M andcost: E — IR, such that

(1) mtis a 1-1 mapping between the leave§ @dndS, and
(2) for every edgéu,v) € E, cost(u,v) > d(1i(u), T(V)).

Informally, every edggu,v) of a stretched tre& embedded iNM,d) can be stretched by
wiggling such that its length increases fraitri(u), 1(v)) to cost(u, v).

A stretched tred is azero-skew tre¢ZST) if all root-to-leaf paths il have equal cost;
T is ab-bounded-skew trg@-BST, or just BST when the bourxlis clear from the context) if
the difference between the cost of any two root-to-leaf paths is atlmost

The two problems that we study in this paper are:

Zero-Skew Tree Problem:Given a set of sink§in metric spacéM,d), find a minimum cost
zero-skew tree fo&

Bounded-Skew Tree Problem: Given a set of sink$§ in metric spacgM,d) and a bound
b > 0, find a minimum cosb-bounded-skew tree f@&.

The ZST and BST problems are NP-hard [8]. The restriction of the BST problem to the
rectilinear plane is also known to be NP-hard, but the complexity of the rectilinear ZST problem
is not known—for a fixed tree topology the problem can be solved in linear time by using the
Deferred-Merge Embeddin@®@ME) algorithm independently introduced in [5, 6, 10].

2

Although the rectilinear zero- and bounded-skew tree problems have received much atten-
tion in the VLSI CAD literature [3, 5, 6, 7, 9, 10, 11, 15, 16, 19] (see Chapter 4 of [17] for a
detailed review), the first algorithms with constant approximation factors have been proposed
only recently, by Charikar et al. [8]. They give algorithms with approximation factors of
2e~5.44 and 16.86 for the ZST and BST problems, respectively. The BST algorithm in [8] re-
lies on an approximation algorithm for the Steiner tree problem in graphs. Using the currently
best Steiner tree approximation of Robins and Zelikovsky [21] and Arora’s PTAS for comput-
ing rectilinear Steiner trees [1], the BST bounds in [8] can be updated to 16.11 for arbitrary
metric spaces, and to 12.53 for the rectilinear plane (see Table 1).

In this paper we introduce a new approach to these problems, based on zero-skew “stretch-
ing” of spanning trees. Our contributions include:

e constructive lower bounds on the cost of the optimum ZST and BST in arbitrary metric
spaces;

e improved approximation for the ZST problem in arbitrary metric spaces, based on a
reduction to theero-skew spanning tree problem

e improved approximation for the ZST problem in metrically convex metric sphbased
on skew elimination using Steiner points;

e improved approximation for the BST problem in arbitrary and metrically convex metric
spaces, based on combining an approximate ZST with a minimum spanning tree for the
sinks.

An important feature of our algorithms is their practical running time, which is asymptotically
the same as the time needed for computing a minimum spanning tree. Thus, our algorithms can
easily handle the clock nets with hundreds of thousands of sinks that occur in large cell-based
or multi-chip module designs. For a summary of our results and a comparison to the results of
Charikar et al. [8] we refer the reader to Table 1.

The rest of the paper is organized as follows. In next section we prove new lower bounds on
the cost of the optimal ZST and BST. Then, in Section 3, we show how to convert (or “stretch”)
a rooted tre€l spanning the seb of sinks into a zero-skew tree f@& We show that such
“stretching” increases the cost by the sum of sink delays, wherddlayin T of a sinksis
the length of the path connectisgo its furthest descendant. We also show that, for metrically

LA metric spacgM,d) is calledmetrically convesif, for everyu,v € M and 0< A < 1, there exists a point
w € M such thad(u,w) = Ad(u,v) andd(w,v) = (1 —A)d(u,V).
2The running time in [8] is not explicitly estimated.

Problem Zero-Skew Tree Bounded-Skew Tree
Metric General ‘ M. Convex | Rectilinear | General ‘ M. Convex | Rectilinear
Approximation factor in [8] 2ex~5.44 16.11* 1253
Approximation factor in this paper 4 ‘ 3 14 ‘ 11 9
Runtime in [8] strongly polynomial strongly polynomial
Runtime in this paper o(n?) ‘ O(nlogn) o(n?) ‘ O(nlogn)

Table 1: Summary of results and comparison to results of Charikar et al. [8]. Values marked
with asterisks update those reported in [8] by taking in account the currently best Steiner tree
approximation of Robins and Zelikovsky [21] and Arora’s PTAS for computing rectilinear
Steiner trees [1].

convex metric spaces such as the Euclidean or rectilinear planes, it is possible to reduce the
cost increase to half the sum of delays.

In Section 4 we give a Kruskal-like algorithm that builds a rooted spanningltnebose
total delay does not exceed its length, and whose length is at most twice the cost of an optimal
ZST. These two facts yield an approximation factor of 4 for the ZST problem in arbitrary
metric spaces and an approximation factor of 3 for metrically convex metric spaces. In Section
5 we discuss the implications of combining our ZST heuristics with the DME algorithm when
solving rectilinear instances.

Finally, in Section 6, we describe how to construct approximate bounded-skew trees by
combining an approximate zero-skew tree for a subset of the sinks with subtrees of a minimum
spanning tree (MST) or approximate minimum Steiner tree for the sinks. In combination with
the MST, this gives a 14-approximation algorithm for the bounded-skew tree problem in arbi-
trary metric spaces; the factor is reduced to 11 for arbitrary metrically convex metric spaces,
and to 9 for the rectilinear plane.

2 Constructive lower bounds

In this section, we establish new lower bounds for the ZST and BST problems in an arbitrary
metric space. In contrast to the lower bounds of Charikar et al. [8] these bounds are construc-
tive. A practical advantage of constructive lower bounds is that they can give tighter bounds on
the quality of the computed solution on an instance by instance basis.

The minimum cost of a ZST (BST) f@will be denoted by ST*(S), respective\BST(S).
In our analysis we will use the following constructive lower boundST* (S):

Lemmal Let S be a set of n sinks. Then, for any enumeratioghs..,s, of the sinks in S,
1n71
ZST(S) > MinDist{s1, s} + 5 % MinDist{s,...,S+1}
i=

where MinDis{A} = minyyea u£/d(U,V).

Proof: For anyr > 0, let N(r) denote the minimum number of closed balls of radiusf
(M, d) needed to cover all sinks B Charikar et al. [8] established that

ZST(S) > /ORN(r)dr

whereR is the smallest radiusfor whichN(r) = 1.

Let r; = MinDist{sy,...,5+1}/2 foreveryi=1,...,n—1, andr, = 0. Clearly,R>r; >
rp > .-+ >rp_1 > rn. Note thatN(r) > i+ 1 for everyr < rj, since no two points in the set
{s1,...,S+1} can be covered by the same ball of radiuslence,

n-1

R n—-1 . _ n—l_
/0 N(r)dr > i;/ri+1(l+1)dr = i;(l+l)(ri —liy1) = 2r1 + i;ri

and the lemma follows. O

It can be shown that natural greedy enumerations (e.g., start from a diametrical pair of
points and add each time the point maximizing minimum distance to previously enumerated
points) do not always deliver the maximum to the lower bound established in Lemma 1. The
complexity of finding the best enumeration is an open question.

Below we bound the cost of the optimum BST by comparing it with the cost of the optimum
ZST for a subset of the sinks.

Lemma 2 Let S be a set of sinks. Then, for anyAS and skew bound O,

BST(S) > ZST(W) — b- (JW| — 1)

Proof: LetT be ab-bounded-skew tree f&. We useT to construct a ZST fow of cost no
larger thancost(T) +b- (|W| — 1) as follows. First, notice thal contains e-bounded-skew
tree forW, sayT’, as subtree. Le®, denote the unique path ii¥ connectingu to the root,
and letup be a leaf ofT’ for which cost(P,,) is maximum. We get a zero-skew tree Wrby
adding toT’ a loop of costost(P,,) — cost(PR,) for each leali # up. SinceT’ has skew at most
b, each of theW| — 1 added loops has cost at mbsfThus, the resulting ZST has cost at most
cost(T')+b- (W] —1) <BST(S) +b- (]W|—-1). O

5

3 Zero-skew stretching of spanning trees

LetT = (S E) be arooted tree spanning a Setdf sinks from metric spacéM, d). For any sink
u, let T, denote the subtree @t rooted atu. Thedelayin T of u is defined by

delay; (u) = maxX{length(R,y) | vleaf inT,}

whereR,y denotes the unique pathThconnectingl andv, andlength(Puy) = Y ecp,, d(€).
LetlengthT) = Yeced(e) anddelayT) = 5 csdelay (u). In this section we show that,

for any metric spacéM,d), T can be stretched to a zero-skew tree of desigthT) +

delayT). The stretched zero-skew tree uses no Steiner points, i.e., has all nodes embedded

at the sinks. We also show that, by using Steiner points, the amount of stretching can be re-

duced to half the delay df in case the underlying space is metrically convex.

3.1 Zero-skew stretching in arbitrary metric spaces

The stretching algorithm for arbitrary metric spaces (Algorithm 1) constructs a zero-skew tree
T1 from a given rooted tre& spanningS.® The construction proceeds in two phases. In the first
phase (Steps 1-3) the following transformation is applied to eachudisée Figure 1). First,
the childrenvy, ..., v, of u are sorted in non-decreasing orderdof, vi) + delay; (vi). Thenk
new nodesu, ..., Ux are embedded atand connected ta by a path of total costielay; (u).
Finally, eachv; is disconnected fromn and reattached tog; by an edge of cosd(u,vi). The
result of the first phase is a tr@e in which every sink is either a leaf or has a single child.

In the second phase (Steps 4-5) we conVgmto a zero-skew tree fdd as follows. First,
we change the root of; to r’ = ry, where where is the root ofT andt = deg;(r). Notice
that every sinku that is not yet a leaf iy is incident to its parent, say, and tou;. For
every such sinki the edge(u,v) is replaced inf; with (uy,V), wherek = deg (u). After this
transformation all sinks become leavedin

Lemma 3 The stretched treeiTproduced by Algorithm 1 is a zero-skew tree with total cost
length(T) +delayT).

Proof: We will prove that every path ifi; from uy, u € S, k= degy (u), to a descendant sink
has cost equal tdelay; (u); this immediately implies thal; is a zero-skew tree. Let, ...,V
be the sorted children af in T, and letus,...,ux be the copies ofi added toT; in Step 3.

3For clarity, in Algorithm 1 we omit curly braces for single element sets and ugeahd “+” instead of *\”
and ‘U", respectively.

w = parent(u) W W

uz uz Uik

; — = ¢

uz uz Uik

Vi Vo ... VW V1 Vo ... Vk Vi Vo ... VW

Figure 1. The two-phases of the stretching algorithm for arbitrary metric spaces. In the first
phase, for each sink k = deg; (u) new nodesl, ..., ux are embedded atand connected to

by a path of total cogdelay; (u). The childrenv;, i =1,..., Kk, are reattached to the new nodes

in non-decreasing order dfu,Vv;) +delay; (v;). In the second phase the parent of each gink

is reattached toy.

Consider a pati? from ux to a descendant sir&kgoing through edgéu;, w), wherew is the
degr (vi)-th copy ofv;. Inductively we can assume that the cost of the path fnotm s is equal
to delay (vi). Hence, it suffices to show that the cost of the path fignto w is equal to
delay (u) —delay (vi). Indeed, the cost of this path is

cost(w, U;) + cost(Uj, Ui41) + - - - + COSt{ Uk_1, Uk)
k-1
= d(vi,u)+ > {[d(u,vj;1) +delay (vj41)] — [d(u,vj) +delay:(vj)] }
j=i

= [d(u,v) + delay (vi)] — delay; (v)
= delay (u) —delay (v)

A similar computation shows that the cost of the path figno u is d(u, vk) + delay () =
delay; (u).

The cost ofTy is equal tdength(T) after Step 2 of the algorithm. In Step 3 it increases for
each sinku € Sby the cost of the patfu,us,uy,...,u), i.e., bydelay (u). Hence, the total
cost of Ty is

length(T) + ESdelayr(u) =length(T) 4+ delay(T)

Input: Spanning tree T = (S,E), rooted at r, in a metric space (M, d)
Output: Zero-skew tree Ty = (Vq,E1, T, cost) for S

1. Vi< S m(v)«+vforeachveV;
2. E; + E; cost(u,v) < d(u,v) for each (u,v) € E;
3. For each sink u € S, do:
k < degr (u)
Sort u's children in T, say v1,Vo, ...,V such that
d(u,v1) +delay; (v1) < d(u,v2) +delay (v2) < --- < d(u,v) +delay (Vi)
/I Add k new nodes embeddeduat
Vi< Vi+{ug,...,u}; T(up) < --- < T(Ug) < U
/I Connect th&k new nodes and with a path
E1 <+ E1+(u,u1); cost(u,u) < d(u,v1) +delay (v1)
Fori=1,...,k—1do
E1 < E1+ (Ui, Ui+1)
cost(uj, Ui11) < [d(u,viy1) +delay (viy1) | — [d(u,v) +delay (vi)]
// Reattach childrem; to the corresponding copies of
Fori=1,...,kdo
E1 < E1— (u,v) + (ui,Vvi); cost(u;,V;) < costu,Vv;)
4. Change the root of Ty = (V4,Ez1) from r to ri, where t = degy (r)
5. For each sink u € S—r, deg; (u) > 0, do:

V< parent, (u); k< deg(u)
E1 <+ E1— (u,v) + (uk,V); cost{uy,V) < cost(u,V)

5. Output Ty = (V1,Ej, T COSY)

Algorithm 1: The zero-skew stretching algorithm for arbitrary metric spaces.

Figure 2: Loop folding in metrically convex metric spaces.

3.2 Zero-skew stretching in metrically convex metric spaces

Before stating the algorithm, we need to introduce some more notation. A Path
(p1, P2,---,Pk) In Ty is calledcritical if it ends at a leaf nodgy and contains no loops.
By construction, it follows that the tre§ produced by Algorithm 1 has at least one criti-
cal path starting from each node. Let= (p1,p2,...,Pk) be a critical path inl1, and let
length(P) = length(Ty(p1), TU(P2), ..., TH(pk)). For every 0< & < lengthP), there exisi such
that length(tt(py1), (p2),- .., T(pi)) < & < length(Ty(p1), TU(P2), ..., T(pi+1)). We denote the
edge(pi, pi+1) by e(P,0). Since(M,d) is metrically convex, there is a poiatP,4) € M such
that such that theengthmi(p1),. .., (i), (P, 8)) = d andlength(v(P, d), T(pit1), - - -, T Pk)) =
length(P) — &.

The improved stretching algorithm for metrically convex metric spaces (Algorithm 2) first
computes a ZST; using Algorithm 1. Then it “folds” half of each loop along a critical path
of T; (see Figure 2). Folding can be applied to each l6@pu; 1), sincecostu;,u; 1) is at
most the length of the critical patfrom u;, 1. Indeed, by Lemma 3, every path fram ; to
a descendant leaf has the same cost. Hesus#(u;, U 1) < costP). Finally, sinceP does not
contain loops, each edgeBthas cost equal to the distance between the embedding of its ends,
and thuscostP) = length(P).

Lemma 4 The stretched tree;produced by Algorithm 2 has zero-skew and total cost equal to
length(T) +delay(T)/2.

Proof: The total cost of the loops in the stretched tigés equal todelay(T). Step 3 of the
algorithm replaces each loop by an edge with half its cost. Therefos§T,) = length(T) +
delayT)/2. The tre€l, has zero-skew sinch has zero-skew and loop folding preserves the
cost of all root-to-leaf paths. O

Input: Rooted spanning tree T = (S E) in a metric space (M, d)
Output: Zero-skew tree T, = (Vo, Ez, 1, cost) for S

1. Find Ty = (V1, Ej, 11,cost) using Algorithm 1
2. (Vo,Ep, 1t cost) + (V1,Ep, Tt cOSY)
3. Foreach sinkue Sandi=0,1,...,deg (u), do:
// Add attachment node; on the critical path fronu;, 1

Find edge (x,y) = e(P,8/2) on the critical path P from u;;1, where
d = cost(uj, Ujy1)

Vo Vo +wi; (W) « V(P,8/2)

Ez <~ E2— (XY) + (X, W) + (Wi,)

cost(x,w;) «— d(1(x), T(w;)); costw;,y) < d(T(w;), TI(y))

Il Replace the loogu;, Ui+ 1), whereup = u, with the edgdu;, w;)
E2 < Ex— (Ui, Uiy1) + (Ui, W;); coSt(uj,w;) < 8/2

4. Output To = (Vo, Ep, Tt cOSY)

Algorithm 2: The zero-skew stretching algorithm for metrically convex metric spaces.

10

4 ZST approximation via spanning trees

In the previous section we have shown that any rooted spanning tree can be stretched into a
zero-skew tree whose cost is equal to the length of the spanning tree plus its delay (half the
delay, for metrically convex metric spaces). This motivates the following:

Zero-Skew Spanning Tree Problem:Given a set of point§in a (metrically convex) metric
space(M,d), find a rooted spanning tree on S such thatcost(T) = length(T) + delay(T)
(respectivelylength(T) +delay(T)/2) is minimized.

Note that the minimum spanning tree (MST) 8has the shortest possible length but may
have very large delay—if the MST is a simple path, then its delay may be as mu@mas
times larger than its length. On the other hand, a star having the least delay Qéy)liEnes
longer than the MST.

In this section we give an algorithm for finding a rooted spanning tree which has both delay
and length at most two times the minimum ZST cost. Therefore, our algorithm gives factor
4 and 3 approximations for the ZST problem in general and metrically convex metric spaces,
respectively. Simultaneously, our algorithm gives factor 4 and 3 approximations for the zero-
skew spanning tree problem in the respective metric spaces, ®st@&) cannot be smaller
than the cost of the minimum ZST.

The algorithm (Algorithm 3) can be thought of as a rooted version of the well-known
Kruskal MST algorithm. At all times, the algorithm maintains a collection of rooted trees
spanning the sinks; initially each sink is a tree by itself. In each step, the algorithm chooses
two trees that have the smallest distance between their roots and merges them by linking the
root of one tree as child of the other. In order to keep the delay of the resulting tree small, the
child root is always chosen to be the root with smaller delay.

Lemma 5 delay(T) < lengtH(T)

Proof: Note that, at the end of the Rooted-Kruskal algorithfu,) represents exactly the delay

of nodeuin T. Every iteration of the algorithm adds the edgg’) to E(T), thus increasing

length(T) by d(r,r’). On the other hand, sin¢gr) > h(r’) whenh(r) is updated, the iteration

contributes at mosd(r,r’) +h(r') —h(r) < d(r,r’) to ¥ ,esh(u), i.e., to the total delay of. O
Let n be the number of sinks i&

Lemma 6 lengthT) < 2(1—1/n)ZST(S)

11

Input: Finite set SCM
Output: Rooted spanning tree T on S

1. Initialization:

ROOTS— S E<«+0

Foreachve S h(v) <0

2. While |ROOT $> 1 do:

Find the closest two sinks r,r’ € ROOT Swith respect to metric d
If h(r) < h(r’) then swap r and r’

E«E+(rr)

h(r) < max{h(r), d(r,r") +h(r’)}

ROOT & ROOTS-r’

3. Output the tree T = (S E), rooted at the only remaining sink in ROOT S

Algorithm 3: The Rooted-Kruskal algorithm.

Proof: Lets; be the root ofT, and lets, ..., s, be the remainingn — 1 nodes ofT, indexed
in reverse order of their deletion froROOT S Since in each iteration the algorithm addgto
the edge joining a closest pair of pointsROOT $

n-1
lengthT) = ZlMinDist{sl,...,sH}
i=

Thus, by Lemma 1,
length(T) <2ZST(S) — MinDist{s;,s} = 2ZST(S) — d(s1,%)

Since(sy,sp) is the longest edge i, d(s1,s) > lengti(T)/(n— 1), and the lemma follows.
O

Lemmas 3, 5, and 6 give:

Theorem 1 For any metric space and any set of n sinks, running Algorithm 1 on the tree
T produced by the Rooted-Kruskal algorithm gives a zero-skew tree whose cost is at most
4(1—1/n) times larger than ZST(S).

12

Proof: By Lemma 3, the cost of the embedding is equaldngth(T) + delay(T). But
delayT) <lengthT) by Lemma 5, and the approximation factor follows from Lemma.
Similarly, Lemmas 4, 5, and 6 give:

Theorem 2 For any metrically convex metric space and any set of n sinks, running Algorithm 2
on the tree T produced by the Rooted-Kruskal algorithm gives a zero-skew tree whose cost is
at most3(1— 1/n) times larger than ZST(S).

Proof: By Lemma 4, the cost of the embedding is now equa¢tmth(T) + (1/2) - delayT),
and the theorem follows again from Lemmas 5 and 6. O

The following example shows that the algorithm in Theorem 1 can produce zero-skew trees
which are 41— 1/n) times larger than optimal. A similar example shows that the algorithm in
Theorem 2 has a tight approximation factor ¢13-1/n).

Example 1 Consider a discrete metric space d¢n2l points,n = 2 of which are sinks. We
label the sinks with 0-1 sequences of lengthe.,S= {a = byx_1bx_2...bo | bj € {0,1}}. All
sink-to-sink distances are equal to 1 and the distance from the single Steiner point to each of
the sinks is 12. In this space, the optimal ZST is a star rooted at the Steiner point, and has
cost equal tm/2. The Rooted-Kruskal algorithm may construct the spanningTtreéh root
(11...1) and edgesa,a’), such tha’ is identical toa except that the rightmost 0 i’ is
replaced with 1 iro. Indeed, at each iteration of Step 2, the algorithm may choose to merge
trees rooted atx anda’ as above. It may choose to be the root of the merged tree since
h(a) = h(a’).

Clearly,lengthT) = n— 1. On the other hand, since we always merge two roots with the
sameh-value, each merge contributes exactly 1 to the total deldy dhus,delayT) =n—1.
By Lemma 3, the cost of the ZST produced by the algorithm is

lengthT) +delayT) =2(n—1)=4(1-1/n)-

NI S

O
Running time. The running time of the stretching algorithms given in Section 3 is dominated
by the time needed to sort the children of each node; this can be ddd@lagn) overall.
For arbitrary metrics the Rooted-Kruskal algorithm can be implement&inf) time using
Eppstein’s dynamic closest-pair data structure [12]. In the rectilinear plane (in fact, in any fixed
dimensional p space), the running time can be reduce@tnlogn) time by using the dynamic
closest-pair data structure of Bespamyatnikh [4]. These implementations of the Rooted-Kruskal
algorithm are asymptotically optimal, since the running times match known lower bounds for
computing the first closest pair.

13

Up=u uz 1) Uk Up=u Uy 1) Uk

—> " W Wk‘\l’

V1 Vo Vi V1 Vo Vk

Figure 3: When Algorithm 2 is applied to the Rooted-Kruskal spanning tree, the topology of the
stretched tree remains the same since each attachmeninbel®ngs to the edge; . 1, Vi+1).

Thus, the total time for running the Rooted-Kruskal algorithm followed by one of the
stretching algorithms given in Section 3 @&(n?) in arbitrary metric spaces, respectively
O(nlogn) in the rectilinear plane. Notice that this matches asymptotically the time needed
for computing a minimum spanning tree for the sinks.

5 Practical considerations for approximating the rectilinear
ZST

In the previous two sections it has been shown that the minimum cost ZST can be approximated
in metrically convex metric spaces within a factor of 3. In order to obtain better ZSTs in
the rectilinear plane, we may combine the stretched spanning tree with the DME algorithm
[5, 6, 10]. The DME algorithm gives the optimal rectilinear ZST for any gitggology which

is an unweighted binary tree with the leaves labeled by the sinks. Therefore, we may only
shorten the rectilinear ZST if we feed the topology of the stretched spanning tree into the DME
algorithm.

In Section 3 we suggested two different ways of stretching a spanning tree. One may
expect that the topology produced by Algorithm 2 (the loop folding algorithm) is superior to the
topology produced by Algorithm 1. Surprisingly, when stretching the spanning tree produced
by the Rooted-Kruskal algorithm, both algorithms lead to the same topology. As proven below,
every attachment node inserted by Algorithm 2 belongs to the edae; 1,Vvi+1). Hence, loop
folding does not change the topology of the stretched tree (see Figure 3).

14

Theorem 3 Let T be the rooted spanning tree constructed by the Rooted-Kruskal algorithm.
In any metrically convex metric space, the topologies produced by running Algorithms 1 and 2
on T are identical.

Proof: Let the children{vy,...,w} of a nodeu be sorted as in Algorithm 1, i.e., in non-
decreasing order af(u, Vi) + delayr (v;). For brevity, denote = d(u,Vv;) andD; = delayr (vi).
We will show thatd = cost(u;, Ui ;1) is no greater thad; 1. This will ensure that the attachment
nodew; lies on the edgéu;1,vi+1) and, therefore, the tree topologies produced by the two
stretching algorithms are the same (see Figure 3). Sircédi 1+ Diy1) — (di +D;), it suffices
to prove that

Dit1 < di +D; (1)

We say that index precedesndex| if the nodevk has been attached tobeforev; in the
Rooted-Kruskal algorithm. Lgt; be the maximum index preceding 1, p, be the maximum
index precedingpy, and so on, until we arrive at an indgw with Dy, = 04 Thendp, + Dp,
represents the length of the critical path franat the time whernv;, 1 is linked tou by the
Rooted-Kruskal algorithm, and};_, + Dy, ., is the length of the critical path fromat the time
whenvy, is linked tou.

Notice that, since the distance between the closest two sifROM@T Sdoes not decrease
during the Rooted-Kruskal algorithm,

di—I—l > dpl > 2> CIpm (2)
Moreover,
Di_|_1 S dpl + Dpl (3)
and
Dpj_1 < dpj + Dpj 4)

foreveryj =2,...,m—1, since through all attachments nadeemains the root.

Assume, for a contradiction, that (1) does not hold. We will show by inductioi thrat
pj >i+1andDj;1 < Dp, foreveryj=1,...,m. SinceDp, = 0, the above claim implies that
Di+1 =0, making (1) trivially true.

To prove the claim, consider firgt= 1. If p; <i, thendp, +Dp, < d; +Dj, and (3) implies
(1). So, it must be the case that 1 < p;. Thendi;1+ Dj1 < dp, + Dyp,, and (2) implies that
Di;1 < Dp,.

4We will always arrive at an indegm with Dp,, = 0, since at least one child afhas zero delay. Indeed, tet
be the child first connected to At the moment when the edga, v) is added by the Rooted-Kruskal algorithm
has zero delay and thusnust also have zero delay. The delaywafever changes after its removal fr&(d®@OT S

15

Assume now thabD; 1 < Dpjf1 for somej > 2. If p; <1, using (4) we get
Di—l—l S Dpjfl S dpj + Dpj S di + Di

So, it must be the case thiat 1 < p;. Thend; 1+ Dit1 < dp; +Dp; and, sincedi 1 > dp, by
(2), this implies thaDj1 < Dyp. O

Corollary 1 Combination of the Rooted-Kruskal algorithm with the stretching algorithm for
arbitrary metric spaces (Algorithm 1) and with the DME algorithm gives a 3-approximation
for the rectilinear ZST problem.

6 Approximate bounded-skew trees

In this section we give two approximation algorithms for the BST problem, both built around a
black-box ZST approximation algorithm. In both cases we construct a ZST for an appropriately
chosen subset of the sinks, then extend this ZSThidraunded-skew tree for all sinks. In the
first algorithm (Algorithm 4) the extension is done by adding subtrees of an MST on the sinks;
in the second (Algorithm 5) subtrees are extracted from an approximate Steiner tree.

6.1 The MST based algorithm

The first algorithm (Algorithm 4) uses a simple iterative construction to cover the sinks by
disjoint b-skew subtrees of an MSTy of S. The algorithm then outputs the union of these
subtrees with a ZST; on their roots. Clearly the resulting tr@é is ab-bounded-skew tree

for S. Moreover,costT') < cost(T;) + length(Top), since the subtrees are disjoint piece3pf
Hence, if the ZST algorithm used in Step 3 has an approximation factoefby Lemma 2

we get that

costT') < rzstZST (W) +length(To)
< rzs7(BST(§) +b- (W] —1)) +Iength(To)

For each nodel £ r added toW in Step 2 of Algorithm 4, the path from the parent of
u to the sinkv is deleted from the tree. Sinaeis a furthest sink, the length of this path is
equal todelay; (parent(u)). By the choice ofi, delay; (parentu)) > b. Thus,b- (W] —1) <
length(Tp), and so

cost{T') < rzsBST(S) + (rzst+ 1)length(Tp)

16

Input: Finite set SC M, bound b >0
Output: b-bounded-skew tree for S

1. Find an MST Tg on S with respect to the metric d, and choose an arbitrary sink r
as root.

2. Find a set W of sinks and a collection of subtrees of To, (By)ucw, as follows:

W0, T<«+To
While T # 0 do:

Find a sink v of T which is furthest from the root
Find the highest ancestor, say u, of v that still has delay; (u) <b
W—W-+u, By« Ty T+« T—(u,parentu))—By

3. Find an approximate zero-skew tree, Ty, for W
4. Output the tree T' = Ty U (Uyew Bu) rooted at the root of Ty

Algorithm 4: The MST based bounded-skew tree algorithm.

Let rpsT be theSteiner ratiofor the metric spacéM,d), i.e., the supremum, over all sets
of pointsSin (M, d), of the ratio between the length of an MST and the length of a minimum
Steiner tree folS. Since the length of the minimum Steiner tree fis a lower bound on
BST(S), we get thatength(Tp) < rustBST(S). Hence, we have the following:

Theorem 4 Algorithm 4 has an approximation factor ofdt+ rmst+ rzstmsT.

Since the Steiner ratio is at most 2 for any metric space [18], and 3/2 for the rectilinear
plane [13], by using the results in Theorems 1 and 2 we get:

Corollary 2 The approximation factor of Algorithm 4 is 14 in arbitrary metric spaces, 11 in
arbitrary metrically convex metric spaces, and 9 in the rectilinear plane.

Notice that the running time of Algorithm 4 is sti(nlogn) for the rectilinear plane and
O(n?) for arbitrary metric spaces: The MST in Step 1 can be computed within these time
bounds using Hwang's [14] rectilinear MST algorithm and Kruskal's algorithm respectively,
while Step 2 can be implemented in linear time.

17

Input: Finite set SC M, bound b >0
Output: b-bounded-skew tree for S

1. Find an approximate Steiner tree Tp on S with respect to the metric d

2. Find a set W of sinks and a collection of subtrees of To, (By)ucw, as follows:

W(—@;T%To
While T # 0 do:

Pick an arbitrary sink uin T, and let By be the subtree of T induced by
vertices within tree distance of at most b from u

W<«—Wu{u}; T« T\By

3. Find an approximate zero-skew tree, Ty, for W
4. Output the tree T/ = T U (Uyew Bu)

Algorithm 5: The approximate Steiner tree based bounded-skew tree algorithm.

6.2 The approximate Steiner tree based algorithm

The second BST algorithm combines a ZST for a subdéetf the sinks withb-skew subtrees
of an approximate Steiner trdg (Algorithm 5).

Theorem 5 The BST problem can be approximated within a factor g&rH rsmt +
2 rzstsmT, given ksT, respectively £vt, approximation algorithms for the ZST and mini-
mum Steiner tree problems.

Proof: By construction, the distance iy between any two sinks W is at leasb. Consider

the set of open balls of radilg2 centered at the sinks W, with the balls considered in the
metric space induced Bly. Since any two such balls are disjoint, and each of them must cover
at least/2 worth of edges ofp, we get that

bW| < 2length(To) (5)

To estimate the cost of the BST produced by the algorithm, noticd_tha} By has total
cost of at mostength(Tp). By Lemma 2 and (5), we get:

costT') < rzstZST (W) +length(To)
< rzs1(BST(S)+b- (|W|—1)) +lengthTo)

18

< rzs1(BST(S) +2length(Tp)) + length(Tp)

and the theorem follows by observing thahgth(Tp) < rsmutBST*(S) since, as noted above,
the length of the minimum Steiner tree ®is a lower bound oBST(S). O

With the currently known approximation factors for Steiner trees and zero-skew trees, The-
orem 4 gives better BST approximations than Theorem 5 for the rectilinear plane, as well as
arbitrary (metrically-convex) metric spaces. However, Theorem 5 may improve upon The-
orem 4 for metric spaces with good Steiner tree approximatigy(close to 1) and large
Steiner ratio (vsT close to 2), e.g., for high-dimensionaj spaces.

7 Conclusions and open problems

We have given approximation algorithms for the ZST and BST problems with improved ap-
proximation factors for general and metrically convex metric spaces, as well as the rectilinear
plane. Our algorithms have a practical running tin¥nlogn) in the rectilinear plane, and
O(n?) in general metric spaces. Preliminary experiments also show that, when combined with
the linear time DME algorithm of [5, 6, 10], our rectilinear ZST algorithm gives results com-
petitive to those obtained by the Greedy DME heuristic of Edahiro [11], which is regarded in
the VLSI CAD community as the best ZST heuristic to date (see [17]).

An interesting open question is to determine the limitations of the spanning-tree based ZST
construction introduced in this paper. One can definezthre-skew Steiner ratiof a metric
space as the supremum, over all sets of sinks, of the ratio between the minimum zero-skew cost
(i.e., length+ delay) of a spanning tree and the minimum ZST cost. The results in Section 4
imply that the zero-skew Steiner ratio is at most 4 in arbitrary metric spaces, and at most 3 in
metrically convex metric spaces. On the other hand, we have constructed instances showing
that the zero-skew Steiner ratio can be as large as 3 for arbitrary metric spaces; we conjecture
that the ratio is never larger than 3. Determining the complexity of the zero-skew spanning tree
problem is another interesting open question.

In theplanarversions of the rectilinear ZST and BST problems, one seeks zero, respectively
bounded-skew trees in the rectilinear plane with no self-intersecting edges. Charikar et al. [8]
have given the first constant approximation factors for these versions; it would be interesting to
find algorithms with improved approximation factors.

19

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

ARORA S. Polynomial time approximation schemes for Euclidean TSP and other geometric prolems.
ACM 45 (1998), pp. 753-782.

BAakoGLu, H. Circuits, Interconnections, and Packaging for VLSAddison-Wesley, Reading, Mas-
sachusetts, 1990.

BAKOGLU, H., WALKER, J.,AND MEINDL, J. A symmetric clock-distribution tree and optimized high-
speed interconnections for reduced clock-skew in ULSI and WSI circuifdtde. IEEE International Conf.
on Computer Desig(lL986), pp. 118-122.

BESPAMYATNIKH, S. An optimal algorithm for closest-pair maintenand@iscrete Comput. Geom. 19
(1998), 175-195.

BOESE K., AND KAHNG, A. Zero-skew clock routing trees with minimum wirelength. Rroc. IEEE
International ASIC Conf(1992), pp. 17-21.

CHAO, T.-H., Hsu, Y.-C., AND HoO, J.-M. Zero skew clock net routing. IRroc. ACM/IEEE Design
Automation Conf(1992), pp. 518-523.

CHAO, T.-H., Hsy, Y.-C., Ho, J.-M., BOESE K., AND KAHNG, A. Zero skew clock routing with min-
imum wirelength.IEEE Transactions on Circuits and Systems — II: Analog and Digital Signal Processing
39(1992), 799-814.

CHARIKAR, M., KLEINBERG, J., KUMAR, R., RAJAGOPALAN, S., S\HAI, A., AND TOMKINS, A. Min-
imizing wirelength in zero and bounded skew clock treed?roc. 10th ACM-SIAM Symposium on Discrete
Algorithms(1999), pp. 177-184.

CONG, J., KAHNG, A., KoH, C., AND TsA0, C.-W. Bounded-skew clock and Steiner routingCM
Transactions on Design Automation of Electronic Systefi®98), 341-388.

EDAHIRO, M. Minimum skew and minimum path length routing in VLSI layout desiyEC Research and
Development 321991), 569-575.

EDAHIRO, M. A clustering-based optimization algorithm in zero-skew routing€?rsc. 30th ACM/IEEE
Design Automation Conferen¢&993), pp. 612-616.

EPpPSTEIN D. Fast hierarchical clustering and other applications of dynamic closest jpalitsperimental
Algorithmics 5(2000), 1-23.

HwWANG, F. K. On Steiner minimal trees with rectilinear distanc8lAM J. Applied Math. 3§1976),
104-114.

HwaANG, F. K. An O(nlogn) algorithm for rectilinear minimal spanning treesournal of the ACM 26
(1979), 177-182.

JACKSON, M., SRINIVASAN, A., AND KuH, E. Clock routing for high-performance ICs. Iroc.
ACM/IEEE Design Automation Conferen@®90), pp. 574-579.

KAHNG, A. B., CONG, J.,AND ROBINS, G. High-performance clock routing based on recursive geometric
matching. InProc. ACM/IEEE Design Automation Conferer{@890), pp. 574-579.

20

[17]

[18]

[19]

[20]

[21]

KAHNG, A. B., AND ROBINS, G. On Optimal Interconnections for VLSKluwer Academic Publishers,
Norwell, Massachusetts, 1995.

Kou, L., MARKOWSKY, G., AND BERMAN, L. A fast algorithm for Steiner treesActa Informatica 15
(1981), 141-145.

L1, Y., AND JABRI, M. A zero-skew clock routing scheme for VLSI circuits. Pmoc. IEEE International
Conf. on Computer-Aided Desi§h992), pp. 458-463.

RouskAs, G.N.,AND BALDINE, |. Multicast routing with end-to-end delay and delay variation constraints.
IEEE J. on Selected Areas in Communicationg1997), pp. 346—356.

RoBINS, G., AND ZELIKOVSKY, A. Improved Steiner tree approximation in graphs.Phoc. 11th ACM-
SIAM Symp. on Discrete Algorithn3000), pp. 770-779.

[22] A.Z. Zelikovsky and I.I. Mindoiu. Practical approximation algorithms for zero- and bounded-skew trees. In

Proc. 12th ACM-SIAM Annual Symposium on Discrete Algorittpages 407-416, 2001.

21

