
CSE 3100 Systems Programming – Spring 2021

Lecture
Mon/Wed 11:15am–12:05pm, AUST 108 or by web-based videoconferencing.
Videoconferencing access links will be posted for each class meeting on the Moodle site.
All class activities through Jan. 29 and following the Spring break are held by videoconferencing only.

Lab
Sections 001L/101L: Th 12:20PM - 2:10PM, by videoconferencing
Sections 002L/102L: Th 10:10AM - 12:00PM, by videoconferencing
Sections 003L/103L: Th 2:30PM - 4:20PM, by videoconferencing
Sections 011L/111L: Fr 8:00AM - 9:50AM, by videoconferencing
Sections 012L/112L: Fr 10:00AM - 11:50AM, by videoconferencing
Sections 013L/113L: Fr 12:00PM - 1:50PM, by videoconferencing
Section 014L: Th 12:20PM - 2:10PM, ITE 138 (by videoconferencing Jan. 21 & 28 and April 22)

Instructor
Ion Mandoiu
ion@engr.uconn.edu
Office Hours:

Tu/Th 12pm-1pm
ITE 261 or by videoconferencing

Piazza Live Q&A:
Wed 7-8pm

Teaching Assistants

Austin Abate
austin.abate@uconn.edu
Office Hours:

Wed 1:20-2:20pm

Bazz Coleman
john.b.coleman@uconn.edu
Office Hours:

Tu 2-3pm

Md Fahim
md.fahim@uconn.edu
Office Hours:

N/A

Jordan Force
jordan.force@uconn.edu
Office Hours:

Th, 2:30-3:30pm
ITE lobby

Jack Grossman
jack.grossman@uconn.edu
Office Hours:

Wed 2-3pm

Dominic Martire
dominic.martire@uconn.edu
Office Hours:

Wed 4-5pm

Finn Navin
thomas.navin@uconn.edu
Office Hours:

Tu 10-11am

Samuel Oslovich
samuel.oslovich@uconn.edu
Office Hours:

Mon 2-3pm

Yiming Zhang
yiming.zhang.cse@uconn.edu
Office Hours:

N/A

1

mailto:ion@engr.uconn.edu
mailto:austin.abate@uconn.edu
mailto:john.b.coleman@uconn.edu
mailto:md.fahim@uconn.edu
jordan.force@uconn.edu
mailto:jack.grossman@uconn.edu
mailto:dominic.martire@uconn.edu
thomas.navin@uconn.edu
mailto:samuel.oslovich@uconn.edu
mailto:yiming.zhang.cse@uconn.edu


Catalog Description

Introduction to system-level programming with an emphasis on C programming, process manage-
ment, and small scale concurrency with multi-threaded programming. Special attention will be de-
voted to proficiency with memory management and debugging facilities both in a sequential and
parallel setting.
Prerequisite: CSE 2050 or 2100

Course objectives

• Understand the C language and, in particular, memory management and pointers.

• Understand inter-process concurrency primitives such as pipes, sockets and virtual memory
mapping and how to use them to build concurrent client-server applications.

• Understand intra-process concurrency primitives, in particular, POSIX threads and synchro-
nization primitives such as mutexes and condition variables needed to write multi-threaded
applications

Learning Outcomes

By the end of the semester, students should be able to:

• Write, compile, debug, and execute C programs that make use of memory management func-
tions.

• Write, compile, debug, and execute C programs that use files and I/O on UNIX.

• Write, compile, debug, and execute C programs that create, manage and terminate processes
and threads on UNIX.

• Write, compile, debug, and execute C programs that use UNIX synchronization primitives.

• Write distributed applications that communicate across a network.

2



Required Textbook

Al Kelley and Ira Pohl
A Book on C, 4th Edition
Addison-Wesley, ISBN-13: 978-0201183993
Book website including source code for all examples:
https://users.soe.ucsc.edu/∼pohl/abc4.html

Optional Textbooks

Brian W. Kernighan and Dennis M. Ritchie
The C Programming Language, 2nd Edition
Prentice Hall, ISBN-13: 978-0131103627

David R. Butenhof
Programming with POSIX Threads, 1st Edition
Addison-Wesley, ISBN-13: 978-0201633924

Online platforms

Moodle. We will use a course website hosted using Moodle at https://edx.engr.uconn.edu/. Please
use the Moodle site to connect to class meetings and office hours, and to access interactive videos,
assignments, grades, and other course materials. The Moodle site also integrates video-calling spaces
hosted on gather.town to facilitate study in groups.
Piazza. For electronic class discussions we will be using Piazza, which can be accessed from Moo-
dle (the first access will ask you to confirm joining our Piazza class if you have not done it already).
You are strongly encouraged to ask class-related questions and communicate with other students,
the instructors, and the TAs via Piazza rather than e-mail. Please observe basic etiquette by keeping
your messages polite, concise, and on-topic. Before posting new messages do take a look at the post-
ings that are already there–it is possible that your question has already been answered. Appropriate
questions include general questions about the material covered in class and clarifications on the as-
signments. Keep in mind that the collaboration policy is in effect and you must not post extensive
code fragments in public messages. For questions that are specific to your work use direct messages
to the instructors or the TAs.
Mimir. Labs, homework assignments, and exams will all involve writing C code and must be sub-
mitted electronically via the Mimir platform. The first access to Mimir from Moodle will ask you to
link an existing Mimir account (or create one if needed). This allows Mimir to transfer your grades
to Moodle and enables access to Mimir from Moodle without additional authentication. The first lab
will review the Mimir IDE and the submission process as needed.

3

https://users.soe.ucsc.edu/~pohl/abc4.html
https://edx.engr.uconn.edu/course/view.php?id=4


Grading

Asynchronous course content (graded interactive videos and quizzes) will be posted weekly on Moo-
dle. It is essential that you review the asynchronous content and complete associated quizzes prior
to each class/lab meeting to ensure you are prepared to participate in class discussions. In addition
to interactive videos and quizzes, grading will be based on weekly labs, homework assignments, and
three exams. Labs are short C programming exercises designed to give you hands-on practice with
common programming tools and an opportunity to apply the concepts covered in lectures. Home-
work assignments will require you to write more complex C programs, often building on a provided
code base. The exams will consist of programming tasks similar to those in the labs and homework
assignments.

Grade breakdown
Interactive videos & quizzes 10%
Labs 10%
Homework assignments 20%
Three Exams 20% each

The lowest homework assignment score and lowest lab score will be dropped from the overall grade
calculation.

Late policy

Labs and homework assignments will typically be due at midnight on the specified date. To ensure
timely feedback, including the release of sample solutions, late submissions will not be accepted.

Collaboration policy

Unless otherwise indicated, all lab and homework assignments must be completed individually. All
programs and documents you hand-in must be your own work. You may discuss course related
topics with others, but must not share code or quizz answers. Reasonable use of published materials
(including web resources) is allowed, but all sources must be explicitly acknowledged in your sub-
missions. Violations will be reviewed and sanctioned according to the University Policy on Academic
Integrity. An example of unreasonable use is submitting copied solutions with minor changes like
renaming variables. If you need additional clarifications regarding the collaboration policy, please
contact the instructor.

Students with disabilities:

If you have a documented disability for which you are or may be requesting an accommodation,
please contact the Center for Students with Disabilities by the end of the third week of the semester
to ensure that any accommodations you need can be implemented in a timely fashion.

4



Tentative Schedule

Dates Lecture/Lab topics

Jan 20 Course introduction; C overview

Jan 21/22 Lab1: Mimir IDE, basic Linux commands

Jan 25 & 27 Expressions & types, control flow

Jan 28/29 Lab2: Building C projects

Feb 1 & 3 Functions; structures and arrays

Feb 4/5 Lab3: Debugging

Feb 8 & 10 Pointers and memory management

Feb 11/12 Lab4: valgrind

Feb 15 & 17 Standard library and I/O

Feb 18/19 Lab5: profiling

Feb 22 & 24 Miscellaneous C topics

Feb 25/26 Exam1
March 1 & 3 Processes and pipes

March 4/5 Lab6: fork()

March 8 & 10 Signals and intro to sockets

March 11/12 Lab7: pipes

March 15 & 17 Client-server communication using sockets

March 18/19 Lab8: sockets
March 22 & 24 Sockets Selection
March 25/26 Exam2
March 29 & 31 Intro to threads, thread management

April 1/2 Lab9: thread management

April 5 & 7 Thread synchronization: mutexes, spinlocks, and condition
variables

April 8/9 Lab10: thread synchronization

April 19 & 21 Thread synchronization: read-write locks, barriers, and
semaphores

April 21/22 Lab11: debugging and profiling threads

April 26 & 28 Miscellaneous multithreading topics: false sharing, threads
scheduling and priority inversion, GPU computing

5


