BME1401/CSE1401/MCB1401: Honors Core – Computational Molecular Biology Spring 2009

Craig Nelson

Phone: 486-5617

E-mail: craig.nelson@uconn.edu

Office hours: Beach Hall 305, W 2-3pm

Lecture: ITE 127, Mon/Wed 11-11:50am

Lab: Engineering II 305, Fri 10-10:50am (section 001) and 11-11:50am (section 002)

Instructors:

Ion Mandoiu Phone: 486-3784 E-mail: <u>ion@engr.uconn.edu</u> Office hours: ITE 261, TTh 12-1pm

Teaching Assistants:

Jin JunJames LindsayPhone: 486-1576Phone: 486-4540E-mail: jinjun@engr.uconn.eduE-mail: james.lindsay@uconn.eduOffice hours: EngII 305, Tue 5-6pmOffice hours: EngII 305, Wed 5-6pm

Textbook: N. Cristianini and M.W. Hahn, *Introduction to computational genomics: a case studies approach*, Cambridge University Press, 2007. Textbook website: <u>http://www.computational-genomics.net/</u>.

Course outline: This course is an introduction to computational genomics through lectures, computer lab exercises, and mentored research projects. Started in 1995 by the completion of the first genome sequence of a free-living organism, *H. influenzae*, the genomic era has already led to hundreds of complete genome sequences deposited in public databases and many more genome projects at various stages of completion. The huge amounts of available genome data are revolutionizing biomedical research, but fully exploiting them requires powerful computational and statistical methods. The main objective of the course is to provide students with a general understanding of the field of computational genomics, including current problems and research. Students will become familiar with fundamental molecular biology concepts and computational techniques, and will learn how to use the Matlab bioinformatics toolbox for solving problem in genomics.

Grading and course policies: Grading will be based on in-class quizzes, computer lab assignments, and team final projects, with each of the three components contributing equally to the final grade. In-class quizzes will be given at the beginning of class on Mondays. Computer assignments will be assigned on Fridays and will be due by midnight the following Wednesday. Assignments must be submitted electronically via HuskyCT (see below). *No late assignments and make-up quizzes will be allowed*. The lowest quiz and computer assignment grade will be omitted from the computation of the final grade. The last five weeks of the class will be devoted to a final project done in teams of three students. For the project you will pick a computational genomics topic not discussed in lectures and research it in more depth. You will be required to give weekly progress reports, submit a written final report of 15-20 pages, and give a 15-minute presentation at the end of the semester. The final project component of the grade will include participation in discussions of progress reports and final presentations of other teams.

HuskyCT: We have a HuskyCT site for the class; you can access it by logging in with your NetID and password at <u>https://huskyct.uconn.edu/</u>. You must use HuskyCT for submitting assignments and check it regularly for class materials, grades, problem clarifications, changes in class schedule, and other class announcements.

Academic honesty: You are expected to adhere to the highest standards of academic honesty. All submitted solutions must be your own work. You may discuss ideas and concepts with other people, but *must not share written solutions or computer code*. Use of published materials is allowed, but the sources should be explicitly stated in your submission. Violations will be reviewed and sanctioned according to the University Policy on Academic Integrity.

Students with disabilities: If you have a documented disability for which you are or may be requesting an accommodation, you are encouraged to contact the instructor and the Center for Students with Disabilities or the University Program for College Students with Learning Disabilities as soon as possible to better ensure that such accommodations are implemented in a timely fashion.

Tentative Course Schedule

Date	Text	Biology Topics	Computer Science Topics	Computer Lab	
Wed Jan 21	Preface	Course structure. What is Evolution and I			
Fri Jan 23				Lab1: Introduction to Matlab & Databases	
Mon Jan 26	Ch 1	Anatomy of a genome	Computer algorithms		
Wed Jan 28	Ch 1	Structure and function of DNA, replication	Probabilistic models and statistical sequence analysis		
Fri Jan 30	Ch 1			Lab2: Sequence retrieval, Exercise 1.1-1.3	
Mon Feb 2	Ch 2	Transcription, translation, genetic code	Gene Finding		
Wed Feb 4	Ch 2	Anatomy of a gene: enhancers, promoters, UTR's, and ORF's	Hypothesis Testing		
Fri Feb 6	Ch 2			Lab3: Sequence analysis, Exercise 2.1-2.3	
Mon Feb 9	Ch 3	Homology, orthology, and paralogy	Sequence alignment I		
Wed Feb 11	Ch 3	Gene duplication and deletion	Sequence alignment II		
Fri Feb 13	Ch 3			Lab4: Exercise 3.1-3.4	
Mon Feb 16	Ch 5	Mutation, polymorphism	Genetic distance, modeling sequence evolution		
Wed Feb 18	Ch 5	Mitochondrial DNA & Human evolution	Phylogenetic trees		
Fri Feb 20	Ch 5			Lab5: Exercise 5.1-5.3	
Mon Feb 23	Ch 6	Evolution and Natural Selection	Quantifying natural selection		
Wed Feb 25	Ch 6	HIV & the immune system	Estimating Ka/Ks		
Fri Feb 27	Ch 6			Lab6: Exercise 6.1-6.3	
Mon Mar 2	Ch 7	SARS and viral evolution	Structure and representation of phylogenetic trees		
Wed Mar 4	Ch 7	Virus-host interactions	Tree inference – distance matrices, neighbor joining		
Fri Mar 6	Ch 7			Lab7: Exercise 7.1-7.3	
Mon Mar 9	Spring recess				
Mon Mar 11	Spring recess				
Mon Mar 13	Spring recess				

Date	Text	Biology Topics	Computer Science Topics	Computer Lab
Mon Mar 16	Ch 9	Gene Expression	Measuring gene expression with microarrays	
Wed Mar 18	Ch 9	Yeast, diauxic shift, cell cycle	Data clustering	
Fri Mar 20	Ch 9			Lab8: Exercise 9.1-9.3
Mon Mar 23	Ch 10	Circadian clock	Motif representation and scoring	
Wed Mar 25	Ch 10	Mechanisms of gene regulation	Motif finding	
Fri Mar 27	Ch 10			Lab9: Exercise 10.1-10.3
Mon Mar 30		Final Project: topic selection		
Wed Apr 1		r mar r roject.		
Fri Apr 3				Topic & specific aims submission
Mon Apr 6		Progress reports (10' prese		
Wed Apr 8		Literature review and s		
Fri Apr 10				Literature review & hypothesis submission
Mon Apr 13		Progress reports (10' prese		
Wed Apr 15		Define hypothesis/analysis stra		
Fri Apr 17				Analysis strategy submission
Mon Apr 20		Progress reports (10' presentation) on final projects:		
Wed Apr 22		Prelimina		
Fri Apr 24				Preliminary results submission
Mon Apr 27				
Wed Apr 29		Final project		
Fri May 1				