Connected Dominating Sets in Wireless Networks

My T. Thai
Dept of Comp \& Info Sci \& Engineering
University of Florida

June 20, 2006

Wireless Ad Hoc Networks

$>$ A collection of mobile nodes
$>$ Dynamically form a temporary network

Wireless Sensor Networks (WSN)

> Consists of a large number of sensor nodes
> Main Tasks: collaborate to sense, collect, and process the raw data of the phenomenon and transmit the processed data to sinks

Applications

$>$ Military applications
$>$ Environmental applications
> Health applications
$>$ Other commercial
 applications

Characteristics of Wireless Ad Hoc Networks

$>$ Dynamic topology - no predefined or fixed infrastructure
> Multi-hop routing - each node is a router
> Limited resources - battery power, CPU, storage, and bandwidth

Routing decision is challenging!

Virtual Backbone

Virtual Backbone Features

$>$ Minimize the virtual backbone nodes
$>$ All virtual backbone nodes are connected
$>$ Each node is either in or adjacent to the backbone
$>$ Approximated by Minimum Connected Dominating Set (MCDS)

Definitions

$>$ Given a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ and a subset $\boldsymbol{C} \subseteq \boldsymbol{V}$. \boldsymbol{C} is:
\square Dominating Set (DS): for any $\boldsymbol{v} \in \boldsymbol{V}, \boldsymbol{v} \in \boldsymbol{C}$ or adjacent to some $\boldsymbol{u} \in \boldsymbol{C}$

- Connected Dominating Set (CDS): \boldsymbol{C} is a DS and an induced graph of \boldsymbol{C} is connected
\square Minimum Connected Dominating Set (MCDS): C is a CDS and has the smallest size

Approximation Algorithms

$>$ An algorithm that returns near-optimal solutions in polynomial time
$>$ Performance Ratio (PR):
\square Minimization problem: $|C| /\left|C^{*}\right|$ where:

- C is a near-optimal MCDS
- C^{*} is the optimal MCDS

Smaller PR, better algorithm

Homogeneous Networks

What if all nodes have the same transmission ranges?

Can we design a constant approximation algorithm?

Unit Disk Graphs (UDG)

$>$ UDG: is an intersection graphs of circles of unit radius in the plane

$>$ Lemma 1: Each node in a UDG has at most 5 independent neighbors

Maximal Independent Set (MIS)

Maximal Independent Set (MIS) is a maximal set of pairwise non-adjacent nodes.

$$
\mathrm{MIS} \rightarrow \mathrm{DS}
$$

Algorithm 1 - Overview

> Phase 1: Construct an MIS such that:
\square Lemma 2: Any pair of complementary subsets of the MIS separate by exactly two hops
$>$ Phase 2: Connect MIS \rightarrow CDS

Algorithm 1 - Phase 2

$>$ Goal: Connect an MIS by adding the minimum number of blue nodes where:
Blue Nodes: Nodes connecting black nodes
$>$ Black-blue component: a connected component of the sub-graph induced only by black and blue nodes

Algorithm 1 - Phase 2 (cont)

Input: An MIS:

- All nodes in MIS are black
- Others are grey
for $i=5,4,3,2$ do
while there exists a grey node adjacent to at least i black-blue components do change its color from grey to blue re-construct the black-blue components return all black and blue nodes

Algorithm 1 - An Example

Algorithm 1 - Analysis

$>$ Theorem 1: Algorithm 1 has a performance ratio of $5.8+\ln 4<8$
\square Lemma 3: $|\mathbf{M I S}| \leq 3.8\left|\mathbf{C}^{*}\right|+\mathbf{1 . 2}$

- Lemma 4: \#Blue Nodes $\leq(\mathbf{2}+\mathbf{I n} 4)\left|\mathbf{C}^{*}\right|$

Fault Tolerance

What if a virtual backbone node is dead?

What if a link in the virtual backbone is broken?

2-CDS

> Problem Definition:

\square Given a UDG $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$
\square Find a CDS C satisfying:

- $|C|$ is minimum
- For any pair of nodes in \boldsymbol{C}, there exists 2-disjoint paths

Algorithm 2 - Overview

$>$ Phase 1: Construct a CDS C
$>$ Phase 2: Augment C to obtain a $2-\mathrm{CDS}$

Algorithm 2 - Phase 2

> Cut-vertex: x is a cutvertex if \boldsymbol{G} - $\{\boldsymbol{x}\}$ is disconnected
> Block: a maximal
 subgraph of \boldsymbol{G} without cut-vertices
> Leaf Block: a maximal subgraph of \boldsymbol{G} with exactly 1 cut-vertex

Algorithm 2 - Phase 2 (cont)

while C has more than 1 blocks do
L = Leaf Block
Find a shortest path $\boldsymbol{P}=\boldsymbol{u x} \boldsymbol{v}$ where $\boldsymbol{v} \in \boldsymbol{L}, \boldsymbol{v}$ is not a cutvertex, $\boldsymbol{u} \in \boldsymbol{C} \backslash \boldsymbol{L}$, and $\boldsymbol{x}_{\boldsymbol{i}} \in \boldsymbol{V} \backslash \boldsymbol{C}$ color x_{i} blue
end while
return all black and blue nodes

Theoretical Analysis

$>$ Theorem 2: Algorithm 2 has a constant performance ratio of 62

Simulation Experiments

Algorithm 2 improves the fault tolerance of virtual backbone with only marginal extra overhead
[Randomly deployed nodes into $1000 \times 1000 \mathrm{~m}^{2}$ region

- Transmission range $=200 \mathrm{~m}$
- Each setting, ran 1000 times

More Challenging

What if networks have unidirectional links and different transmission ranges?

Can we design a constant approximation algorithm?

Heterogeneous Networks

> Model networks as Disk Graphs:
\square Each node has a transmission range in $\left[\boldsymbol{r}_{\boldsymbol{m i n}}, \boldsymbol{r}_{\boldsymbol{m a x}}\right]$
\square A directed edge from \boldsymbol{u} to \boldsymbol{v} iff $\boldsymbol{d}(\boldsymbol{u}, \boldsymbol{v}) \leq \boldsymbol{r}_{\boldsymbol{u}}$
> Bidirectional Links and Unidirectional Links

Unidirectional Links

$>$ Directed graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$
$>$ Strongly Connected Dominating Set (SCDS):

- Given a directed graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$
- Find a subset $\boldsymbol{C} \subseteq \boldsymbol{V}$ such that:
- $\forall \boldsymbol{v} \in \boldsymbol{V}, \boldsymbol{v} \in \boldsymbol{C}$ or there exists a node $\boldsymbol{u} \in \boldsymbol{C}$ such that $u v \in E$
- The subgraph induced by \boldsymbol{C} is strongly connected, i.e, there exists a directed path for any pair of nodes in C

SCDS - An Example

Greedy Algorithm 3-Overview

> Phase 1: Construct a DS \boldsymbol{D}
$>$ Phase 2: Connects all nodes in \boldsymbol{D} to form a SCDS C

Algorithm 3 - Phase 1

while there exists a white node do
select a white node \boldsymbol{u} with the biggest transmission range color \boldsymbol{u} black color all $\boldsymbol{N}^{+}(\mathbf{u})$ grey end while
return all black nodes

Algorithm 3 - Phase 2

$>$ Goal: Connect a DS \boldsymbol{D} by adding the minimum number of blue nodes
\square Let $\boldsymbol{u} \in \boldsymbol{D}$ s.t. \boldsymbol{u} has the largest transmission range
\square Build a Minimum nodes Directed Tree (MDT) \boldsymbol{T}_{1} rooted at \boldsymbol{u} s.t. there is a directed path from \boldsymbol{u} to all other nodes in \boldsymbol{D}
Construct $\boldsymbol{G}^{\boldsymbol{\prime}}$ from \boldsymbol{G} by reversing the directed edges
\square Build a MDT \boldsymbol{T}_{2} rooted at \boldsymbol{u}
All nodes in the union of \boldsymbol{T}_{1} and \boldsymbol{T}_{2} form a SCDS \boldsymbol{C}

Minimum nodes Directed Tree (MDT)

$>$ Given a directed graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$, a subset \boldsymbol{D} of \boldsymbol{V}, and a node \boldsymbol{u}
$>$ Find a tree \boldsymbol{T} rooted at \boldsymbol{u} such that:
\square There exists a directed path from \boldsymbol{u} to all nodes in \boldsymbol{D}

The total number of nodes in \boldsymbol{T} but not in \boldsymbol{D}, called blue nodes, is minimum

An MDT Algorithm

$>$ Denote:
\square All nodes in \boldsymbol{D} are black
\square All nodes in $\boldsymbol{T} \backslash \boldsymbol{D}$ are blue
\square Other nodes are grey
$>v$-spider: A directed tree having:
\square one grey node \boldsymbol{v} as a root
\square other nodes are either black or blue
\square there is a directed path from \boldsymbol{v} to all other nodes in the spider

An MDT Algorithm (cont)

> Contracting Operation:
\square Add a directed edge from v to all grey nodes that are outgoing neighbors of blue and black nodes in \boldsymbol{v}-spider
\square Delete all black and blue nodes and their edges
\square Color v blue

An MDT Algorithm - Description

while no directed paths from \boldsymbol{u} to \boldsymbol{D} in \boldsymbol{T} do
Find a \boldsymbol{v}-spider that has the most number of
blue and black nodes
Contract this v-spider
Construct T from the set of black and blue nodes
end while

Algorithm 3 - Analysis

> Theorem 3: The size of any DS is upper bounded by:

$$
2.4\left(k+\frac{1}{2}\right)^{2}\left|C^{*}\right|+3.7\left(k+\frac{1}{2}\right)^{2} \text { where } k=r_{\max } / r_{\min }
$$

> Theorem 4: Algorithm 4 has a performance ratio of

$$
2.4\left(k+\frac{1}{2}\right)^{2}+4+4 \ln (2 k-1)
$$

More Work

$>$ k-connected m -dominating set
\square In the presentation: 2-connected 1-dominating set
$>$ k-connected m-dominating set in heterogeneous networks

Thank You!

Any

Questions?

Benefits of Virtual Backbone

Broadcast

> Only a subset of nodes (virtual backbone nodes) relay messages:
\square Reduce communication cost
\square Reduce redundant traffic
Conserve energy

Benefits of Virtual Backbone (cont)

Unicast

$>$ Only a subset of nodes maintain routing tables
$>$ Routing information localized
\square Save storage space

