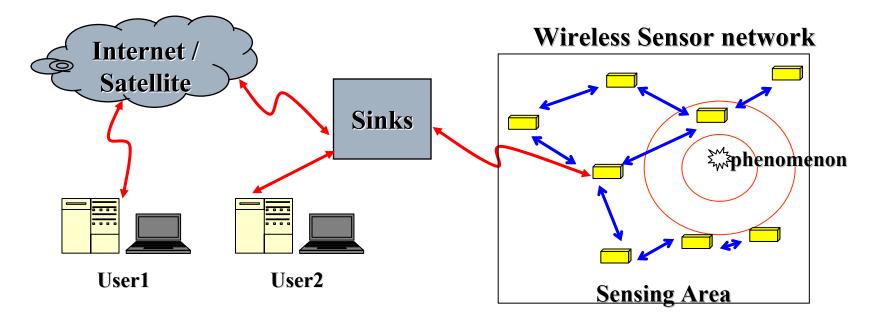

Connected Dominating Sets in Wireless Networks

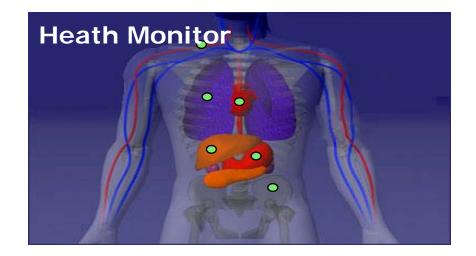
My T. Thai Dept of Comp & Info Sci & Engineering University of Florida

June 20, 2006


Wireless Ad Hoc Networks

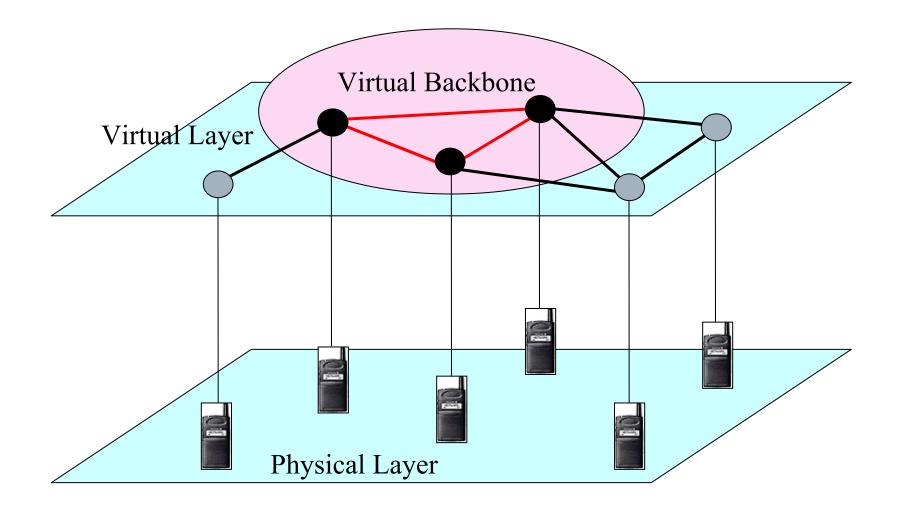
- A collection of mobile nodes
- Dynamically form a temporary network

Wireless Sensor Networks (WSN)


- Consists of a large number of sensor nodes
- Main Tasks: collaborate to sense, collect, and process the raw data of the phenomenon and transmit the processed data to sinks

Applications

- Military applications
- Environmental applications
- ➢ Health applications
- Other commercial applications

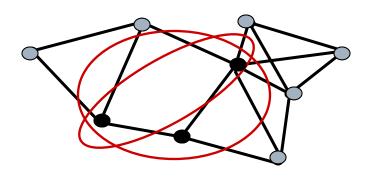


Characteristics of Wireless Ad Hoc Networks

- Dynamic topology no predefined or fixed infrastructure
- Multi-hop routing each node is a router
- Limited resources battery power, CPU, storage, and bandwidth

Routing decision is challenging!

Virtual Backbone



Virtual Backbone Features

- Minimize the virtual backbone nodes
- > All virtual backbone nodes are connected
- Each node is either in or adjacent to the backbone
- Approximated by Minimum Connected Dominating Set (MCDS)

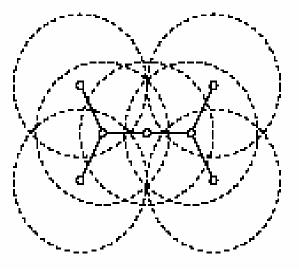
Definitions

- Siven a graph G=(V,E)and a subset $C \subseteq V$. *C* is:
 - □ Dominating Set (DS): for any $v \in V$, $v \in C$ or adjacent to some $u \in C$

- Connected Dominating Set (CDS): C is a DS and an induced graph of C is connected
- Minimum Connected Dominating Set (MCDS): C is a CDS and has the smallest size

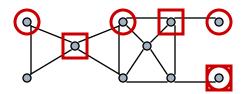
Approximation Algorithms

- An algorithm that returns near-optimal solutions in polynomial time
- Performance Ratio (PR):
 - □ Minimization problem: $|C|/|C^*|$ where:
 - *C* is a near-optimal MCDS
 - *C** is the optimal MCDS
 - □ Smaller PR, better algorithm


Homogeneous Networks

What if all nodes have the same transmission ranges?

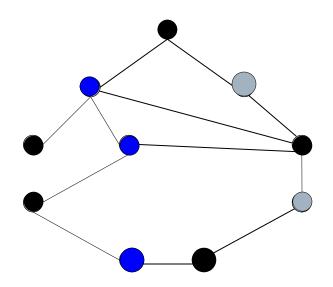
Can we design a constant approximation algorithm?


Unit Disk Graphs (UDG)

UDG: is an intersection graphs of circles of unit radius in the plane

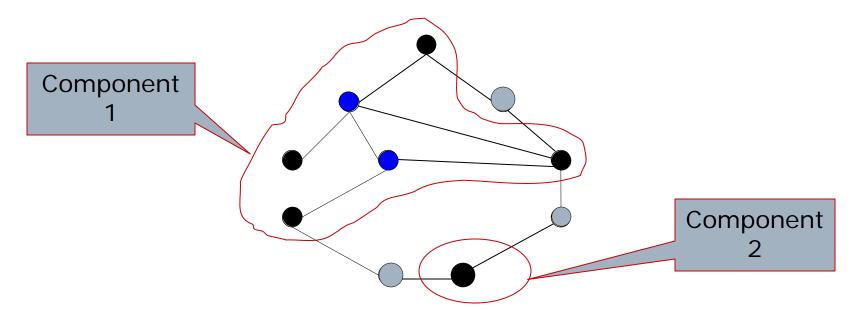
Lemma 1: Each node in a UDG has at most 5 independent neighbors

Maximal Independent Set (MIS)



Maximal Independent Set (MIS) is a maximal set of pairwise non-adjacent nodes.

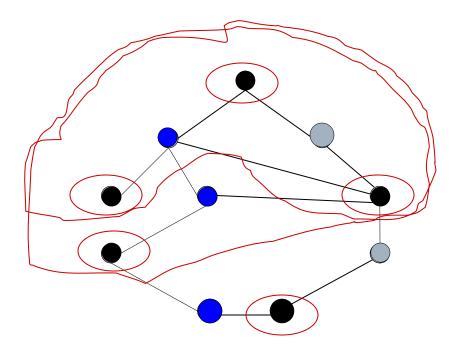
 $MIS \rightarrow DS$


Algorithm 1 - Overview

- > Phase 1: Construct an MIS such that:
 - □ Lemma 2: Any pair of complementary subsets of the MIS separate by exactly two hops
- \blacktriangleright Phase 2: Connect MIS \longrightarrow CDS

Algorithm 1 – Phase 2

- Goal: Connect an MIS by adding the minimum number of blue nodes where:
 - □ Blue Nodes: Nodes connecting black nodes
- Black-blue component: a connected component of the sub-graph induced only by black and blue nodes


Algorithm 1 – Phase 2 (cont)

Input: An MIS:

- All nodes in MIS are black
- Others are grey
- *for i*=5, 4, 3, 2 do

while there exists a grey node adjacent to at
least i black-blue components do
change its color from grey to blue
re-construct the black-blue components
return all black and blue nodes

Algorithm 1 – An Example

Algorithm 1 - Analysis

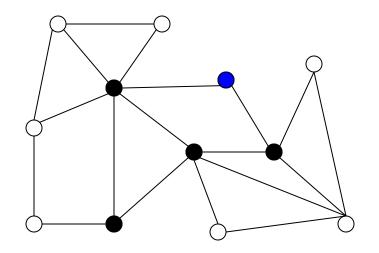
- Theorem 1: Algorithm 1 has a performance ratio of 5.8 + ln 4 < 8</p>
 - □ Lemma 3: $|MIS| \le 3.8 |C^*| + 1.2$
 - $\Box \text{ Lemma 4: #Blue Nodes} \le (2 + \ln 4)|C^*|$

Fault Tolerance

What if a virtual backbone node is dead? What if a link in the virtual backbone is broken?

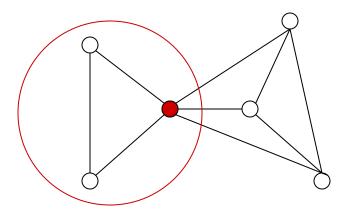
2-CDS

> Problem Definition:


 $\Box \text{ Given a UDG } G=(V,E)$

□ Find a CDS *C* satisfying:

- /C/ is minimum
- For any pair of nodes in *C*, there exists 2-disjoint paths


Algorithm 2 - Overview

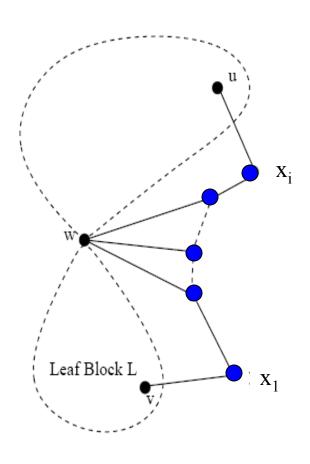
- Phase 1: Construct a CDS C
- Phase 2: Augment C to obtain a 2-CDS

Algorithm 2 – Phase 2

- Cut-vertex: x is a cutvertex if G-{x} is disconnected
- Block: a maximal subgraph of G without cut-vertices

Leaf Block: a maximal subgraph of G with exactly 1 cut-vertex

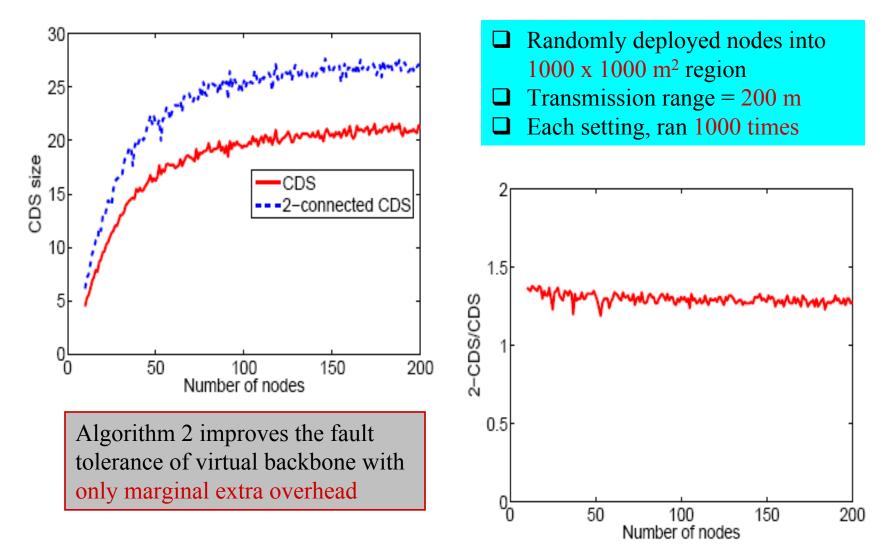
Algorithm 2 – Phase 2 (cont)


while C has more than 1 blocks *do*

L = Leaf Block

Find a shortest path $P = ux_i v$ where $v \in L$, v is not a cutvertex, $u \in C \setminus L$, and $x_i \in V \setminus C$ color x_i blue

end while

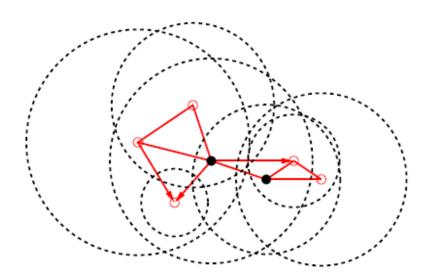

return all black and blue nodes

Theoretical Analysis

Theorem 2: Algorithm 2 has a constant performance ratio of 62

Simulation Experiments

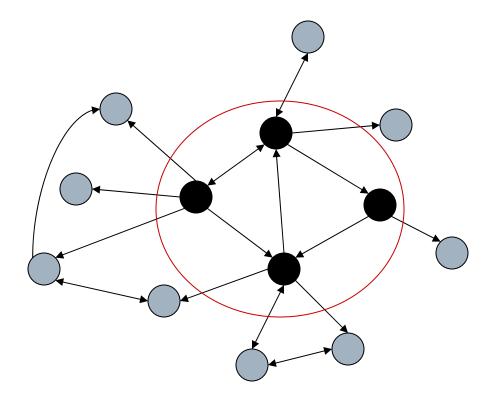
More Challenging


What if networks have unidirectional links and different transmission ranges? Can we design a constant approximation algorithm?

Heterogeneous Networks

Model networks as Disk Graphs:

 \Box Each node has a transmission range in $[r_{min}, r_{max}]$


- \Box A directed edge from *u* to *v* iff $d(u,v) \le r_u$
- Bidirectional Links and Unidirectional Links

Unidirectional Links

- > Directed graph G = (V, E)
- Strongly Connected Dominating Set (SCDS):
 - Given a directed graph G = (V, E)
 - $\Box \quad \text{Find a subset } C \subseteq V \text{ such that:}$
 - $\forall v \in V, v \in C$ or there exists a node $u \in C$ such that $uv \in E$
 - The subgraph induced by *C* is strongly connected,
 i.e, there exists a directed path for any pair of nodes in *C*

SCDS – An Example

Greedy Algorithm 3 - Overview

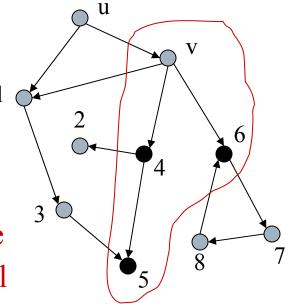
- $\succ \text{ Phase 1: Construct a DS } D$
- Phase 2: Connects all nodes in *D* to form a SCDS *C*

Algorithm 3 – Phase 1

while there exists a white node *do* select a white node *u* with the biggest transmission range 6 2 7 color *u* black u 8 color all $N^+(u)$ grey 3 5 end while 9 4 10 *return* all black nodes

Algorithm 3 – Phase 2

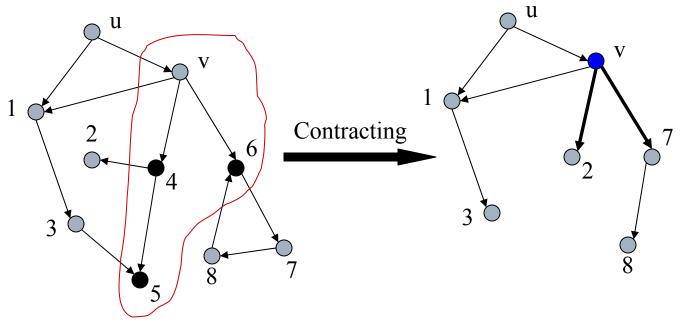
- Goal: Connect a DS D by adding the minimum number of blue nodes
 - □ Let $u \in D$ s.t. u has the largest transmission range
 - Build a Minimum nodes Directed Tree (MDT) T_1 rooted at u s.t. there is a directed path from u to all other nodes in D
 - $\Box \quad Construct G' \text{ from } G \text{ by reversing the directed} \\ edges$
 - \Box Build a MDT T_2 rooted at u
 - \Box All nodes in the union of T_1 and T_2 form a SCDS C


Minimum nodes Directed Tree (MDT)

- Given a directed graph G = (V, E), a subset
 D of V, and a node u
- > Find a tree T rooted at u such that:
 - □ There exists a directed path from *u* to all nodes in *D*
 - \Box The total number of nodes in *T* but not in *D*, called blue nodes, is minimum

An MDT Algorithm

Denote:


- \Box All nodes in **D** are black
- □ All nodes in $T \setminus D$ are blue
- □ Other nodes are grey
- v-spider: A directed tree having:
 - **\Box** one grey node ν as a root
 - other nodes are either black or blue
 - $\Box \quad \text{there is a directed path from } v \text{ to all} \\ \text{other nodes in the spider}$

An MDT Algorithm (cont)

Contracting Operation:

- Add a directed edge from v to all grey nodes that are outgoing neighbors of blue and black nodes in *v*-spider
- **Delete** all black and blue nodes and their edges
- \Box Color *v* blue

An MDT Algorithm - Description

while no directed paths from u to D in T do
Find a v-spider that has the most number of
blue and black nodes
Contract this v-spider
Construct T from the set of black and blue nodes
end while

Algorithm 3 - Analysis

Theorem 3: The size of any DS is upper bounded by: $2.4(k + \frac{1}{2})^2 |C^*| + 3.7(k + \frac{1}{2})^2$ where $k = r_{\text{max}} / r_{\text{min}}$

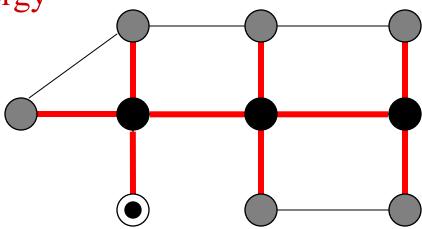
Theorem 4: Algorithm 4 has a performance ratio of

$$2.4(k + \frac{1}{2})^2 + 4 + 4\ln(2k - 1)$$

More Work

k-connected m-dominating set

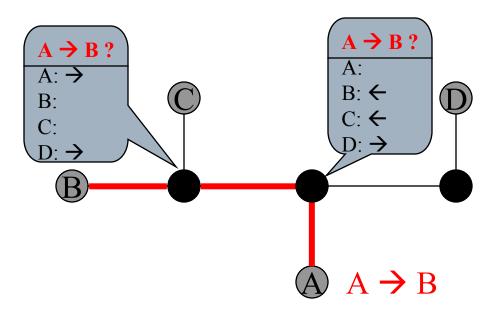
- In the presentation: 2-connected 1-dominating set
- k-connected m-dominating set in heterogeneous networks


Thank You!

Any Questions?

Benefits of Virtual Backbone

Broadcast


- Only a subset of nodes (virtual backbone nodes) relay messages:
 - **Reduce** communication cost
 - **Reduce** redundant traffic
 - □ Conserve energy

Benefits of Virtual Backbone (cont)

Unicast

- > Only a subset of nodes maintain routing tables
- Routing information localizedSave storage space

