Energy-Efficient Continuous and Event-Driven Monitoring

Authors: Alex Zelikovsky Dumitru Brinza

SAWN 2006

Georgia State University

Outline

- Maximum Sensor Network Lifetime Problem
- CONTINUOUS AND EVENT-DRIVEN SENSOR NETWORK MODEL
- (DEEPS) General overview
- Cluster-Based Communication
- LEACH Communication Protocol
- (LBP) Load-Balancing Protocol for Sensing
- (LBP) Bottleneck
- Deterministic Energy-Efficient Protocol for Sensing
- NS2+LEACH Monitoring Simulations
- Simulation Results

Georgia State University

Maximum Sensor Network Lifetime Problem

A formal definition of the energy preserving scheduling problem

• Sensor cover : A set of sensors C covering R.

• A monitoring schedule: a set of pairs $(C_1, t_1), \ldots, (C_k, t_k)$.

 $- C_i$ is a sensor cover;

— t_i is time during which C_i is active.

Maximum Sensor Network Lifetime problem

Given: a monitored region *R*, a set of sensors p_1, \ldots, p_n , and monitored region R_i , and energy supply b_i for each sensor

Find: a *monitoring schedule* $(C_1, t_1), \ldots, (C_k, t_k)$ with the *maximum length* $t_1 + \ldots + t_k$, such that for any sensor p_i the total active time does not exceed b_i .

SAWN 2006

Georgia State University

Example of Maximum Sensor Network Lifetime Problem

Advantage of switching between sensor covers:

SAWN 2006

Georgia State University

CONTINUOUS AND EVENT-DRIVEN SENSOR NETWORK MODEL

- Given the regions which are required to monitor (or, in general, set of required targets)
- sensors who can monitor these targets
- energy supply
- energy consumption
- rate for monitoring
- listening and idle modes
- energy consumption for receiving and transmitting a package
- we explore the problem of maximizing sensor network lifetime
- sensors can interchange idle and active modes both for monitoring and communicating.

Georgia State University

CONTINUOUS AND EVENT-DRIVEN SENSOR NETWORK MODEL

SAWN 2006

(DEEPS) Deterministic Energy-Efficient Protocol for Sensor networks target-monitoring protocol, system lifetime increase in 2 times!!!

full-fledged simulation of the monitoring protocols on NS2 combined with LEACH as a communication protocol

SAWN 2006

Cluster-Based Communication

A Simple Algorithm

The problem: Select j cluster-heads of N nodes without communication among the nodes

The simplest solution:

- Each node determines a random number \boldsymbol{x} between 0 and 1
- If $x < j / N \rightarrow$ node becomes cluster-head

...it's good, but:

Cluster-heads dissipate much more energy than non cluster-heads!

How to distribute energy consumption?

SAWN 2006

Georgia State University

LEACH Communication Protocol

Low-Energy Adaptive Clustering Hierarchy

- Cluster-based communication protocol for sensor networks, developed at MIT
- Adaptive, self-configuring cluster formation

- The operation of LEACH is divided into rounds
- During each round a different set of nodes are cluster-heads
- Each node n determines a random number \boldsymbol{x} between 0 and 1
- If $x < T(n) \rightarrow$ node becomes cluster-head for current round

SAWN 2006

Georgia State University

(LBP) Load-Balancing Protocol for Sensing

(1) (*on-rule*)

whenever a sensor *s* has a target covered solely by itself (no alert- or on sensor covers it), *s* switches itself on, i.e., changes its state to "on".

(2) (*off-rule*)

whenever each target covered by a sensor *s* is also covered either by an on sensor or an alert-sensor with a larger battery supply, *s* switches itself on, i.e., *s* changes its state to "off".

Each global reshuffle of LBP needs 2 broadcasts (to the neighbors) from each sensor and the resulted set of all active sensors form a minimal sensor cover.

The LBP is a reliable protocol.

SAWN 2006

Georgia State University

(LBP) Bottleneck

• LBP time schedule is twice shorter since it uses the 1000-battery sensors simultaneously for 999 time units

Georgia State University

Deterministic Energy-Efficient Protocol for Sensing

Algorithm

(1) (*on-rule*)

whenever a sensor *s* has a target covered solely by itself (no alertor onsensor covers it), *s* switches itself on, i.e., changes its state to "on".

(2) (off-rule)

whenever a sensor *s* is not in charge of any target except those already covered by on-sensors, *s* switches itself off, i.e., changes its state to "off".

DEEPS is a reliable protocol. Each global reshuffle of DEEPS needs 2 broadcasts (to the 2-neighbors) from each sensor and the resulted set of all active sensors form a minimal sensor cover.

SAWN 2006

Georgia State University

(DEEPS) Bottleneck

An example of reliability violation (circles are sensors and rectangles are targets, numbers correspond to battery supply). 3 lower sensors have 3 batteries each and the 3 uppers sensors have 2 batteries each. Therefore, 3 lower targets are sinks with 5 batteries each. The upper target will be abandoned if all three upper poorer sensors will be switched off simultaneously.

SAWN 2006

Georgia State University

NS2+LEACH Monitoring Simulations

Environment : NS2 – Network Simulator

LEACH communication protocol

DEEPS - Deterministic Energy-Efficient Protocol for Sensing

LBP – Load-Balancing Protocol for Sensing

1-DEEPS which is DEEPS but with a single reshuffle and local reparation on node die

EUPS - Energy Unaware Protocol for Sensing – where all sensors continuously monitor their targets

Georgia State University

Simulation Results

Results which are represented in this presentation are obtained for 3 scenarios:

Scenario-1:

- Square territory 100m x 100m which is divided into the small square faces 1m x 1m, and each face is considered like a target with coordinates equals with the middle of the face.
- 10.000 targets good approximation for real area.
- Random distribution of sensors
- Faces are covered by one or more sensors, sensing radius is 5m.

Scenario-3:

• The same as Scenario-1, with additional restriction: All faces are covered by at least 3 sensors.

Scenario-2:

- Random distribution of 100.000 targets in 100m x 200m.
- All others are the same as in Scenario-3

Experimental results are for constant initial energy distribution 4(J) or random between 1 and 4(J).

SAWN 2006

Georgia State University

Scenario-3 TARGET

