

1

Approximation Algorithm for Maximum Lifetime in Wireless Sensor Networks with Data Aggregation

Jeffrey Stanford and Sutep Tongngam

Presented by Gruia Calinescu

Outline

- Network Model
- Contribution and related work
- Centralized algorithm
- Conclusions and future work

Network Model

- Sensor is on all the times
- Sensor's location is known
- Adjustable communication range
- Stationary
- Report to Base station directly or via other sensors as relays
- Data aggregation capability

Contribution and related work

Contribution

- Centralized algorithm with approximation ratio
- Related work

Protocols/algorithms	Ву	Centralized/Distributed
1.MLDA	K.Kalpakis, K.Dasgupta, and P.Namjoshi	Centralized
2.LEACH	W.Heinzelman, A.Chandrakasan, and H.Balakrishnan	Distributed
3.PEGASIS	S.Lindsey and C.C.Raghavendra	Distributed

Centralized algorithm

Maximize Total time until the first sensor runs out of energy

Problem formulation

- Lifetime Maximization problem To find a monitoring schedule {(Ar₁,t₁),...,(Ar_k,t_k)}
 - Max Σt_{Ar}
 - S.t. $\Sigma P_{Ar}(V_i) t_{Ar} \leq E(V_i)$
 - $P_{Ar}(v_i) = TX(v_i, v_j = parent of v_i in Ar) + (#children of v_i in Ar)RX$
- Exact algorithm called MLDA (K.Kalpakis, K.Dasgupta, and P.Namjoshi)
 - O(n¹⁵logn)

Example schedule

Approximation algorithms

- Heuristics (K.Kalpakis, K.Dasgupta, and P.Namjoshi)
 - G-CMLDA
 - I-CMLDA
- Garg-Könemann approx. alg. with minimum length columns
 - Find Ar that Minimizes $\Sigma P_{Ar}(v_i) y_i$
 - Minimum cost spanning arborescence problem

Approximation ratio

- (1-ε) Garg-Könemann approx. alg.
 - Exact algorithm of finding minimum cost spanning arborescence
 - (1-ε) approximation ratio
 - O(n³ 1/ε logn) complexity

Experimental information

- 40, 50, and 60 nodes in 50x50m²
- Base station is at (25,150)
- Initial energy is 1 J.
- Receiving power consumption
 - 50 nJ/bit
- Transmitting power consumption
 - 50 nJ/bit + 100*d² pJ/bit
- Package size 1000 bits

Experimental result

Algorithm	Quality	Running time
OPT (MLDA)	1	1
G-CMLDA	0.91	0.1
I-CMLDA	0.97	0.33
GK	0.975	0.07

 $\epsilon = 0.1$

Conclusions and Future work

Conclusion

- Centralized algorithm with (1ε) approximation ratio
- Actual results on average within 2.5% of optimum
- Running time on average within 7% of one for finding optimum

Future work

- Implement faster minimum cost arborescence algorithm
- Methods, tools for finding optimum of large sensor networks
 - CPLEX on 80 nodes takes 28.5 hours

Questions?

Thank You