Algorithms for Circular Organelle Genome Assembly Fahad Algahtani

Supervisor: Dr. Ion Măndoiu Associate Advisors: Dr. Mukul Bansal & Dr. Derek Aguiar

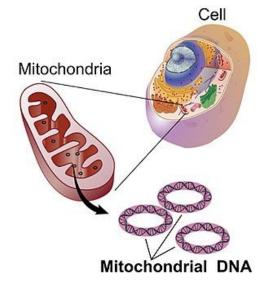
> Computer Science & Engineering Department University of Connecticut

Outline

- Background/Motivation
- Related Work
- Statistical Mitogenome Assembly with Repeats (SMART)
 - The pipeline
 - Results
- Conclusion & Ongoing and Future Work

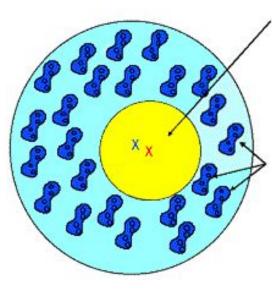
Outline

• Background/Motivation


- Related Work
- Statistical Mitogenome Assembly with Repeats (SMART)
 - The pipeline
 - Results
- Conclusion & Ongoing and Future Work

Organelle

- It is subunit within a cell
 - has a specific function
- Some types of organelles have own genomes
 - Mitochondria
 - Chloroplasts

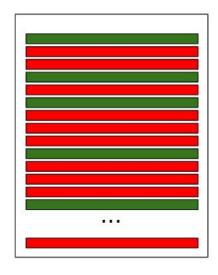

Mitochondria

- Cellular organelles within eukaryotic cells
 - Convert chemical energy from food into adenosine triphosphate (ATP)
 - The popular term "powerhouse of the cell" was coined by Philip Siekevitz in 1957

Mitochondrial DNA - Wikipedia

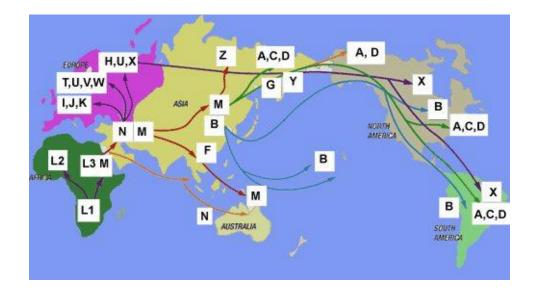
Nuclear Genome vs. Mitochondrial Genome

Nuclear

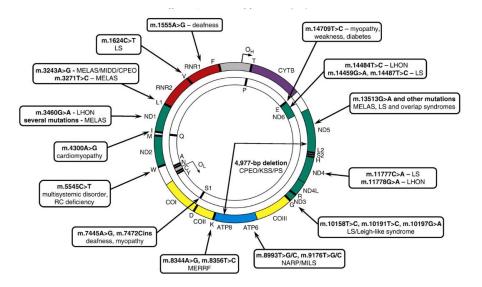

- 2 copies/cell
- inherited from both parents
- unique to individual

Mitochondrial

- >1000 copies/cell
- maternally inherited
- not unique to individual


Whole genome sequencing

Nuclear reads Mitochondrial reads

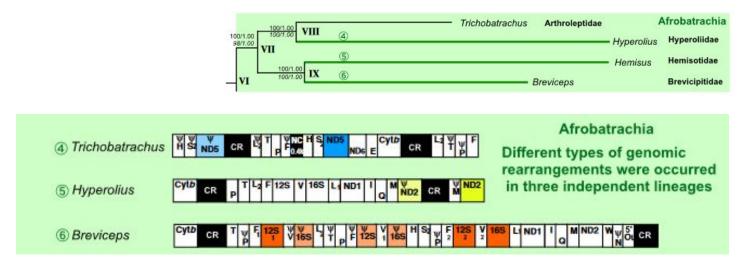

• Inferring human population migrations

• Single nucleotide polymorphisms in mitochondrial genome have long been used for tracking human migration

• Plays Important role in disease

• Mitochondrial DNA mutations have also been associated with human diseases

Tuppen, Helen AL, et al. "Mitochondrial DNA mutations and human disease." Biochimica et Biophysica Acta (BBA)-Bioenergetics 1797.2 (2010): 113-128.


Useful tool in forensic sciences

 Mitochondrial DNA analysis can be a useful tool in forensics, especially when a crime scene sample contains degraded DNA not suitable for nuclear DNA tests

• Species tree reconstruction

 Mitochondrial genome sequences can be used for evolutionary studies of non-model species for which nuclear genomes are not yet available

Kurabayashi, Atsushi, and Masayuki Sumida. "Afrobatrachian mitochondrial genomes: genome reorganization, gene rearrangement mechanisms, and evolutionary trends of duplicated and rearranged genes." BMC genomics 14.1 (2013): 633.

Outline

- Background/Motivation
- Related Work
- Statistical Mitogenome Assembly with Repeats (SMART)
 - The pipeline
 - Results
- Conclusion & Ongoing and Future Work

Mitochondrial DNA Isolation

- Mitochondrial DNA can be experimentally separated from the nuclear DNA and sequenced independently
 - protocols are laborious.

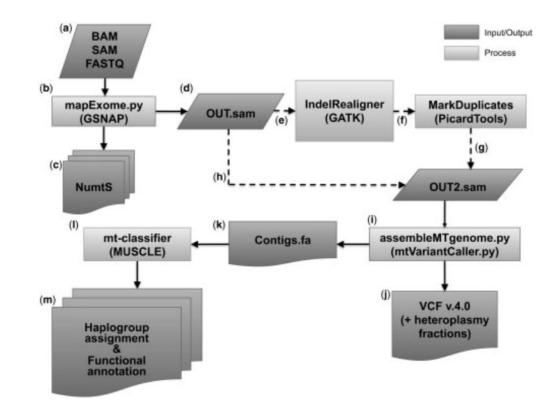
Long-read WGS Data

- Organelle_PBA [Soorni et al 2017]
 - High coverage required (> 50x) & relatively high cost of long-read sequencing make this approach uncommon

Off-the-shelf de Novo Genome Assembly Tools

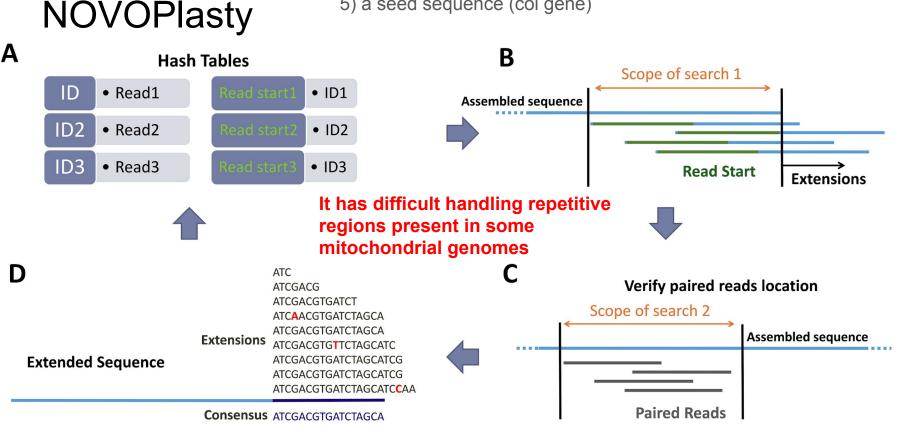
- Use short reads
 - Most abundant type WGS data
- Fail to generate high quality mitochondrial genome sequences
 - A large difference in copy number (and hence sequencing depth) between the mitochondrial and nuclear genomes
- Recent example:
 - Pyxicephalus adspersus (African bullfrog)

Most Mitogenome Assembly Tools


- Categories:
 - Reference-based
 - MToolBox [Calabrese, et al 2014]
 - Seed-and-extend
 - MITObim [Hahn at el 2013] and NOVOPlasty [Dierckxsens at el 2017]
 - De Novo
 - plasmidSPAdes [Antipov et al 2016] and Norgal [Al-Nakeeb et al 2017]

MToolBox

input:


- 1. Raw data or prealigned reads
- 2. A mitogenome reference genome
- 3. A nuclear reference genome

Input: 1)Raw reads 2) insert size 3) read length 4) mitogenome size range

5) a seed sequence (coi gene)

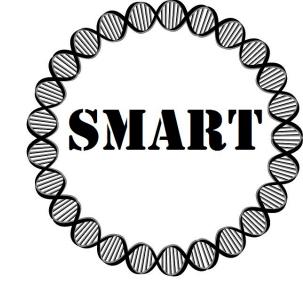


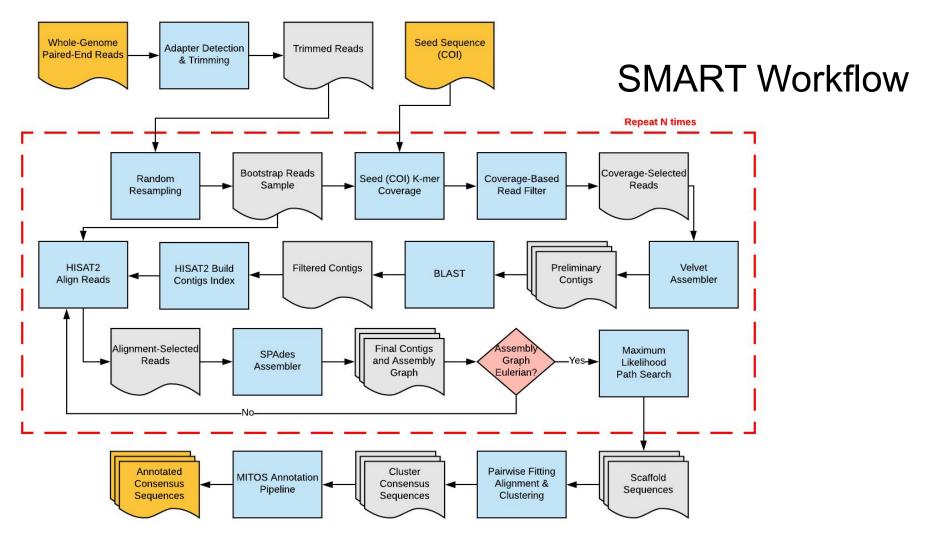
Norgal

Input:

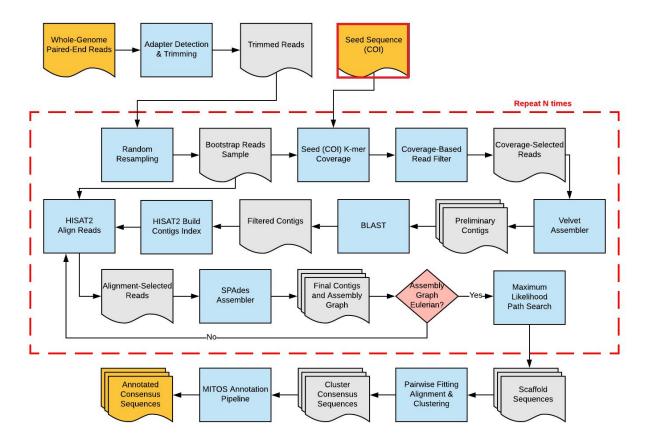
Raw reads

It can have prohibitive running times and may still fail to reconstruct complete mitogenomes particularly in the presence of repeats shared between the nuclear and organelle genomes


Outline

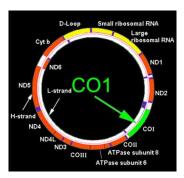

- Background/Motivation
- Related Work
- Statistical Mitogenome Assembly with Repeats (SMART)
 - The pipeline
 - Results
- Conclusion & Ongoing and Future Work

SMART

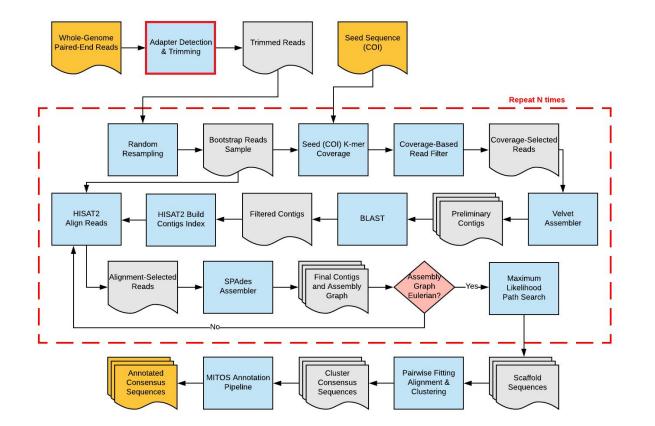

Statistical Mitogenome Assembly with RepeaTs

- Input:
 - 1. Paired-end WGS reads
 - 2. Seed sequence (COI gene)
- Output:
 - Complete/circular mitogenome (or largest scaffold)

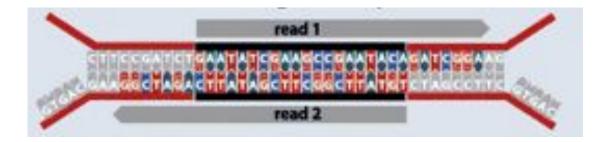
Seed Selection



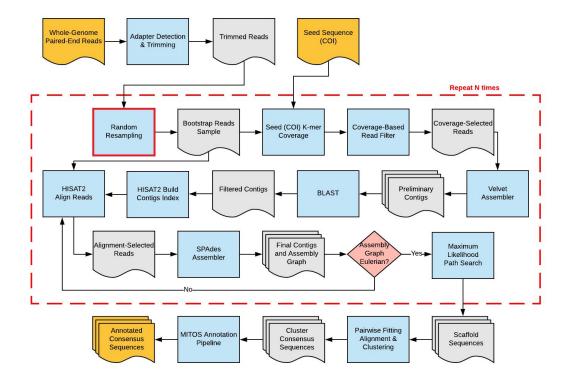
Seed Selection


- Cytochrome c oxidase subunit 1 (COI) gene has been selected as a "DNA barcode" for taxonomic classification
- Barcode of Life Datasystem (BOLD) has > 1.4M public barcodes from 118,358K animal species

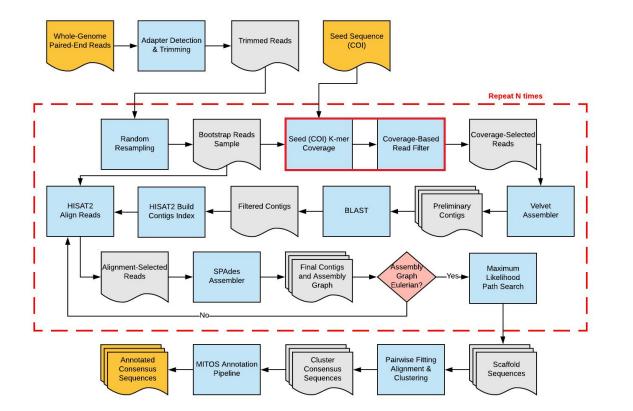
http://www.boldsystems.org/


Adapter Detection and Trimming

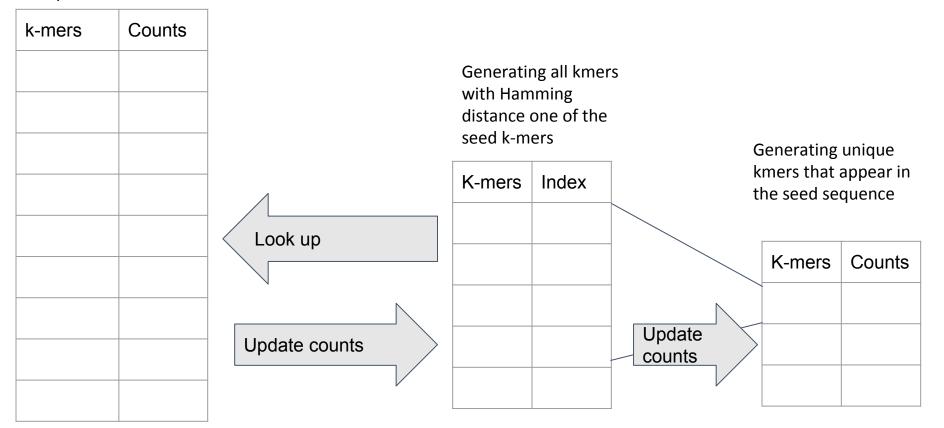
Adapter Detection and Trimming



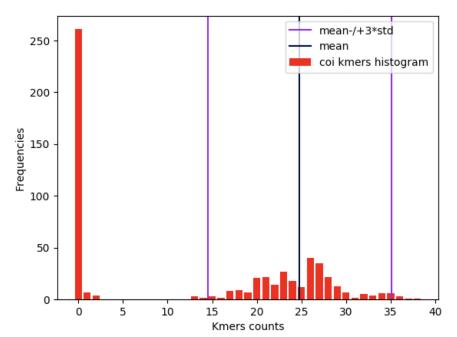
• Automatic detection of adaptors and trimming using Perl/C++ modules from the IRFinder package



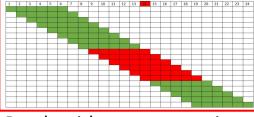
Middleton, Robert, et al. "IRFinder: assessing the impact of intron retention on mammalian gene expression." Genome biology 18.1 (2017): 51.


Random Read Re-sampling

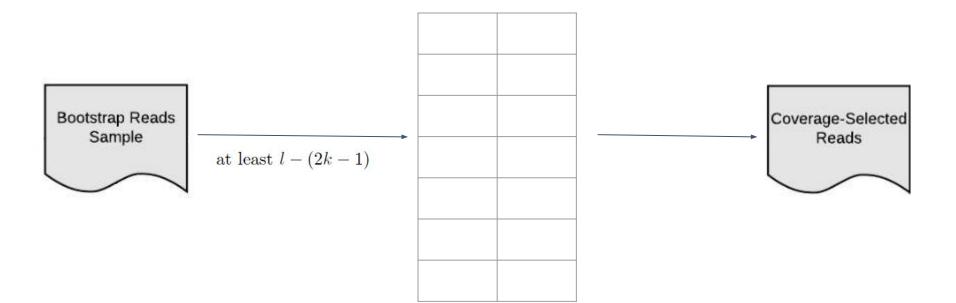
Coverage-based Read Filtering



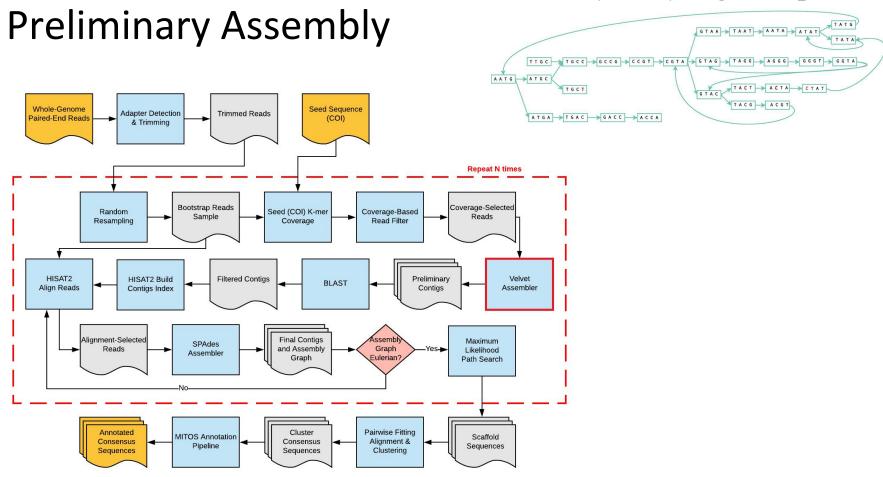
Counting number of times unique kmers appear in Bootstrap sample


COI K-mers Counts Distribution

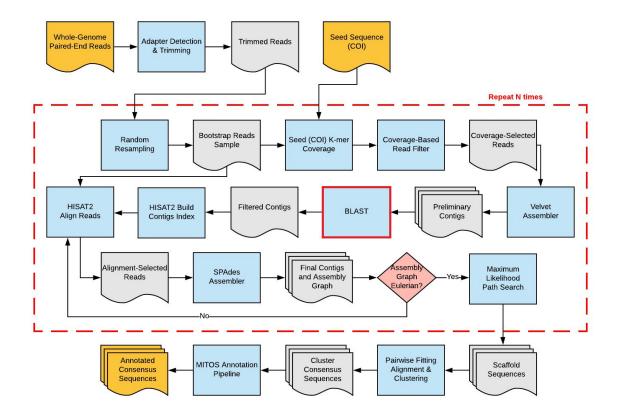
Two-component Gaussian mixture model to the one-dimensional distribution


Unique kmers appear in Bootstrap sample

k-mers	Counts		
			Good k-mers
		$ count(x) - \mu \le 3\sigma$	



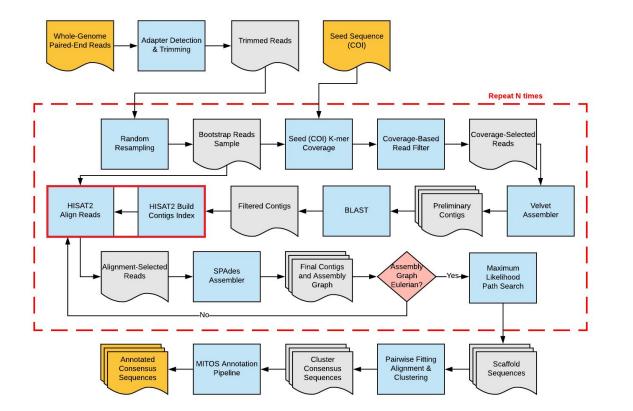
Reads with one sequencing error are kept


Good k-mers

https://en.wikipedia.org/wiki/Velvet_assembler

Preliminary Contig Filtering

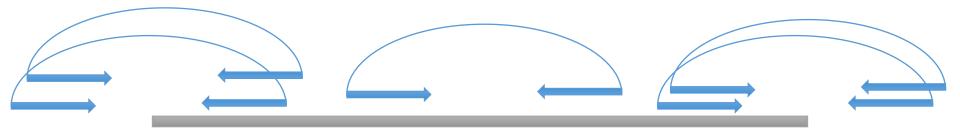
Preliminary Contig Filtering

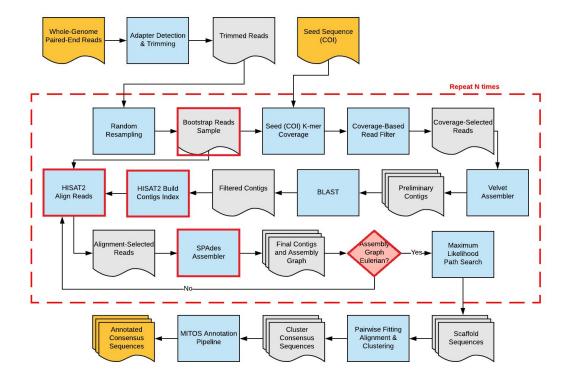


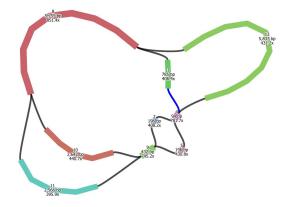
- Contigs aligned against a local database eukaryotic mitogenomes using nucleotide-nucleotide BLAST
 - Keep contigs that have hits with E-value of 10⁻¹⁰ or less

	Eukaryota mitochondrial genomes - 8376 records								
Alveolata [35]	Amoebozoa [9]	Apusozoa [0]	Cryptophyta [2]						
Euglenozoa [0]	Fornicata [0]	Glaucocystophyceae [4]	Haptophyceae [2]						
Heterolobosea [5]	Jakobida [6]	Malawimonadidae [2]	Opisthokonta [7957]						
Parabasalia [0]	Rhizaria [2]	Rhodophyta [52]	Stramenopiles [83]						
Viridiplantae [212]	unclassified eukaryotes [5]								

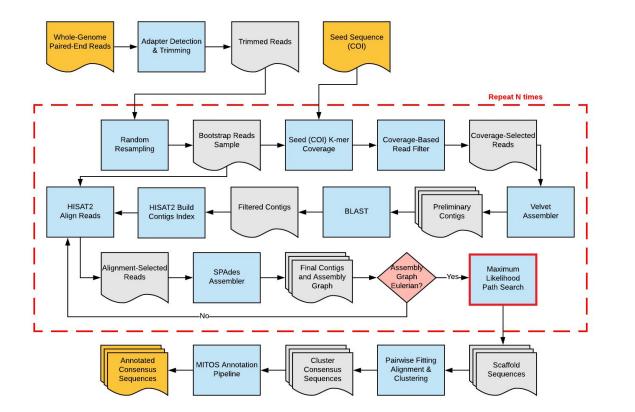
Query label	Target	Percent identity	Alignment length	Number of mismatches	Number of gap	Start position in query	End position in query	Start position in target	End position in target	E-value	Bit score
NODE_1	gi 251831106 ref	99.71	9,753	25	3	1	9,752	9,751	1	0	1.79E+04
NODE_1	gi 251831106 ref	99.69	6,849	21	0	9,753	16,601	16,569	9,721	0	1.25E+04


Alignment-based Read Filtering

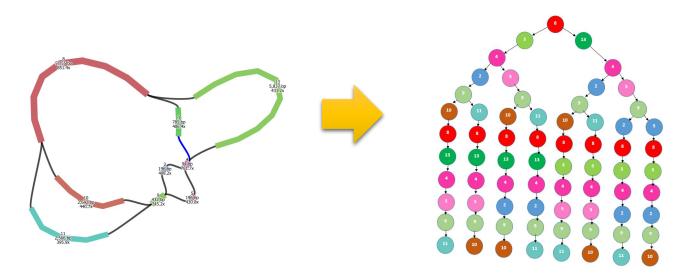

Alignment-based Read Filtering



- Using HISAT2
 - Fast and sensitive aligner for NGS reads
- Pulls out the read pairs that have at least one of the reads aligned



Secondary Assembly


Scaffolding

Scaffolding

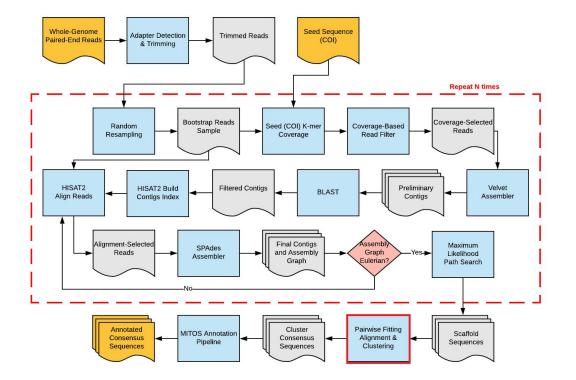
•Eulerian paths evaluated using likelihood model implemented in ALE [Clark et al 2013]

ALE likelihood

• Placement scoring:

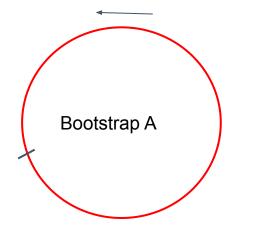
• How well read sequences agree with the assembly

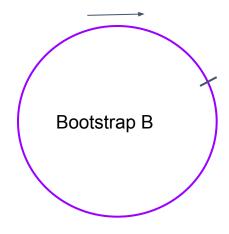
• Insert scoring:


• How well PE insert lengths match those we would expect

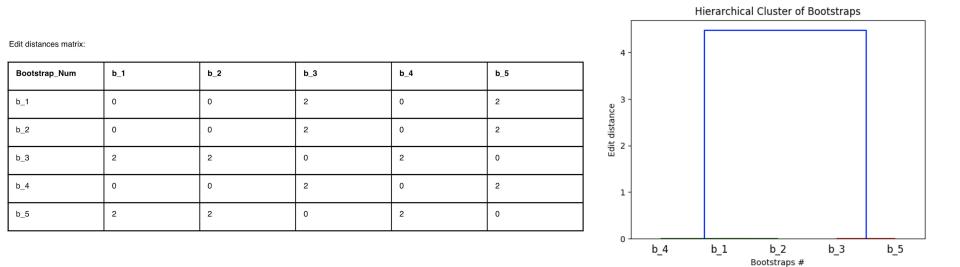
• Depth scoring:

 How well depth at each location agrees with depth expected after GC-bias correction

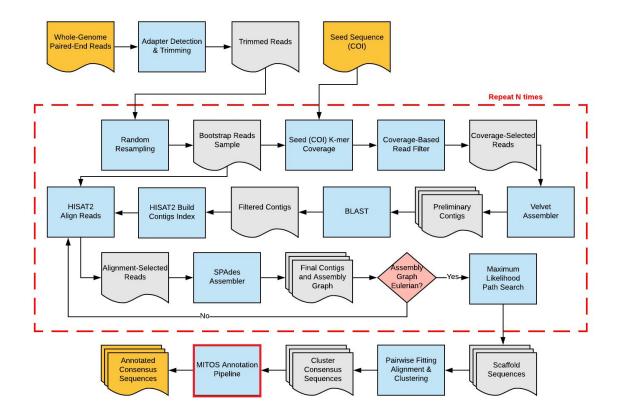

• K-mer scoring:


• How well k-mer counts of each contig match multinomial distribution estimated from entire assembly

- Process repeated for n bootstrap samples
 - Pairwise distances computed using fitting alignment
 - Rotation invariant
 - Direction invariant



- If bootstrap A is longer than bootstrap B, we duplicate the longest sequence.
- Use the both shortest sequence and its Watson-Crick complement



- Using hierarchical clustering on the edit distance matrix
- A consensus sequences is generated for each cluster

Annotation

Name	Start	Stop	Strand	Length	Structure
trnF(ttc)	1	74	+	74	svg ps
rrnS	74	1053	+	980	svg ps
trnV(gta)	1051	1122	+	72	svg ps
rrnL	1123	2719	+	1597	svg ps
trnL2(tta)	2719	2793	+	75	svg ps
nad1	2798	3754	+	957	1. A. S.
trnI(atc)	3762	3834	+	73	svg ps
trnQ(caa)	3843	3913	<u> </u>	71	svg ps
trnM(atg)	3913	3981	+	69	svg ps
nad2	3982	5010	+	1029	
trnW(tga)	5021	5091	+	71	svg ps
trnA(gca)	5093	5161	-	69	svg ps
trnN(aac)	5164	5236	-	73	svg ps
trnC(tgc)	5242	5308	-	67	svg ps
trnY(tac)	5309	5378	-	70	svg ps
cox1	5389	6921	+	1533	
trnS2(tca)	6922	6995		74	svg ps
trnD(gac)	6999	7067	+	69	svg ps
cox2	7069	7743	+	675	
trnK(aaa)	7754	7823	+	70	svg ps
atp8	7825	7986	+	162	
atp6	7983	8663	+	681	
cox3	8666	9448	+	783	
trnG(gga)	9450	9518	+	69	svq ps
nad3_a	9519	9692	+	174	
nad3_b	9694	9867	+	174	
trnR(cga)	9873	9941	+	69	svg ps
nad4l	9943	10236	+	294	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
nad4	10233	11594	+	1362	
trnH(cac)	11611	11680	+	70	svg ps
trnS1(agc)	11681	11747	+	67	svg ps
trnL1(cta)	11748	11817	+	70	svg ps
nad5	11818	13623	+	1806	and the second second
cob	13643	14779	+	1137	
trnT(aca)	14790	14859	+	70	svg ps
trnP(cca)	14882	14951	-	70	svg ps
nad6	14962	15480	-	519	
trnE(gaa)	15485	15554		70	svg ps

MITOS annotation

tRNA gene rRNA gene protein coding gene

Galaxy Interface @ <u>neo.engr.uconn.edu/?toolid=SMART</u>

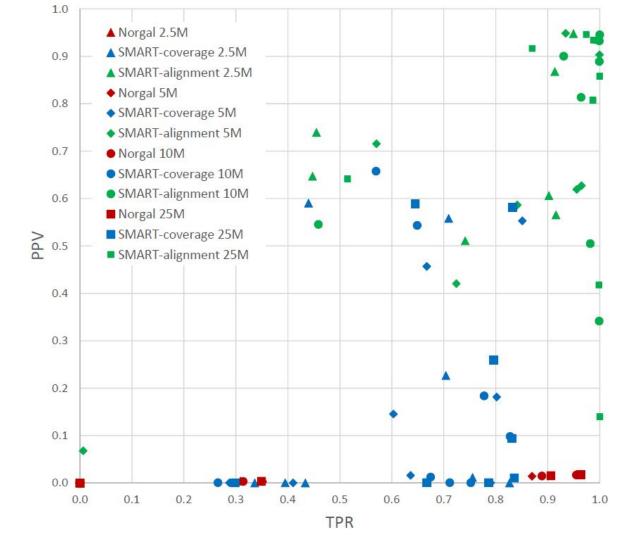
📱 Galaxy	Analyze Data Workflow Visualize - Shared Data - Help - User -			Jsing 0%
ools	SMART - Statistical Mitogenome Assembly with Repeats (Galaxy Version 19.1)	▼ Options	History	2 ♥ 🗆
search tools	Sample name		search datasets	0
iet Data	Sample		SMART Mus_Musculus	
MMUNOGENOMICS	Output files label		6 shown	(
ariant Calling and Filtering	DNA-Seq R1 file, fastq format		3.38 MB	
ariant Validation	🗋 🕰 🗀 1: ERR1746232_1.fastq.gz	•	6: Mus Musculus: The	• / ×
pitope Calling	DNA-Seq R2 file, fastq format		log file	
RANSCRIPTOMICS	C 42 □ 2: ERR1746232_2.fastq.gz	•	5: Mus Musculus-Rep	⊛ / ×
NA-Seq Analysis	Seed gene file, fasta format		ort_	
<u>athway Activity</u>	C 4 C 3: KC617843_coi_gene	-	4: Mus Musculus-Resu	👁 🖋 🗙
ENOMICS	Advanced Options	۲		
litogenome Assembly	Number of bootstrap samples		<u>3: KC617843 coi gen</u> <u>e</u>	
Get COI Gene Sequence from NCBI	1	•	2: ERR1746232_2.fast	
SMART - Statistical Mitogenome	Number of reads in each bootstrapping sample		<u>q.gz</u>	
Assembly with Repeats	10000000		1: ERR1746232 1.fast	• 🖋 🗙
/orkflows	Kmer Size		<u>q.gz</u>	
All workflows	31	•		
	Number of threads			
	16	•		
	Choose correct (genetic code) for (MITOS Annotation)			
	02 - Vertebrate	•		
	✓ Execute			

Outline

- Background/Motivation
- Related Work
- Statistical Mitogenome Assembly with Repeats (SMART)
 - The pipeline
 - Results
- Conclusion & ongoing Work

Datasets

- Human datasets
- Non-Human datasets


Human WGS and WES datasets

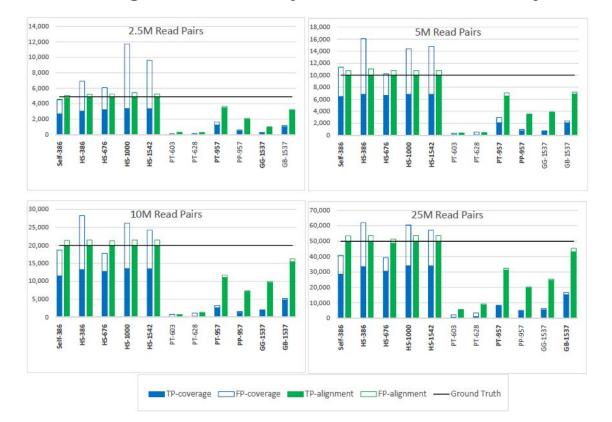
Sample ID	Run ID	Strategy	Read Length	% mtDNA	1KGP Length
HG00501	ERR020236	WGS	99+83	0.202%	16,568
HG00501	SRR1596847	WES	2×90	0.017%	16,568
HG00524	ERR1044792	WGS	2×100	0.046%	16,568
NA20336	SRR071189	WES	2×100	0.064%	16,568
NA20321	ERR250974	WGS	2×100	0.041%	16,568
HG02373	ERR043002	WGS	2×90	0.232%	16,569
HG02067	ERR047805	WGS	2×90	0.013%	16,568
HG02046	ERR065367	WGS	2×100	0.014%	16,568

Non-Human WGS datasets

Species	Run ID	Length	mtDNA	#Pairs	Seed	Reference
Aspergillus niger	SRR1801279	2×150	4.258%	100,000	EF180096	NC_007445
Canis lupus	ERR690331	2×90	0.060%	5,000,000	KC985188	KU644662
Capra hircus	ERR2309151	2×90	0.035%	10,000,000	JQ735457	MK341077
Grus japonensis	SRR5992802	2×100	0.005%	50,000,000	KF939577	FJ769847
Mus Musculus	ERR1746232	2×100	0.653%	10,000,000	KC617843	KY018919
Pan troglodytes	ERR1709948	2×100	0.014%	10,000,000	AY544154	KU308540
Phlebotomus papatasi	SRR1997462	2×100	0.446%	1,000,000	MH780862	NC_028042
Rana temporaria	SRR2226373	2×101	0.068%	5,000,000	MF624326	NC_042226
Saccharina japonica	SRR2043182	2×101	0.141%	3,000,000	KC491236	NC_040854
Xenopus laevis	SRR3210975	2×150	0.005%	40,000,000	GQ862287	HM991335

Assessment of read filtering accuracy for human datasets with 2.5-25M read pairs

Assembly accuracy comparison on human datasets


The percentage identity is typeset in **bold** if the reconstructed sequence was a complete circular genome.

#Pairs	Run ID	Norgal	NOVOPlasty	PlasmidSPAdes	SMART
	ERR020236	-	-	99.98	99.98
	SRR1596847	nuclear	2	nuclear	-
	ERR1044792	nuclear	-	nuclear	99.98
2,500,000	SRR071189	nuclear	12	99.80	99.98
	ERR250974	-	-	nuclear	-
	ERR043002	-		99.96	99.95
	ERR047805	nuclear	<u>1</u>	nuclear	-
	ERR065367	nuclear	-	nuclear	-
	ERR020236	-	99.96	99.98	99.98
	SRR1596847	nuclear	-	nuclear	99.96
	ERR1044792	nuclear	-	99.98	99.98
5,000,000	SRR071189	nuclear	99.96	23	99.98
	ERR250974	100 <u>1</u> 00 100	-	nuclear	-
	ERR043002	-	-	99.90	99.95
	ERR047805	nuclear	2	nuclear	-
	ERR065367	nuclear	77	nuclear	99.90
	ERR020236	99.98	-	99.98	99.98
	SRR1596847	nuclear	1	99.98	99.98
	ERR1044792	nuclear	99.97	99.98	99.98
10,000,000	SRR071189	nuclear	99.96	99.97	99.98
	ERR250974	-	-	99.60	99.98
	ERR043002	-	-	99.95	99.90
	ERR047805	nuclear	-	nuclear	99.90
	ERR065367	nuclear	-	timeout	99.90
	ERR020236	99.98		timeout	99.98
	SRR1596847	-	-	99.98	99.97
	ERR1044792	nuclear	99.98	99.98	99.98
25,000,000	SRR071189	nuclear	99.97	99.97	99.98
	ERR250974	-	-	99.90	99.98
	ERR043002	99.95	99.90	timeout	99.90
	ERR047805	nuclear	2	nuclear	99.90
	ERR065367	nuclear	-	timeout	99.90

Effect of the seed Length and Similarity on Read Filtering Accuracy and Assembly

Label	Species	Length (bp)	Accession#	Source
Self-386	Homo sapiens	386	N/A	1KGP
HS-386	Homo sapiens	386	KC750830	NCBI
HS-676	Homo sapiens	676	CYTC1116-12	BOLD
HS-1000	Homo sapiens	1,000	GBHS14738-13	BOLD
HS-1542	Homo sapiens	1,542	GBHS16794-19	BOLD
PT-603	Pan troglodytes	603	AY544154	NCBI
PT-628	Pan troglodytes	628	CAB118-06	BOLD
PT-957	Pan troglodytes	957	CYTC1009-12	BOLD
PP-957	Pan paniscus	957	CYTC1028-12	BOLD
GG-1537	Gorilla gorilla	1,537	GBMTG077-16	BOLD
GB-1537	Gorilla beringei	1,537	GBMNA18418-19	BOLD

Effect of the seed Length and Similarity on Read Filtering Accuracy and Assembly

datasets with 2.5M-25M read pairs randomly selected from WGS run ERR020236

The percentage identity is typeset in **bold** if the reconstructed sequence was a complete circular genome.

SMART assembly accuracy for non-human datasets

Species	Reference	SMART		P	ercentage Ide	entity	
	bp	bp	Mauve	LASTZ	MUSCLE	ClustalW	MAFFT
Aspergillus niger	31,103	31,324	98.2	97.3	98.2	98.2	98.2
Canis lupus	16,520	16,500	100	100	100	100	100
Capra hircus	16,640	16,642	99.5	99.5	99.5	99.5	99.5
Grus japonensis	16,715	16,615	97.8	98.6	97.8	97.8	97.8
Mus Musculus	16,300	16,300	99.9	99.9	99.9	99.9	99.9
Pan troglodytes	16,559	16,568	99.9	99.99	99.9	99.9	99.9
Phlebotomus papatasi	15,557	15,239	97.3	99.5	97.4	97.4	97.4
Rana temporaria	16,061	16,065	99.8	99.99	99.8	99.8	99.8
Saccharina japonica	37,657	37,657	99.97	99.97	99.97	99.97	99.97
Xenopus laevis	17,717	17,637	99.2	99.6	99.2	99.2	99.2

All are circular except Rana temporaria

Outline

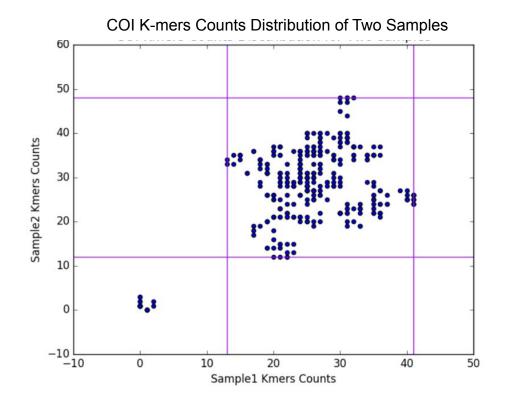
- Background/Motivation
- Related Work
- Statistical Mitogenome Assembly with Repeats (SMART)
 - The pipeline
 - Results
- Conclusion & Ongoing and Future Work

Conclusions

- SMART is an automated pipeline for de novo mitogenome assembly from WGS reads
- Based on statistical framework
 - Probabilistic read classifier based on coverage
 - Likelihood maximization for resolving ambiguities in assembly graph
 - Assembly confidence estimated by bootstrapping
- Produces complete/circular assemblies even from low-coverage WGS data
- Available via galaxy interface at <u>neo.engr.uconn.edu/?toolid=SMART</u>
- SMART paper is under review

Ongoing and Future Work

- Improving Mitogenomes assembly
 - Multi-sample Coverage based Read Filter & Assembly
 - Codon Usage Bias Read Filter
 - Orphan Mitogenomes Project
- Mitochondrial DNA Forensics
- Plants organelles Assembly


Ongoing and Future Work

- Improving Mitogenomes assembly
 - Multi-sample Coverage based Read Filter & Assembly
 - Codon Usage Bias Read Filter
 - Orphan Mitogenomes Project
- Mitochondrial DNA Forensics
- Plants organelles Assembly

• Using more than one samples in a SMART run

- 1KGP "HG00675" has two runs
 - o SRR593357
 - o SRR593484

Run ID	Read Count	Library Layout	Library Strategy	Library Source	Library Selection
SRR593357	2,137,487	Paired	WGS	Genomic	Random
SRR593484	2,132,673	Paired	WGS	Genomic	Random

Run ID	Num of reads pairs	Filter	TPR	PPV	F-Score
SRR593357	2,137,487	Coverage-based	0.426	0.408	0.263
		Multi-sample	1	0.386	0.386
SRR593484	2,132,673	Coverage-based	0.770	0.505	0.439
		Multi-sample	1	0.399	0.399

Multi-sample Mitogenome Assembly

- We plan to use ALLPATHS-LG assembler
- We plan to generate mitogenome sequence of Pyxicephalus adspersus (African bullfrog):
 - We plan to use two WGS libraries with two different insert sizes: 180 bp, and 550 bp.

Ongoing and Future Work

- Improving Mitogenomes assembly
 - Multi-sample Coverage based Read Filter & Assembly
 - Codon Usage Bias Read Filter
 - Orphan Mitogenomes Project
- Mitochondrial DNA Forensics
- Plants organelles Assembly

Codon Usage Bias Read Filter

Hon	Homo sapiens [gbpri]: 93487 CDS's (40662582 codons)						
fields: [triplet] [frequency: per thousand] ([number])							
UUU	17.6(714298)	UCU 15.2(618711)	UAU 12.2(495699)	UGU 10.6(430311)			
UUC	20.3(824692)	UCC 17.7(718892)	UAC 15.3(622407)	UGC 12.6(513028)			
UUA	7.7(311881)	UCA 12.2(496448)	UAA 1.0(40285)	UGA 1.6(63237)			
UUG	12.9(525688)	UCG 4.4(179419)	UAG 0.8(32109)	UGG 13.2(535595)			
CUU	13.2(536515)	CCU 17.5(713233)	CAU 10.9(441711)	CGU 4.5(184609)			
CUC	19.6(796638)	CCC 19.8(804620)	CAC 15.1(613713)	CGC 10.4(423516)			
CUA	7.2(290751)	CCA 16.9(688038)	CAA 12.3(501911)	CGA 6.2(250760)			
CUG	39.6(1611801)	CCG 6.9(281570)	CAG 34.2(1391973)	CGG 11.4(464485)			
AUU	16.0(650473)	ACU 13.1(533609)	AAU 17.0(689701)	AGU 12.1(493429)			
AUC	20.8(846466)	ACC 18.9(768147)	AAC 19.1(776603)	AGC 19.5(791383)			
AUA	7.5(304565)	ACA 15.1(614523)	AAA 24.4(993621)	AGA 12.2(494682)			
AUG	22.0(896005)	ACG 6.1(246105)	AAG 31.9(1295568)	AGG 12.0(486463)			
GUU	11.0(448607)	GCU 18.4(750096)	GAU 21.8(885429)	GGU 10.8(437126)			
GUC	14.5(588138)	GCC 27.7(1127679)	GAC 25.1 (1020595)	GGC 22.2(903565)			
GUA	7.1(287712)	GCA 15.8(643471)	GAA 29.0(1177632)	GGA 16.5(669873)			
GUG	28.1(1143534)	GCG 7.4(299495)	GAG 39.6(1609975)	GGG 16.5(669768			

mitochondrion Homo sapiens [gbpri]: 31745 CDS's (8998998 codons)

fields: [triplet] [frequency: per thousand] ([number])

UUU	17.8(160010)	UCU	9.7(87185)	UAU 12.9(116277) UG	J 1.7(14902)
UUC	37.2(335160)	UCC	22.9(206172)	UAC 22.2(200068) UG	2 4.6(40993)
UUA	17.3(155896)	UCA	19.2(172800)	UAA 1.6(14080) UG	A 21.6(194470)
UUG	6.0(54021)	UCG	2.4(21393)	UAG 1.1(10251) UG	G 2.4(21651)
CUU	16.9(151990)	CCU	11.3(101844)	CAU 4.0(36385) CG	J 2.8(24955)
CUC	38.5(346787)	CCC	33.4 (300806)	CAC 18.0(162193) CG	5.7(51396)
CUA	70.0(629938)	CCA	11.8(106159)	CAA 20.5(184525) CG	A 6.5(58761)
CUG	13.1(117687)	CCG	1.8(15943)	CAG 2.7(24303) CG	G 0.8(7434)
AUU	33.9(305172)	ACU	14.6(131679)	AAU 10.6(94957) AG	J 3.5(31921)
AUC	51.4(462276)	ACC	41.5(373157)	AAC 34.1(306667) AG	c 9.7(87297)
AUA	44.1(396504)	ACA	32.7 (294191)	AAA 23.6(212226) AG	A 0.4(3646)
AUG	12.3(110272)	ACG	2.6(23147)	AAG 3.0(27327) AG	G 0.4(3719)
GUU	10.7(95854)	GCU	14.0(126194)	GAU 4.5(40601) GG	J 8.9(80137)
GUC	14.1(127303)	GCC	29.6(265992)	GAC 14.0(126144) GG0	20.8(187077)
GUA	19.5(175775)	GCA	23.8(213888)	GAA 16.5(148574) GG	A 19.5(175656)
GUG	6.6(59489)	GCG	3.2(28747)	GAG 7.8(70450) GGG	g 9.6(86524)

Codon Usage Bias Read Filter

- For each read
 - Calculating score for each (Open reading frames) ORF using bellow equation if codon is non stop; otherwise, a large negative number will be given to stop codon.
 - \circ ~ We normalizing the score by k number of codons in each ORF

$$Score(c1, c2, ..., ck) = \frac{1}{k} \sum_{i=1}^{k} nonstop(ci) \log \frac{P_{mt}(ci)}{P_{ng}(ci)}$$

Preliminary results of read filter accuracy comparison on datasets with 2.5M-25M read pairs randomly selected from WGS run ERR020236

#Pairs	Filter	TPR	PPV
	Coverage-based	0.35122	0.00036
2,500,000	Codon Usage	0.70829	0.00156
	Coverage-based	0.31858	0.0003
5,000,000	Codon Usage	0.71463	0.00159
	Coverage-based	0.13584	0.00062
$10,\!000,\!000$	Codon Usage	0.72537	0.00158
	Coverage-based	0.28036	0.00055
$25,\!000,\!000$	Codon Usage	0.72528	0.0016

Ongoing and Future Work

- Improving Mitogenomes assembly
 - Multi-sample Coverage based Read Filter & Assembly
 - Codon Usage Bias Read Filter
 - Orphan Mitogenomes Project
- Mitochondrial DNA Forensics
- Plants organelles Assembly

Orphan Mitogenomes Project

- Some of NCBI organisms have neither complete nor partial mitogenomes in NCBI
- Example,
 - 235 paired-end WGS data of mammals in NCBI have no complete/partial mitogenomes.

Automatically Choosing Needed # Read Pairs

• Pipistrellus pipistrellus

Run ID	#Read Pairs	Library Layout	Library Strategy	Library Source	Library Selection
ERR3316150	120,578,311	Paired	WGS	Genomic	Random

Automatically Choosing Needed # Read Pairs

#Reads pairs	mean	Standard deviation
100,000	0	0
200,000	0	0
400,000	1.055556	0.04346135
800,000	1.470002	0.317155
1,600,000	3.630137	0.7732118
3,200,000	5.952042	1.063951
6,400,000	10.48152	1.39975
12,800,000	17.84498	2.859391
25,600,000	33.53188	6.19228

Results

We plan to submit these mitogenomes to GenBank as Third Party Annotation (TPA) sequence.

Species	Run ID	Reads pairs	SMART (bp)	Circular
Pipistrellus pipistrellus	ERR3316150	$25,\!600,\!000$	$16,\!440$	Yes
$Sciurus \ carolinensis$	ERR3312500	$12,\!800,\!000$	16,559	Yes
$Arvicola \ amphibius$	ERR3316036	51,200,000	16,359	Yes
$Sus\ salvanius$	ERR2984769	$12,\!800,\!000$	16,559	Yes
$Babyrous \ babyruss a$	ERR2984475	$12,\!800,\!000$	$16,\!645$	Yes
Hylodes phyllodes	SRR4019434	1,055,455	10,479	No
Cycloramphus boraceiensis	SRR4019528	1,776,547	$15,\!692$	No
Rhacophorus chenfui	SRR5248583	$3,\!477,\!603$	14,441	No
$Melanophryniscus\ xanthostomus$	SRR5837589	$977,\!403$	15,953	No
Hyla arborea	SRR2157967	$148,\!936,\!181$	15,751	No
Oophaga pumilio	SRR7627572	$169,\!230,\!017$	15,856	No
Agalychnis moreletii	SRR8327212	$2,\!438,\!699$	15,781	No

Ongoing and Future Work

- Improving Mitogenomes assembly
 - Multi-sample Coverage based Read Filter & Assembly
 - Orphan Mitogenomes Project
 - Codon Usage Bias Read Filter

Mitochondrial DNA Forensics

• Plants organelles Assembly

Mitochondrial DNA Forensics

- Reconstructing mitochondrial DNA sequences from heterogeneous samples
- The more contributors are in mixture DNA sample, the more complicated analyzing of the mixture will be

Steps

- 1. Aligning mixture DNA fastq file to the reference mtDNA sequence
- 2. SNV calling
- 3. Generating incompatibility conflict graph
- 4. Run at tool (ReFHap) for Max-cut
- 5. Generating one consensus mtDNA sequence from each partition.

Ongoing and Future Work

- Improving Mitogenomes assembly
 - Multi-sample Coverage based Filter & Assembly
 - Orphan Mitogenomes Project
 - Codon Usage Bias Filter
- Mitochondrial DNA Forensics
- Plants organelles Assembly

Plants organelles Assembly

- Circular organelles in Plants:
 - Mitochondria
 - Chloroplasts
- Plants organelle genomes are much larger than in animals
- Mitochondrial genome sizes in plants are between 200,000 and 2,000,000 bp
- 90% of these larger plants mitochondrial DNA sequences are introns and repeated sequences
- Chloroplasts genomes range size is between 120,000 and 170,000

Thank You for Your Attention

Any questions?