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ABSTRACT
λ-geometry routing has recently received much attention
due to the potential for reduced interconnect length in com-
parison to today’s prevalent Manhattan routing. An accu-
rate cost-benefit analysis of λ-geometry routing is impos-
sible without good estimation of the wirelength reduction
expected when switching from Manhattan to λ-geometry
routing. However, in the literature, estimates of wirelength
improvements achieved by λ-geometry routing are usually
for randomly generated nets, and the effect of λ-geometry-
driven placement on the overall wirelength improvement is
not properly considered. In this paper, we improve existing
estimates for the wirelength reduction of various λ-geometry
interconnect architectures. First, we give more accurate es-
timations of the expected wirelength reduction given by λ-
geometry routing on Manhattan placements. We take into
account the effect of wirelength-driven Manhattan place-
ment on pin locations for nets with k = 2, 3 and 4 pins, and
observe smaller expected reductions compared to previous
estimates based on nets randomly located in the plane. Sec-
ond, we estimate the wirelength improvement achieved by
λ-geometry placement and routing versus Manhattan place-
ment and routing. Our estimate is based on a simulated
annealing placer, driven by λ-geometry metrics. Finally, we
discuss and analyze the “virtuous cycle” effect: reduction of
overall wirelength results in decreased routing area, which
in turn leads to further wirelength reduction.
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1. INTRODUCTION
Because of its restrictions on routing directions, the Man-

hattan architecture entails significant added wirelength be-
yond the Euclidean optimum. Non-Manhattan routing has
recently received much attention from both academia and in-
dustry ([1, 9, 13, 14, 16]) due to the potential for reduced in-
terconnect length (and hence improved power consumption
and timing) in comparison to today’s prevalent Manhattan
routing. Most attention has been devoted to λ-geometry
routing, in which routing is allowed along λ > 2 orien-
tations forming consecutive angles of π/λ. In particular,
λ = 2, 3, 4 and ∞ correspond to Manhattan architecture,
Y-architecture, X-architecture and Euclidean geometry, re-
spectively.

An accurate cost-benefit analysis of λ-geometry routing
is impossible without good estimation of the wirelength re-
duction expected when switching from Manhattan to λ-
geometry routing. However, the literature contains only
simplistic (and seemingly conflicting) estimates.

• For nets with 10 or more pins, experiments with both
exact [12] and heuristic Steiner algorithms [2, 3, 4] sug-
gest an average improvement between Manhattan and
octilinear Steiner trees of approximately 10% when the
nets are randomly generated, and even smaller im-
provements when nets are extracted from real VLSI
designs.

• For 2-pin nets, the octilinear over Manhattan improve-
ment is estimated to be 17.17% in [9], respectively
14.6% in [14]. [9] and [14] assume different probability
distributions over 2-pin nets: in [9] one pin is assumed
to be chosen uniformly at random from an Euclidean
circle centered at the other pin, while in [14] the Eu-
clidean circle is replaced by a Manhattan circle.

• For full commercial designs placed and routed with
octilinear-aware tools, [8] and [14] report wirelength
improvements of 20% or more.



The previous estimates do not adequately address k-pin
nets (k > 2) and the fact that nets are not randomly placed
in the plane, but are rather driven by Steiner Minimal Tree
(SMT) cost minimization in the prevailing geometry; the
importance of this was previously mentioned in [13, 14].
Also, the effect of λ-geometry-driven placement on the over-
all wirelength improvement needs to be considered. Wire-
length reduction achieved by λ-geometry routing is limited
without such a λ-geometry-aware placer.

In this paper, we study wirelength reduction for λ-geometry
routing applied to both Manhattan and λ-geometry place-
ments. We improve existing estimates for the wirelength
reduction of various interconnect architectures by taking
into account the effect of wirelength-driven Manhattan or
λ-geometry placements on pin locations for nets with k =
2, 3 and 4 pins. We observe smaller expected reductions
compared to previous estimates based on nets randomly lo-
cated in the plane. We estimate the wirelength improve-
ment achieved by λ-geometry versus Manhattan placement
and routing, using a simulated annealing placer, which is
driven by λ-geometry metrics. Finally, we discuss and ana-
lyze a “virtuous cycle” effect: reduction of overall wirelength
results in decreased routing area, which in turn leads to fur-
ther wirelength reduction.

The remainder of this paper is organized as follows. Sec-
tion 2 studies wirelength reduction for λ-geometry routing of
nets from Manhattan-driven placement. Section 3 discusses
the wirelength improvement achieved by λ-geometry place-
ment and routing versus Manhattan placement and routing.
The paper concludes in Section 4.

2. WIRELENGTH IMPROVEMENTS WITH
λ-GEOMETRY ROUTING ON MANHAT-
TAN PLACEMENTS

When wirelength reduction achieved by non-Manhattan
routing is discussed, nets are often assumed to be randomly
placed, and average wirelength reduction is computed using
heuristic or exact Steiner tree algorithms. But compared
with wirelength improvements for nets extracted from real
VLSI designs, the above estimates are usually much larger
[2, 3, 12]. One reason for this difference is that in real VLSI
designs nets are not randomly placed in the plane, but are
rather driven by SMT cost minimization.

In [14], average wirelength improvement for octilinear rout-
ing is computed by an integral formula, assuming that Man-
hattan placers optimize only interconnect wirelength for 2-
pin nets: a second point is uniformly distributed on the
“rectilinear unit circle” around the first point. In this sec-
tion, we extend this idea and give more accurate analysis of
interconnect length reduction of different interconnect archi-
tectures, for nets with k = 2, 3 and 4 pins from Manhattan
placement. Our results show smaller wirelength improve-
ments obtained by λ-geometry routing, compared to previ-
ous estimates based on randomly generated nets. Table 1
summarizes related analysis in the literature.

2.1 2-Pin Nets
We assume a placer driven by λ-geometry metrics opti-

mizes only interconnect wirelength for 2-pin nets. Suppose
there is a 2-pin net between two components A and B. Given
a location for A and an interconnect length L, B will be
placed uniformly on the “λ-geometry circle” centered at A

Table 1: Related analyses of wirelength reduction
for λ-geometry routing.

reference placement routing k-pin nets

[13] random λ = 4 k = 2
[1] random λ = 3, 4, ∞ k = 2
[14] Manhattan λ = 4 k = 2

This paper λ-geometry λ = 3, 4, ∞ k = 2, 3, 4

L L L L

Figure 1: λ-geometry circles with λ = 2, 3, 4 and ∞.

with λ-geometry radius L. For λ = 2, 3, 4 and ∞ respec-
tively, the λ-geometry circle is a diamond, a hexagon, an
octagon and a circle, as shown in Figure 1.

Under these assumptions about the placer, the expected
wirelength of a 2-pin net routed in λ′-geometry can be com-
puted using integrals. The results for λ, λ′ ∈ {2, 3, 4,∞} are
summarized in Table 2; the detailed analysis is given in the
Appendix.

2.2 3-Pin Nets
We may similarly analyze the regime where all placements

of a 3-pin net with the same rectilinear SMT length are
equally possible. For a 3-pin net with bounding box BB,
there are two possibilities: (1) canonical case: one point A is
at one corner of the bounding box, and the other two points
are on the two edges opposite to A; and (2) degenerated case:
two points are at the two opposite corners of the bounding
box, and the other point is in the bounding box.

Given a bounding box BB with half perimeter L and
length x, 0 ≤ x ≤ L, randomly select u and v such that
0 ≤ u ≤ x and 0 ≤ v ≤ L − x. Each combination of u and
v specifies a canonical 3-pin net {(0, 0), (u, L − x), (x, v)}
and a degenerated 3-pin net {(0, 0), (u, v), (x, L−x)}; both
of these 3-pin nets have an SMT length of L. All canonical
and degenerated 3-pin nets with bounding box BB can be
uniformly sampled in this way. Considering orientations of
3-pin nets, we need to multiply the wirelength of canonical
nets by 4, and multiply that of degenerated nets by 2.

To uniformly sample 3-pin nets with different bounding
box aspect ratios, the probability of sampling the bounding
box with length x should be proportional to x(L−x).1 Given
a uniform sampling of all possible placements for a 3-pin
net, the average SMT length with λ-geometry routing can
be computed using the Geosteiner algorithm [12].

2.3 4-Pin Nets
For a 4-pin net with bounding box BB, similar analysis

covers three possibilities. Case 1 is the canonical case where
all points are on the edges of the bounding box. Case 2 has
one point A at a corner, two points on the edges opposite

1Given a uniform sampling t ∈ [0, 1], x = Q−1(t) gives a
sampling of x with probability density p(x), where p(x) ≥
0, x ∈ [0, 1],

∫ 1

0
p(x)dx = 1, and Q(t) =

∫ t

0
p(x)dx.



Table 2: Expected wirelength of a 2-pin net routed
in λ′-geometry, assuming a λ-geometry-driven placer
and λ-geometry length of Lλ.

λ-geometry λ′-geometry routing
placement λ′ = 2 λ′ = 3 λ′ = 4 λ′ = ∞

λ = 2 L2 0.894 L2 0.854 L2 0.812 L2

λ = 3 1.161 L3 L3 1.070 L3 0.912 L3

λ = 4 1.207 L4 1.047 L4 L4 0.950 L4

λ = ∞ 1.273 L∞ 1.103 L∞ 1.055 L∞ L∞
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Figure 2: Canonical 4-pin nets.

to A, and the fourth point in the bounding box. Case 3 has
two points at two opposite corners, and the other two points
in the bounding box.

Given a bounding box BB with half perimeter L and
length x, 0 ≤ x ≤ L, we randomly select x1, x2, y1 and
y2 such that 0 ≤ x1 ≤ x2 ≤ x and 0 ≤ y1 ≤ y2 ≤ L − x.
Each combination of x1, x2, y1 and y2 specifies four canoni-
cal (Case-1) 4-pin nets (Figure 2), four Case-2 nets and two
Case-3 nets (see Figure 3 for examples of degenerated 4-pin
nets).2 All 4-pin nets that have a bounding box with the
same aspect ratio as BB can be uniformly sampled in this
way.

Analogous to the 3-pin analysis, we weight the wirelengths
for different cases to account for orientation: the weights for
the three cases are 1, 4 and 2 respectively. To uniformly
sample 4-pin nets with different bounding box aspect ratios,
the probability of sampling the bounding box with length x
is proportional to x2(L − x)2.

Table 3 summarizes average wirelength reductions using
λ-geometry routing for nets with k = 2, 3 and 4 pins from
Manhattan wirelength-driven placement. The results are
compared with average wirelength improvements achieved
by λ-geometry routing for nets randomly picked from a square.
For every λ, we observe smaller wirelength reduction for λ-
geometry routing of nets from Manhattan wirelength-driven
placement. In the last row of Table 3 we give the wire-
length improvement expected for λ-geometry routing of a
net, based on the average net degree distribution in [10, 11].

2Some nets have an SMT length greater than L, and need
to be scaled down.
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Figure 3: Degenerated 4-pin nets.

Table 3: Average wirelength reduction for nets from
Manhattan placement and random nets (%).

net λ = 3 λ = 4 λ = ∞
size Manh. Rand. Manh. Rand. Manh. Rand.

k = 2 10.57 13.52 14.65 17.14 18.84 21.47
k = 3 5.86 7.55 10.75 12.41 14.61 16.21
k = 4 5.45 6.56 9.89 11.26 13.30 14.80

average 8.70 11.05 13.00 15.11 16.97 19.19

3. WIRELENGTH IMPROVEMENTS WITH
λ-GEOMETRY PLACEMENT AND ROUT-
ING

A λ-geometry-aware placer factors in λ-geometry wiring
during placement, and results in better placements of nets
when such wiring is used to route the nets. Wirelength im-
provement with λ-geometry routing (λ > 2) is impaired if
the placer only optimizes Manhattan wiring, since the placer
will poorly position the nets in the IC layout. Previous stud-
ies of routing demand using different traditional placers [5]
show that for octilinear routing there is relatively little de-
mand for the two diagonal directions. The placement tools
align most circuit elements either vertically or horizontally,
leaving few opportunities to exploit diagonal wiring. On the
other hand, a λ-geometry-driven placer can place the nets
in more locations that cost the same, which in turn opens
up more positions for other nets. Therefore, the wirelength
can be greatly reduced.

3.1 Estimation with a Simulated Annealing
Placer

To estimate the wirelength improvement achieved by λ-
geometry placement and routing versus Manhattan place-
ment and routing, we have built a simplified placer which
uses simulated annealing driven by λ-geometry wirelength
estimation. The input of the placer is a simplified netlist
extracted from MCNC instances, in which a list of cells is
specified for each net. After a random initial placement of
cells, two cells are randomly selected, and we decide whether
to exchange these two cells based on the current annealing
temperature and the new SMT cost with λ-geometry rout-
ing, which is computed using Geosteiner. The initial tem-
perature of the simulated annealing algorithm is specified
so that it is far larger than the standard deviation of the
cost distribution [6]. For each temperature, a repeat time
is specified so that the number of new states generated is
on the order of 100 times the number of cells [7]. The new
temperature is generated by multiplying the current temper-



Table 4: Average wirelength improvements for λ-
geometry placement and routing vs. Manhattan
placement and routing (%).

Instance #nets λ = 3 λ = 3 λ = 4 λ = ∞
hex cells

C2 601 3.43 4.81 8.92 11.04
BALU 658 3.96 7.13 9.29 11.07

PRIMARY1 695 5.67 7.32 10.31 13.03
C5 1438 6.24 8.34 11.48 12.73

 

Figure 4: Layout of hexagonal cells on a rectangular
chip and the triangular mesh that connects them.

ature by α = 0.95, which is a relatively large α for simulated
annealing [7].

For each instance and each λ-geometry metric, we run
the placer 5 times, and get the best wirelength with λ-
geometry placement and routing. The wirelength improve-
ments achieved by λ-geometry placement and routing are
summarized in Table 4. In Tables 5, 6 and 7, we give total
wirelengths obtained with different combinations of place-
ment and routing for three of the testcases, C2, Balu and
C7.

From the tables, we can see that square cells are not
quite suitable for 3-geometry. When the placer is optimized
for Manhattan wiring, the total wirelength with 3-geometry
routing is usually larger than that with rectilinear routing.
Moreover, wirelength improvements with 3-geometry place-
ment and routing are relatively small compared to the wire-
length improvements when λ = 4 and ∞. Therefore, hexag-
onal cells [9, 17] are adopted when the placer is driven by
3-geometry wirelength. The cell layout on the chip and the
mesh connecting them are shown in Figure 4. The total wire-
length with 3-geometry placement and routing is improved
significantly by the use of hexagonal cells.

Table 5: Total wirelength of instance “C2” with dif-
ferent combinations of placement and routing.

λ-geometry λ-geometry routing
driven placer λ = 2 λ = 3 λ = 4 λ = ∞

λ = 2 1805 1841.8 1719.2 1683.9
λ = 3 1896 1743.0 1665.9 1621.5

λ = 3, hex cells 2002 1690.3 1718.3 1640.8
λ = 4 1908 1799.6 1644.0 1617.4
λ = ∞ 1865 1772.1 1646.9 1605.7

3.2 Analysis of the “Virtuous Cycle” Wire-
length Reduction Effect

The above placer places cells within a chip that has fixed
area. However, reduction of overall wirelength results in
decreased routing area, which in turn leads to further wire-

Table 6: Total wirelength of instance “Balu” with
different combinations of placement and routing.

λ-geometry λ-geometry routing
driven placer λ = 2 λ = 3 λ = 4 λ = ∞

λ = 2 1820 1856.0 1728.4 1694.7
λ = 3 1878 1748 1660.8 1623.6

λ = 3, hex cells 2010 1718.2 1744.0 1669.3
λ = 4 1886 1785.6 1650.9 1621.3
λ = ∞ 1898 1769.8 1654.6 1616.5

Table 7: Total wirelength of instance “C7” with dif-
ferent combinations of placement and routing.

λ-geometry λ-geometry routing
driven placer λ = 2 λ = 3 λ = 4 λ = ∞

λ = 2 6802 6859.1 6419.1 6276.9
λ = 3 6942 6396.2 6104.4 5959.9

λ = 3, hex cells 7382 6254.0 6342.1 6056.4
λ = 4 6840 6400.1 5945.9 5848.7
λ = ∞ 6806 6370.8 5971.2 5823.5

length reduction, creating a “virtuous cycle” effect.
Consider a cluster of two-pin nets which are connected

to one pin A. All other pins are uniformly located in a
λ-geometry circle by a λ-geometry-aware placer. Based on
the “virtuous cycle” effect, the λ-geometry circle will have
an area proportional to the total routing area. For Man-
hattan placement and routing, suppose the pins are placed
in a rectilinear circle with radius R. We have the area of
the rectilinear circle, A = 2R2, and the total routing area,

Arouting = 4
∫ R

0
(x · xdx

A
N) = 4

3
R3

A
N = 2

3
RN , where N is

the number of two-pin nets and xdx
A

N is the number of pins
located between unit circles with radii x and x + dx. Let
A ∼ Arouting. We have R ∼ N/3 and Arouting ∼ 2

9
N2.

Similar analysis can be done for λ-geometry placement and
routing with λ = 3, 4 and ∞, with the results summarized
as follows:

λ = 2: Arouting ∼ 2
9
N2

λ = 3: Arouting ∼ 8
√

3
81

N2, 23.0% less compared to Man-

hattan placement and routing.

λ = 4: Arouting ∼
√

2
9

N2, 29.3% less compared to Manhat-

tan placement and routing.

λ = ∞: Arouting ∼ 4
9π

N2, 36.3% less compared to Man-

hattan placement and routing.

This simple analysis shows that the wirelength reduction
caused by the “virtuous cycle” effect is significant, and can
partly explain the large wirelength reductions reported in
[8] and [14].

4. CONCLUSION
In this paper, we have studied the wirelength reduction

expected from λ-geometry placement and routing. We have
improved existing estimates for the wirelength reduction of
various interconnect architectures by taking into account the
effect of Manhattan-driven placement on pin locations for
nets with k = 2, 3 and 4 pins. We have estimated the



wirelength improvement achieved by λ-geometry placement
and routing versus Manhattan placement and routing, using
a simulated annealing placer driven by λ-geometry metrics.
We have also discussed and analyzed the “virtuous cycle”
effect on overall wirelength.

Many questions on the estimation of wirelength improve-
ment achieved by λ-geometry routing remain open. For ex-
ample, the interaction between nets needs to be modeled to
get an accurate estimation of the overall wirelength reduc-
tion. Similarly, detailed site maps and detailed routing need
to be considered to determine the actual effect of the “vir-
tuous cycle”. Finding efficient optimizers and estimators of
λ-geometry wirelength is another interesting open problem.
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APPENDIX

A. EXPECTED λ-GEOMETRY LENGTH OF
A 2-PIN NET

We assume a placer driven by λ-geometry metrics opti-
mizes only interconnect wirelength for 2-pin nets. Suppose
there is a 2-pin net between two components A and B. Given
a location for A and a unit interconnect length, B will be
placed uniformly on the “λ-geometry unit circle” centered
at A.

A.1 Preliminaries
The minimal λ-geometry length from (0, 0) to a point

(x, y), x, y ≥ 0, is:

λ = 2: x + y

λ = 3: x + 1√
3
y when y/x ∈ [0,

√
3] and 2√

3
y when y/x ∈

[
√

3,∞]

λ = 4: x + (
√

2 − 1)y when y/x ∈ [0, 1] and y + (
√

2 − 1)x
when y/x ∈ [1,∞]

λ = ∞:
√

x2 + y2

A.2 Manhattan-Driven Placement
B is assumed to be placed uniformly on the rectilinear

unit circle centered at A, whose intersection with the first
quadrant is given by y = 1 − x, 0 ≤ x ≤ 1. Then the
expected λ-geometry length of the 2-pin net between A and
B is:

λ = 2: 1

λ = 3:

1
1+ 1√

3∫
0

(1−y+ y√
3
)dy+

1∫
1

1+ 1√
3

2y√
3
dy = 9+

√
3

12
≈ 0.89434

λ = 4: 2

1
2∫
0

(1 − y + (
√

2 − 1)y)dy = 2+
√

2
4

≈ 0.85355

λ = ∞:
1∫
0

√
(1 − y)2 + y2dy = 1

2
− 1

4

√
2 ln

(√
2 − 1

) ≈ 0.81161

A.3 3-Geometry-Driven Placement
B is assumed to be placed uniformly on the hexagonal

unit circle centered at A, whose intersection with the first



quadrant is given by y =
√

3/2 for 0 ≤ x ≤ 1/2 and by
y = −√

3(x − 1) for 1/2 ≤ x ≤ 1. Then the expected λ-
geometry length of the 2-pin net between A and B is:

λ = 2: 2
3
2

1∫
1
2

(x−√
3(x− 1))dx+ 1

3
2

1
2∫
0

(x+
√

3
2

)dx = 7+4
√

3
12

≈

1.1607

λ = 3: 1

λ = 4: 2
3
2

1
1+ 1√

3∫
1
2

(−√
3(x − 1) − x +

√
3x)dx + 2

3
2

1∫
1

1+ 1√
3

(x −

(−√
3(x − 1)) +

√
3(−√

3(x − 1)))dx + 1
3
2

1
2∫
0

(
√

3
2

− x +

√
3x)dx = 23

√
3−27
12

≈ 1.0698

λ = ∞: 2

1
2∫
0

√
x2 + (

√
3

2
)2dx = 1

2
+ 3

8
ln 3 ≈ 0.91198

A.4 4-Geometry-Driven Placement
B is assumed to be placed uniformly on the octilinear

unit circle centered at A, whose intersection with the first
quadrant is given by y = 1 − (

√
2 − 1)x for 0 ≤ x ≤ √

2/2
and by x = 1 − (

√
2 − 1)y for

√
2/2 ≤ x ≤ 1. Then the

expected λ-geometry length of the 2-pin net between A and
B is:

λ = 2:
√

2

√
2

2∫
0

(1 + (2 −√
2)y)dy =

√
2+1
2

≈ 1.2071

λ = 3: 1
2

√
2

1√
2+

√
3−1∫

0

2
√

3
3

(1−(
√

2−1)x)dx+ 1
2

√
2

√
2

2∫
1√

2+
√

3−1

(x+

√
3

3
(1−(

√
2−1)x))dx+ 1

2

√
2

√
2

2∫
0

(1−(
√

2−1)y+
√

3
3

y)dy ≈
1.0471

λ = 4: 1

λ = ∞:
√

2

√
2

2∫
0

√
x2 + (1 − (

√
2 − 1)x)2dx ≈ 0.94966

A.5 Euclidean-Driven Placement
B is assumed to be placed uniformly on the Euclidean unit

circle centered at A, whose points are given by x = cos θ and
y = sin θ. Then the expected λ-geometry length of the 2-pin
net between A and B is:

λ = 2: 4
π

π
4∫
0

(cos θ + sin θ)dθ = 4
π
≈ 1.2732

λ = 3: 2
3

3
π

π
3∫
0

(cos θ+
√

3
3

sin θ)dθ+ 1
3

6
π

π
2∫

π
3

2
√

3
3

sin θdθ = 2
π

√
3 ≈

1.1027

λ = 4: 4
π

π
4∫
0

(cos θ−sin θ+
√

2 sin θ)dθ = 8
π

(√
2 − 1

) ≈ 1.0548

λ = ∞: 1


