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Abstract— The QoS Steiner TreeProblem asksfor the most cost-
efficient way to multicast multimedia to a heterogeneou<ollection
of userswith differ ent consumptionrates. We assumethat the cost
of usinga link is not constantbut rather dependson the maximum
bandwidth routed thr ough the link. Formally, given a graph with
costson the edges.a source node and a setof terminal nodes,each
onewith abandwidth requirement,the goalis to find a Steinertree
containing the source, and the cheapestassignmentof bandwidth
to each of its edgesso that each source-to-terminal path in the
treehas bandwidth at leastas large asthe bandwidth required by
the terminal. Our main contributions are: (1) new covering-type
integer linear program formulations for the problem; (2) two new
heuristics based on the primal-dual framework; (3) a primal-
dual constant-factor approximation algorithm; (4) an extensie
experimental study of the new heuristics and of several previously
proposedalgorithms.

I. INTRODUCTION

Recent progressin audio, video, and data storage tech-
nologieshasgiven rise to a host of high-bandwidthreal-time
applicationssuch as video conferencing.These applications
require Quality of Service (QoS) guaranteegrom the under
lying networks. In light of this, multicast routing algorithms
which managenetwork resourcesefficiently and satisfy the
QoSrequirementhiave comeunderincreasedcrutiry in recent
years[14]. Thefocuson multimediadatatransfercapabilityin
networksis expectedto furtherincreaseasapplicationssuchas
video conferencinggain popularity

Multimedia distribution is usually donevia multicasttrees.
Thereare two reasondor basingefficient multicastrouteson
trees:(a) the datacan be transmittedconcurrentlyto destina-
tions along the branchesof the tree,and (b) only a minimum
numberof copiesof the datamust be transmittedsince infor-

mationreplicationis limited to the forks of the tree[16]. The
bandwidthsavings obtainedfrom the useof multicasttreescan
be maximized by using optimal or nearly optimal multicast
tree algorithms.Future networks will no doubt integrate such
algorithmsinto basicoperationalperformancg3].

Several versionsof the QoS multicast problem have been
studied in the literature. These versions seek routing tree
cost minimization subjectto (1) end-to-enddelay (2) delay
variation,and/or(3) minimum bandwidthconstraintysee,e.g.,
[3], [13], [9]). In this paper we considerthe caseof minimum
bandwidthconstraintsthatis, the problemof finding anoptimal
multicast tree when each terminal possesses: different rate
of receving information. This problemis a generalizationof
the classicalSteinertree problem and thereforeNP-hard[5].
Formally, given a graph G = (V, E), a sources, a set of
terminalsS, andtwo functions:length : £ — RT representing
the length of eachedgeandrate : S — R* representinghe
rate of eachterminal,a multicast tree 7" is atreein G spanning
s and S. Therate of an edgee in a multicasttreeT', denoted
by rate(e, T), is the maximumrate of a downstreamterminal,
i.e., of aterminalin the connecteccomponenbf T — ¢ which
doesnot contains. The cost of a multicasttreeT' is definedas

cost(T) = Z length(e) - rate(e)

ecT

QUALITY OF SERVICE STEINER TREE PROBLEM (QOSST):
Given a network G = (V, E, length, rate) with sources € V
and set of terminals.S C V, find a minimum cost multicast
treein G.

The rest of the paperis organizedas follows. In the next



Input: A graphG = (V, E, length, rate) with a sources in V' and
a collection of terminalsS C V.

Output: A QoS Steinertree spanningthe sourceandthe terminals.
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Initialize the currenttreeto {s}.

Find a non-reachederminal¢ of highestratewith the shortestdistance
to the currenttree.

Add ¢ to the currenttreealongwith a shortestpath connectingt to the
currenttree.

Repeatuntil all terminalsare spanned.

Fig. 1. Maxemchuks Algorithm for the QoS SteinerTree Problem.
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Fig. 2. A badexamplefor Maxemchuks algorithm,with k£ = 4 rates.In the
figure,e = 1/22k—1, Therateof eachnodeis given above the node. The edge
lengthsaregiven onthe thin curved arcs,while on the solid horizontalline each
segmenthaslength 1/2¥~1 4 ¢. The optimum, of total cost1 + 2F—1¢ =
1+ 2k—1(1/22k=1) = 1 4 1/2%, usesthe solid horizontal line at rate 1.
Maxemchuks algorithmpicks the thin curved arcsat a costof 1 + (1/2)(1 —
€) +2(1/4)(1 — 2¢) + 4(1/8)(1 — 3¢e) > ((k +1)/2)(1 — 1/2F).

sectionwe give a short summaryof the algorithmsproposed
by [9], [5], and[8] andshaw thatthe approximatiorratio of the

algorithm from [9] is unboundedIn Sectionlll, we consider
an integer linear programformulation (ILP) and describetwo

heuristicshasedon the primal-dualframewvork. Thenwe prove

that a primal-dual algorithm basedon an enhancedLP has
an approximationratio of 4.311. Finally, in SectionIV we

concludewith an experimentalcomparisonof our two primal-

dual heuristicswith algorithmsfrom [9], [5].

Il. PREVIOUS WORK

A. Maxemchuk’s Approach

Maxemchuk[9] proposeda heuristicalgorithm for the QoS
Steiner Tree Problem.His algorithm is a modification of the
MST heuristicfor SteinerTrees[15] (seeFigure 1).

The extensive experimentsgivenin [9] demonstratéhat this
method works well in practice. Nevertheless,the following
example shavs that the methodmay producearbitrarily large
error (linearin the numberof rates)comparedwith the optimal
tree. Considerthe natural generalizationof the example in
Figure2 with anarbitrarynumberk of distinctrates.Its optimal
solution hasa cost of about 1, whereasMaxemchuks method
returnsa solutionof costabout(k+1)/2. As thereare2*—1 +1
nodes this costcanalsobe written as1 + 3 log, (n — 1), where
n is the numberof nodesin the graph.We concludethat the
approximatiorratio of Maxemchuksalgorithmis no betterthan
linearin the numberof ratesand no betterthanlogarithmicin
the numberof nodesin the graph.

B. The Charikar-Naor-Schieber Algorithm

The CharikarNaorSchieber algorithm [5] is the first
constant-&ctor approximation algorithm given for the QoS
Steinertree problem.In its first step,all ratesare roundedto
the closestpower of two to producethe roundedup instance
of this problem (clearly, this at most doublesthe cost of an
optimalsolution).In its secondstep,Steinertreesarecomputed
separatelyfor eachrate (within someapproximationratio «).
The union of thesetreesis the final solution.

Replace each edge of rate 2! by edges of the rate
20 21 . 2i—1 2% respectiely. In the new network, all edges
of a specificrate form a Steinertree. Sincethe optimal costin
this new network is no morethantwice the costof the rounded
up instance taking the union of all the computedSteinertrees
introducesanotherfactor of two to the approximationratio.
Thusthe final approximationfactoris 2 - a - 2 = 4a.

Using a randomization technique, Charikar Naor, and
Schieber[5] reducethe approximationratio to ea ~ 4.21,
wheree ~ 2.71 is the Euler constantand o ~ 1.55 is the
currentlybestapproximatiorratio for the SteinerTreeproblem.
The approximationfactor hasbeenfurtherimproved to 3.802
by Karpinski et al. [8].

C. Algorithms for Two or Three Rates

In practice,it is often the casethat only few distinct rates
are requestedy the terminals.This is why the QoS problem
with two or threerateshasa long history [1], [2], [10], [17].
The previously-bestresults of [10] and [17] have produced
algorithmswith approximationfactorequalto 2.667 (provided
that the MST heuristic is used to compute Steiner trees).
Karpinski et al. [8] improved this ratio to 2.414 and shoved
that it can be further improved to 1.96 if more sophisticated
time consumingSteinertree algorithmsare used.

I1l. PRIMAL-DUAL MOTIVATED ALGORITHMS

The QoSSTproblemcanbeformulatedasanintegerprogram
asfollows. Considera network G = (V, E, length, rate) with a
sourcenodes anda setof terminalnodeslLetr; < ry < --- <
r, be all rate valuesassignedto the terminals. It simplifies
notationto assumethat every node hasa rate by considering
anextraratery = 0 (assignraterg to eachnon-terminalnode).
Also, we may assumethat s hasthe highestrate. Constructa
new network G’ = (V, E’, codt, rate) by replacingeachedge
e of G with k edges(e,r1), (e, r2),...,(e, ) and setting
cost((e, 7)) = r; - length(e).

Let z(.,y be a booleanvariabledenotingwhetheredgee is
usedatrater in anoptimumtree.The QoSSteinertreeproblem
canbe formulatedas

min Y a7 length(e) (1.1)
(e,r)eE’

st Y s = 1, VCCV\({s} (1.2)
(e,’:)zerééc)

Ty € {0,1} (11.3)



whered(C') denoteghe setof edgeswith exactly oneendpoint
in C andrgs denoteshe maximumrate of a nodein C. Note
that (111.1) givesthe costof an optimal solution, while (111.2)

guaranteethateachterminalis connectedo the sourcethrough
a collection of edgesof rateno lessthanits rate.

We relax the integrality constraints(lll.3) and considerthe
dual linear program. For each (e,r), we define C*(e,r)
{C e V\{s}: (er) € 6(C),r > rc}. In words, C*(e,r)
is the setof subset<” of V'\ {s} suchthat (e, r) hasat least
one endpointin C' andr is at leastaslarge asr¢. Using this
definition, the dual is asfollows:

max > ye
C
>

CceC*(e,r)
Yo =2 0

A. The Naive Primal-Dual Method

The primal-dualframewvork appliedto network designprob-
lems usually grows uniformly the dual variablesassociatedo
the“active” component®f thecurrentforest[6]. Thisapproach
fails to take into accounthe differentratesof differentnodesin
theQoSproblem.In Figure3 we give amodification referredto
asthe “Naive Primal-Dual” algorithm. Our modificationtakes
into accountthe differentratesby varying the speedat which
eachcomponentgrows. While the simulationsin the ensuing
sectionshaow thatthisis agoodmethodin practice the solution
it produceson somegraphsmay be very large comparedo the
optimal solution, as shavn by the following example.

s.t. yo < r-length(e), V(e,r)

Input: A graphG = (V, E, length, rate) with a sources in V and
a collection of terminalsS C V.

Output: A QoS Steinertree spanningthe sourceand the terminals.

Startfrom the spanningforestof G with no edges.

Grow y with speedrc for each“active” componentC' of the current
forest. (A componentC' is inactive if it containss andall verticesof
raterc.)

Stop growing oncethe dual inequality for a pair (e, ) becomestight,
with e connectingtwo distinct componentsf the forest.

Add e to the forest, collapsingthe two components.
Terminatewhenthereis no actve componenteft.

Keepan edgeof the resultingtree at the minimum neededrate.
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Fig. 3. The Naive Primal-Dualalgorithmfor the QoS SteinerTree Problem.
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Fig. 4. The RestartingPrimal-Dualavoids the mistale of the Naive Primal-
Dual. Part (a) shavs duplicationof the edges.Part (b) shavs the components
growing alongthe respectie edges.

The Frame Example. Considerntwo nodesof rate1 connected
by an edgeof length1 (seeFigure4). Thereis an arc between
thesetwo nodesandonthis arcthereis a chainof nodesof rate

Input: A GraphG’ = (V, E, cost, rate) with sources, anda
collection of terminalssS.

Output: A QoS SteinerTree spanningthe sourceand the terminal.

M
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®
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Grow eachactive C;-, with speed-; alongincidentedges(e, r;), j <4,
picking edgeswhich becometight.

Continuethis processuntil thereis no active componenf ratery,.
Remae all edgeswhich arenot necessaryor maintainingconnectiity
of nodesof ratery.

Accept (keepin the solution) and contractall edgesof C;, (i.e., set
their length/costto 0)

Restartthe algorithmwith the nev graph

Fig.5. TheRestartingPrimal-Dualalgorithmfor the QoS SteinerTreeProble.

e. Eachtwo consecutre nodesin the chainare at a distanced
from eachother, where§ < 1. Eachextremenodein the chain
is at a distanced /2 of its neighboringrate-1node.

The Naive Primal-Dual appliedto this graph connectsthe
rate< nodesfirst, sinceg < % So, the algorithm connects
the rate-1 nodesvia the rate€ nodes,and not via the direct
edgeconnectingthem. Thus, the Naive Primal-Dualcan make

arbitrarily large errors(just take an arbitrarily long chain).

B. Restarting Primal-Dual Algorithm

An improved algorithmis givenin Figure5. Onecaneasily
seethat this is a primal-dualalgorithm. Indeed,eachaddition
of an edgeto the currentsolutionis the resultof growing dual
variables.Moreover, sincethe feasibility requirementfor edge
a is Yescyye < r - length(a), this addition preseres the
feasibility of the dual solution. The algorithmmaintainsforests
Fi given by the edgespicked at rate r;, and the connected
component®f Fi, seenassetsof vertices,aredenotedn the
algorithmby C;.,. Sucha componenis active if rC,, =Ti and
C,, is disjoint from componentf higherrate.

The RestartingPrimal-Dualavoids the mistale madeby the
Naive Primal-Dualon the frame examplein Figure4(a). Then,
at time % the rate< nodesbecomeconnected.This means
that (1 — ¢) of eachrate-1edgebetweenthe e-rate nodesis
not covered.Meanwhile, the rate-1 nodesare growing on the
respectie edgesas showvn in Figure 4(b).

Let usassumehatthe RestartingPrimal-Dualusesthe chain
of rate< nodesto connectthe two rate-1nodesinsteadof the
direct edge.This would imply that it takeslesstime to cover
the chain, i.e., 5(1 — e)n < 1 — £, wheren is the number
of rate< nodes.With ¢ small, we obtainndé < 1, soif the
RestartingPrimal-Dual usesthe chainthenit is correctto do
so.

C. Primal-Dual 4.311-Approximation Algorithm

A primal-dual constant-&ctor approximationalgorithm can
be obtainedbasedon the enhancednteger linear programming
formulation below. It takes into accountthe fact that if a set
C C V\ {s} is connectedto the sourcewith edgesof rate
r’ > r¢, thenthereshouldbe at leasttwo edgesof rater’ with



exactly one endpointin C. The integer programis

min Z T(e,ry -7 - lEngth(e)
(e,r)EE’
1
s.t. Z Z(e,r) + B Z e,y 2 1, vC CV\{s}
e€s(C) e€s(C)
r=rc r>rc

L(e,r) € {07 1}

The correspondingiual of the LP relaxationis

max > e
CCV\{s}
1
st. > oty D ve < r-lengih(e)  (Il4)
C :e€5(C) C :e€5(C)
ro=r re<r
yc = 0

The core of the algorithmis presentedn Figure 6. Before
that, we do a randombucketing of ratesfollowing [5]. Let a
be a real (to be picked later) and~ be a real picked uniformly
at randomfrom the interval [0..1]. Every node of rate r is
replaceddy anodeof ratea” 7, wherej is theintegersatisfying
aVti=l < < gt

The primal-dual part follows the classicalframewnork [6],
andworksin stagesstartingfrom the lower rateto the highest.
During the executionof the algorithm, edgesare picked at a
certain rate (in other words, z( ) is setto 1) one by one.
Before executing step 3 at rate » for the ith time, the set of
edgespicked at rate ~ by the algorithm forms a forest F;".
(An edgecan be picked at several rates,but it is keptin at
mostone suchratein the final solutionbecauseof the reverse
deletestep.)A componentC' of £/ is called an r-component
if roc =7.

Using Constraint(l11.4), it follows by induction on j that,
for anedgee andaratea”t’, we have

J i
> oy < Iength(e)aij(Zi)
a
1=0

C e€d(0)
rc<a7rti

. 2a
< length R ——
< length(e)a™ 37—

A graphG = (V, E, length, rate) with sources in V and
a collection of terminalsS C V.
Output: A QoS Steinertree spanningthe sourceand the terminal.

Input:

For eachr = rq,ra,..., L, executesteps2-6.

Startfrom the spanningforest F'” of G with no edges.

Grow y uniformly for eachr-componentC' of the currentforest F'".
Stop growing oncethe dual inequality for a pair (e, r) becomesight,
with e connectingtwo distinct componentof F'”.

Add (e, r) to F", collapsingtwo of its components.
Terminatewhenthereis no r-componenf F" left.

Traversing the list of picked edgesin reverse order remove an edge
(e,r) from FT if after (e, r)’s removal the setof edgespicked form a
feasibletree.

Fig. 6. The 4.311-approximatioralgorithmfor QoS SteinerTree.

For an edgepicked by the algorithmat rater, Constraint(111.4)
is tight and therefore

2a —2 .
+
Do ve = length(e)5 —a™. (IL5)
C e€s(C)
ro<avti

Exactly asin [6], we have that the numberof edgesof rate
r in the final solution which crossthe active r-components
at some moment (an edge being countedtwice if it crosses
two r-components)is at most twice the number of active
r-components.Using Equation (I11.5) and exactly the same
argumentasin Theorem4.2 of [6], we obtainthat the cost of
the solution of the algorithmis boundedby (2(2a — 1)/(2a —
2))> ye < ((2a—1)/(a —1))opt, as ary feasible solution
for the dual linear programhasvalue at mostthe value of ary
feasiblesolution of the primal.

The sameargumentasin [5] shavs that the approximation
ratio of the algorithm above is (2¢ — 1)/Ina. Numerically
picking the bestvaluefor a, we obtain:

Theorem 3.1: The outputcostof the algorithm on Figure
6 is at most4.311 timesthe optimum cost.

1V. EXPERIMENTAL STUDY

All algorithmsexcept the very recent4.311-approximation
Primal-Dual were implementedin C++. The heuristicswere
compiledusinggpp with - O2 optimization,andrun on a Sun
workstation Ultra-60. The experimentswere run on random
testcasegeneratedising GT-ITM generato{7] which is used
for modellinginternetnetworks[4]. Tablel givesa comparison
of the performanceof of the aforementionedilgorithms.The
experimentswere conductedin the presenceof no Steiner
nodes,respectiely 50% Steinernodes.Moreover, both arith-
metic and geometricdistributions of rateswere tested.

Table | gives the results of a multitude of experiments;
however, the resultsare fairly uniform throughout.It can be
obsened that the Naive Primal-Dual and the CharikarNaor
Schieberalgorithms most often produce comparableresults
which are slight improvementsover the results producedby
Maxemchuks algorithm. The RestartingPrimal-Dualtypically
producesthe bestresult, which is typically 0.25 — 6 percent
betterthantheresultproducedoy Maxemchuksalgorithm;this,
however, occursat the expenseof greaterCPU time. It can
also be obsened that the difference betweenthe algorithms
increasesas the number of ratesincreasesFigures?7 and 8
illustrate theseresultsin graphicalform.

V. CONCLUSIONS

In this paperwe have proposednew primal-dual heuris-
tics and approximationalgorithms for the QoS Steiner Tree
problem. One limitation of the QoSST formulation is the
assumptionthat eachlink in the network is able to support
the maximum possible terminal rate. A more sophisticated
version of the problem would include a maximum possible
rate function maxrate : £ — R+, thustaking into accountthe
differenttypesof links existing in real networks. Furthermore,
in practicemaximum/link rateswould vary dynamicallyas a
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