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Abstract

Broadcasting is a fundamental operation which is frequent in wireless ad hoc networks. A simple broadcasting

mechanism, known asflooding, is to let every node retransmit the message to all its 1-hop neighbors when receiving

the first copy of the message. Despite its simplicity, flooding is very inefficient and can result in high redundancy,

contention, and collision. One approach to reducing the redundancy is to let each node forward the message only to a

small subset of 1-hop neighbors that cover all of the node’s 2-hop neighbors. In this paper we propose two practical

heuristics for selecting the minimum number of forwarding neighbors: anO(n log n) time algorithm that selects at

most 6 times more forwarding neighbors than the optimum, and anO(n log2 n) time algorithm with an improved

approximation ratio of 3, wheren is the number of 1- and 2-hop neighbors. The best previously known algorithm,

due to Bronnimann and Goodrich [2], guaranteesO(1) approximation inO(n3 log n) time.

Keywords: wireless ad hoc networks, broadcast, approximation algorithms, unit-disk graphs, disk cover.

1 Introduction

Wireless ad hoc networks can be flexibly and quickly deployed for many applications such as automated battlefield,

search and rescue, and disaster relief. Unlike wired networks or cellular networks, no wired backbone infrastructure

is installed in wireless ad hoc networks. A communication session is achieved either through a single-hop radio

transmission if the communication parties are close enough, or through relaying by intermediate nodes otherwise. In

this paper, we assume that all nodes in a wireless ad hoc network are distributed in a two-dimensional plane and have

an equal maximum transmission range of one unit.
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Broadcasting is a fundamental networking operation in wireless ad hoc networks. It is widely and frequently

performed in many networking tasks such as paging a particular host, sending an alarm signal, and finding a route to

a particular host [1][9][17]. A simple broadcasting mechanism, known asflooding, is to let every node retransmit the

message to all its 1-hop neighbors when receiving the first copy of the message. Despite its simplicity, flooding has

a serious drawback, known as thebroadcast storm[16]. First, because the radio propagation is omnidirectional and

a physical location may be covered by the transmission ranges of several nodes, many retransmissions are redundant.

Second, heavy contention could exist because retransmitting nodes are probably close to each other. Third, collisions

are more likely to occur because the RTS/CTS dialogue is inapplicable and the timing of retransmissions is highly

correlated.

The following simple technique was recently exploited in [13] (see also [12]) and [19] to reduce redundant re-

transmissions: By virtue of beaconing, each node maintains a local topology of its 2-hop neighborhood, and relays the

message only to a small subset of 1-hop neighbors which cover (in terms of radio range) all nodes that are two hops

away. The subset of 1-hop neighbors selected by each node is referred to asforwarding set[19] or multipoint relaying

set[12][13]. In this paper we consider the problem of finding a forwarding set of minimum size.

Minimum Forwarding Set Problem: Given a sourceA, letD andP be the sets of 1- and 2-hop neighbors ofA. Find

a minimum-size subsetF of D such that every node inP is within the coverage area of at least one node fromF .
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Figure 1: An instance for which the size of the solution computed by the greedy algorithm,fg1; : : : ; glog kg, is larger

than the optimum solution,fopt1; opt2g, by a logarithmic factor.
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1.1 Previous work

Laouiti et al. [13] (see also Jacquet et al. [12]) and Sinha et al. [19] considered the Minimum Forwarding Set problem

assuming no knowledge of the geographic location of the nodes. In this case, the Minimum Forwarding Set problem

is essentially the well-studied Set Cover problem. Not surprisingly, the heuristic proposed in [13] is a translation of

Chvátal’s greedy algorithm [4] for Set Cover, and thus guarantees an approximation factor ofO(logm), wherem is

the maximum neighborhood size. The greedy algorithm iteratively selects a 1-hop neighbor covering the maximum

number of 2-hop neighbors not yet covered, and terminates when all 2-hop neighbors have been covered. The greedy

algorithm does not take into account the geometric properties of the Minimum Forwarding Set problem, and in fact

Figure 1 shows a family of instances for which the size of the solution found by the greedy algorithm is larger than

the optimum by a logarithmic factor.

Under the assumption that the nodes in the wireless network are distributed in a two-dimensional plane and each

node has unit transmission range, the topology of the network is modeled as aunit-disk graph[5]. In this graph, there

is an edge between two nodes if and only if their distance is at most one. The Minimum Forwarding Set problem for

a given source nodes asks for a minimum size set of 1-hop neighbors ofs dominating2-hop neighbors ofs in the

unit-disk graph. The related Dominating Set problem in unit-disk graphs [5] asks for a subset of nodes dominating

(i.e., adjacent to) all the other nodes. The Dominating Set problem in unit-disk graphs is NP-hard [5] but admits a

PTAS [11]. The Minimum Forwarding Set problem does not reduce to the Dominating Set problem in unit-disk graphs

since dominators are restricted to the set of 1-hop neighbors.

The Minimum Forwarding Set problem is also related to the Unit-Disk Cover problem [10], which asks for the

minimum number of unit disks covering a given set of points in the plane. The Unit-Disk Cover problem is also

NP-hard [5] and admits a PTAS [10]. Since in the Unit-Disk Cover problem disk centers can be chosen arbitrarily in

the plane, the algorithms for this problem do not apply to the Minimum Forwarding Set problem where disks must be

centered at 1-hop neighbors only.

The Minimum Forwarding Set problem is a special case of the NP-Hard Disk Cover problem [2], which asks for a

minimum size subset of a given set of disks covering a given set of points. The complexity of Minimum Forwarding Set

problems is not known. A constant-ratio approximation algorithm for Disk Cover, and therefore also for Minimum

Forwarding Set, was given by Bronnimann and Goodrich [2] However, their algorithm – which is a special case

of a sophisticated algorithm for spaces with bounded VC-dimension – has impractical running-time and its proven

approximation ratio is a very large constant.
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1.2 Our contributions

� An exactO(n log2 n) time, and a 2-approximationO(n logn) time algorithm for the special case of the Min-

imum Forwarding Set problem when all 2-hop neighbors are in the same quadrant with respect to the source

node.

� A 6-approximation algorithm for the Minimum Forwarding Set problem running inO(n logn) time, wheren is

the total number of 1- and 2-hop neighbors.

� A 3-approximation algorithm for the Minimum Forwarding Set problem running inO(n log2 n) time.

� A constant-factor approximation for the Disk Cover problem with disks of the same radius, based on rounding

the optimal solution of a linear programming relaxation.

A preliminary version of this paper [3] presents the same results, except that the exact algorithm for the quadrant

case and the 3-approximation algorithm given in [3] run inO(n2) time.

The paper is organized as follows. In next section we reformulate the Minimum Forwarding Set problem in

geometric terms, give a high-level algorithm based on decomposition into quadrants, and establish basic geometric

properties of the partitioned sets of 1- and 2-hop neighbors. The next three sections deal with covering 2-hop neighbors

in a quadrant: we first describe anO(n log n) 2-approximation algorithm (Section 3), then we give anO(n2) exact

algorithm (Section 4) and finally describe details of data structures needed to obtain theO(n log2 n) implementation

of the exact algorithm (Section 5). In Section 6 we give an extension of our techniques to the Disk Cover problem of

[2], and conclude in Section 7.

2 Partition based algorithm

Throughout this paper aunit disk, or justdiskfor short, refers to a closed disk of radius 1. The boundary of a regionR

of the Euclidean plane is denoted by@R, e.g., the boundary circle of a diskD is denoted by@D. Under the assumption

that each network node has unit transmission range, we reformulate the Minimum Forwarding Set problem as follows.

1-Hop Disk Cover Problem: Given a unit-diskA, a setD of unit disks centered insideA, and a set of pointsP

outsideA such thatP � [fD 2 Dg, find a minimum-size subsetF of D such thatP � [fD 2 Fg.

Our high-level algorithm (Algorithm 1) partitions the points ofP according to the four quadrants defined by two

orthogonal lines through the center ofA, and then independently solves the 1-Hop Disk Cover problem for each

quadrant. The union of these four disk covers is then a disk cover for all the points inP . As usual, the approximation

ratio of an algorithmA for a minimization problem� is the supremum, over all instances of�, of the ratio between
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Algorithm 1: 1-Hop Disk Cover

Input: Unit-disk A, set of unit disks D centered inside A, set of points P outside A such that P � [fD 2 Dg

Output: Subset F � D such that P � [fD 2 Fg

1. Partition the exterior of A into four quadrants Q1–Q4 by two orthogonal lines, not containing points in P, through

the center of A (see Figure 2).

2. For q = 1; : : : ; 4, compute a disk cover, Fq , for the points in P \Qq.

3. Output F = F1 [ F2 [ F3 [ F4.

the output value ofA and the optimal value. The following theorem relates the approximation ratio of Algorithm 1 to

the approximation ratio that can be guaranteed for the 1-Hop Disk Cover restricted to points in a single quadrant.

Theorem 1 If disk coversFq computed in Step 2 are within a factor of� of optimum, then Algorithm 1 has an

approximation ratio of at most3� for the 1-Hop Disk Cover problem.

Proof. Let OPTbe the optimal set of disks, and denote byOPTq, q = 1; 2; 3; 4, the subset of disks inOPThaving

centers in theqth sector of diskA. The key observation is that points in quadrantQq cannot be covered by disks in

OPT
q+2(mod 4). Therefore, points inP \ Q1 must be covered by disks inOPT4 [ OPT1 [ OPT2, and thus, by the

assumption thatFq ’s are within a factor of� of the respective optimum solutions,

jF1j � �(jOPT4j+ jOPT1j+ jOPT2j):

Similarly,

jF2j � �(jOPT1j+ jOPT2j+ jOPT3j);

jF3j � �(jOPT2j+ jOPT3j+ jOPT4j);

jF4j � �(jOPT3j+ jOPT4j+ jOPT1j):

Thus, the output of the algorithm has size

jF1j+ jF2j+ jF3j+ jF4j

� 3�(jOPT1j+ jOPT2j+ jOPT3j+ jOPT4j)

= 3�jOPTj:
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Figure 2: The four quadrants in Algorithm 1.

We will show that� = 2 can be achieved inO(n logn) time (see Section 3), and� = 1 can be achieved

in O(n log2 n) time (see Section 4). Hence, Algorithm 1 achieves an approximation factor of 6, respectively 3,

within the same time bounds. It is natural to ask if these approximation ratios can be improved by partitioning

the set of points according tok < 4 equal sectors defined by half-lines starting at the center ofA. The proof of

Theorem 1 can be generalized to show that partitioning intok sectors gives an approximation ratio of(dk=2e+ 1)�

for the 1-Hop Disk Cover problem if the disk cover for each sector is approximated within a factor of�. Thus, using

decomposition into 3 equal sectors does not lead to an approximation ratio better than that obtained by decomposition

into quadrants. Improvements using decomposition into 2 equal sectors are possible provided that we can find an

algorithm for covering the points in a180Æ sector with an approximation ratio of less than3=2. The ideas used in

Section 4 to solve exactly the problem for a quadrant do not extend to180Æ sectors, since these lack the second of the

essential topological properties established for the quadrants in the following lemma.

Lemma 2 LetQ be an exterior quadrant ofA, J = @Q be its border, andD be a set of disks intersecting the interior

ofQ. Then:

(a) For any diskD 2 D, j@D \ J j = 2.

(b) For any two disksD;D0 2 D, j@D \ @D0 \Qj � 1.

(c) No two disks inD are tangent inQ.

Proof. Without loss of generality, we may assume that the unit-diskA is centered at the origin and thatQ is defined by

the positivex- andy-axes. Then, the boundary of quadrantQ, J , consists of the two half-lines from(0; 1) to (0;1),

and from(1; 0) to (1;1), together with a quarter-circle of@A. Leta, b, c be the points with coordinates(0; 0), (1; 0),

6



c

a

d

m

b h

Figure 3: The extreme configuration in the proof of Lemma 2(b).

and(0; 1), respectively. We will use
_
bc to denote the quarter-circle ofA enclosed inJ .

(a) Since everyD 2 D has non-empty intersection with the interior ofQ, every circle@D has at least two intersection

points withJ . The closed simple Jordan curve@D and the infinite simple Jordan curveJ must intersect an even

number of times (unless they are tangent, but this cannot happen), and thus cannot intersect three times. To complete

the proof of part(a) we need to show that@D does not intersectJ four or more times.

Let d denote the center of diskD. Then0 < jdaj � 1, sinced is insideA. Note that@D can intersect thex-axis

in at most two points, of which only one can havex-coordinate bigger than 1. Similarly,D can intersect they-axis

in at most two points, of which only one can havey-coordinate bigger than 1. Furthermore,D intersects
_
bc at most

once. Indeed, when two unit-circles with centers within distance of at most 1 intersect, the two intersection points are

at least2�=3 apart on each of the circles, and hence a quarter-circle may contain only one of them.

(b) Assume, for a contradiction, thatD andD0 are two distinct disks inD that intersect at pointsh andl, with bothh

andl inQ[J . Letd andd0 be the centers ofD andD0, respectively. We will change the configuration a bit, to obtain a

more extreme case. First, translated, d0, h, andl to the right untild or d0 hits
_
bc, and assume, by symmetry, thatd is on

_
bc . We still haveh; l 2 R[ J . Assume also thath is to the right ofl. Now start rotating the rhombushd0ld clockwise

aroundd until h hits either thex-axis or
_
bc, whichever happens first (see Figure 3). This procedure also keepsd0 inside

the unit-diskA andl in Q. Letm be the point where the linehd intersects they-axis. Asjd0hj = jdhj = 1, d0 must lie

on the same side of linehm asa. As the angledham � �
2
, m must be within the diameter of the unit-disk centered at

d that containsh. Thereforejdmj � 1. Thusl, which is inQ, must be outside the triangleahm, and consequentlyd0

must be on the other side of linehm thana, which is a contradiction.

(c) Let D andD0 be two disks fromD. Then@D and@D0 cannot be tangent from the interior since they have the

same radius. If@D and@D are tangent from the exterior, then the distance between their centers is 2, and the common
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Figure 4: The skyline of a set of disks in a quadrant.

point can only be the origina, which is not inQ.

3 Fast geometric disk covering in a quadrant

In this section we give a fast 2-approximation algorithm for the 1-Hop Disk Cover problem with all points ofP coming

from an exterior quadrantQ of the unit diskA.

The skylineS = (x0; x1; : : : ; xk) of D is the upper envelope ofQ \ ([fD 2 Dg [ A) (see Figure 4). The

skyline consists of arcs
_
xi�1xi on the border of disksDi 2 D [ fAg, i = 1; : : : ; k, such thatx0 2 @Q \ @D1,

xi 2 @Di�1 \ @Di (i = 1; : : : ; k � 1), andxk 2 @Dk \ @Q. The algorithm (Algorithm 2) starts by computing the

skylineS with xi’s numbered in counter-clockwise order, i.e., with polar coordinates(�i; ri) of pointsxi satisfying

�0 � �1 � �2 � � � � � �k. As established in Lemma 8 below, the skyline disksDi covering a pointp 2 P form

an interval in the sequenceD1; : : : ; Dk. The algorithm computes these intervals for each point ofP , then outputs

a minimum size setF of skyline diskshitting all intervals, i.e., containing at least one diskDi from each interval.

Computing the minimum size hitting set (Step 3) is done using a simple greedy algorithm, similar, e.g., to the algorithm

in [18] for finding a minimum weight dominating set in an interval graph given. Clearly, the hitting setF computed

by Algorithm 2 is a disk cover for the points inP . Furthermore, we have:

Theorem 3 Algorithm 2 runs inO(n log n) time, and has an approximation ratio of 2 for the 1-Hop Disk Cover

problem in a quadrant.

Theorems 1 and 3 immediately give:
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Algorithm 2: Geometric 1-Hop Disk Covering in a quadrant

Input: Unit-disk A, set of unit disks D centered inside A, set of points P in the exterior quadrant Q of A such that

P � [fD 2 Dg

Output: A subset F � D such that P � [fD 2 Fg

1. Find the skyline S = (x0; x1; x2; : : : ; xk) of D, where the polar coordinates of xi are (�i; ri) and �0 � �1 � �2 �

� � � � �k. Let Di be the disk containing arc
_
xi�1xi.

2. For each p 2 P with polar coordinates (�; r), find the interval [Dfirst(p); Dlast(p)] of skyline disks Di that cover p,

via three binary searches:

(a) find i 2 f1; : : : ; kg, such that � 2 [�i�1; �i]

(b) first(p) minfj : 1 � j � i; p 2 Djg

(c) last(p) maxfj : i � j � k; p 2 Djg

3. Find the minimum set F of skyline disks hitting each interval [Dfirst(p); Dlast(p)], p 2 P, using the following

Interval Hitting Algorithm:

(a) Sort the set of all intervals I = f[Dfirst(p); Dlast(p)]; p 2 Pg in ascending order of their right end, Dlast(p)

(b) F  ;

(c) While I 6= ; do

Add to F the right end disk Dlast(p) of the first interval

Remove from I all intervals hit by Dlast(p)

4. Output F

Corollary 4 Combined with Algorithm 2, Algorithm 1 runs inO(n logn) time and has an approximation ratio of 6

for the Minimum Forwarding Set problem.

The rest of the section is devoted to the proof of Theorem 3.

Lemma 5 A pointq 2 Q belongs to a diskD 2 D if and only if the half-lineL from the centera ofA through a point

q intersects@D \Q at a pointq0 such thatq belongs to the segment[a; q0].

Proof. Every diskD 2 D containsa. Thus, the segment[a; q0] is fully contained inD, and every point ofL outside

this segment is in the exterior ofD.

Lemma 6 If point p 2 P has polar coordinates(�; r) such that� 2 [�i�1; �i], thenp 2 Di.
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Figure 5: The skyline offD1; D2; D3g in Lemma 7.

Proof. Follows immediately from Lemma 5.

Lemma 7 LetD1; D2; D3 be three disks ofD appearing in this order in the skyline offD1; D2; D3g. ThenD1 \

D3 \Q � D2 \Q.

Proof. Assume thatD1 \ D3 \ Q 6= ;, and letS0 = (y0; y1; y2; y3) be the skyline offD1; D2; D3g (see Figure 5).

Sincey1 = @D1 \ @D2 \Q, y2 = @D2 \ @D3 \Q, andy1; y2 =2 D1 \D3, Lemma 2(b) implies that@D2 \ @(D1 \

D3 \Q) = ;.

To complete the proof, it suffices to show thatD2 contains some point ofD1 \D3 \Q. Letx = @D1 \ @D3 \Q,

and letL be the half-line froma throughx. Sincea 2 D1, L intersects@D1 exactly once, atx. Thus,L does not

intersect the arc
_
y0y1 of the skyline. Similarly,L does not intersect

_
y2y3. It follows thatL intersects

_
y1y2, and, by

Lemma 5,x 2 D2.

The following is a straightforward corollary of Lemma 7:

Lemma 8 For everyp 2 P , the skyline disksDi coveringp form an interval[Dfirst(p); Dlast(p)] in the sequence

D1; : : : ; Dk.

Lemma 9 The optimum cover ofP with disks from the setfD1; : : : ; Dkg of skyline disks contains at most 2 times

more disks than the optimum cover ofP with disks fromD.

Proof. It suffices to prove that, for everyD 2 D, D \Q is covered by at most two skyline disks. Furthermore, since

Lemma 5 implies that any set of disks covering@D \ Q fully coversD \ Q, we only need to show that@D \ Q is

covered by at most two skyline disks.
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Let d1 andd2 be the two points of intersection of@D with the boundary of the central diskA. By Lemma 2(b),

any skyline diskDi intersectingD \ Q contains at least one of the pointsd1 andd2. The key observation is that, for

any two skyline disksDi andDj both containingd1 (or both containingd2), the arc@D\@Di \Q is contained in the

arc@D \ @Dj \Q or vice versa. Therefore the minimal set of skyline disks covering@D \Q has at most two disks.

Proof of Theorem 3.The approximation ratio of Algorithm 2 follows from Lemma 9. Step 1 of the algorithm can be

implemented inO(n log n) time using, e.g., an adaptation of the divide-and-conquer algorithm in [15] for computing

the Manhattan skyline. The binary searches in Step 2 also takeO(n logn) time.

Finally, the Interval Hitting Algorithm can be implemented inO(n logn). Indeed, an interval is hit by the disk

Dlast(p) if its left covering disk is beforeDlast(p) in the skylineS. Therefore, by traversing all intervals sorted in

ascending order of their left endsDfirst(p), we can delete each hit interval in constant time per interval.

Remark. The approximation ratio of 2 in Theorem 3 is tight: Figure 6 gives an instance when the optimum disk cover

consisting of skyline disks has size 2, while there is a single (non-skyline) disk covering the two points ofP .

4 Exact combinatorial disk covering in a quadrant

In this section we present anO(n2) exact algorithm for the 1-Hop Disk Cover problem with all points ofP coming

from an exterior quadrantQ of the unit diskA. In the next section we describe a fasterO(n log2 n) implementation

of this algorithm based on efficient data structures. In [3], a differentO(n2) algorithm is presented for the 1-Hop Disk

Cover problem with all points ofP coming fromQ. That algorithm is somehow easier to implement, but has a more

involved correctness proof. Furthermore, the algorithm in [3] does not appear to have an implementation faster than
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O(n2).

The new exact algorithm (see Algorithm 3) starts by sorting and renumbering all disksDi with respect to the

intersection points of@Di with @Q (Step 1). The first and the last disk in this order covering each point are determined.

Finally, a modified version of the Interval Hitting Algorithm (see Step 3 of Algorithm 2 ) finds the minimum disk cover.

Algorithm 3: Combinatorial 1-Hop Disk Covering in a quadrant

Input: Unit-disk A, set of unit disks D centered inside A, set of points P in the exterior quadrant Q of A such that

P � [fD 2 Dg

Output: Minimum size subset F � D such that P � [fD 2 Fg

1. For each Di 2 D find li and ri, the two points of intersection between the boundaries @Di with @Q. We assume

that lj < rj in a fixed orientation of @Q. Renumber the disks in D such that either li < li+1 or li = li+1 and

ri < ri+1 for every i = 1; : : : ;m� 1. Further, D < D
0 denotes that the disk D has smaller index than the disk D0

2. For every point p 2 P, compute D
p
f and D

p
q , the first and last disks containing p.

3. Set �P  P and F  ;

4. While �P 6= ;

a) Find p 2 �P with the minimum last disk D = D
p
q

b) While there exists p0 2 �P with D
p0

f < D and p
0 62 D

Replace D by the the last disk before D containing p

c) Set F  F [ fDg

d) Remove from �P all the points p0 with D
p0

f � D

5. Output F

We start the proof of correctness of the Algorithm 3 with the following definition and a crucial topological lemma.

For i < j < s, we say that disksDi andDs supercoverdisk Dj if there is a pointp in P such thatp 62 Dj and

p 2 Di \Ds.

Lemma 10 There is an optimum solution which uses no supercovered disk.

Proof. Assume, for a contradiction, thatOPT is an optimum solution such that the area of[
D2OPT(Q \ D) is

maximum, and that there is a diskDj 2 OPTwhich is supercovered, by sayDi andDs, wherei < j < s. This means

that there is a pointp 2 P\Di\Ds which is not inDj . There is a diskDk 2 OPTsuch thatp 2 Dk. In the following

we consider only the case whenk > j, the other case being symmetric.
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Figure 7: The existence of a nonempty region inQ \ ((Di [Dk) nDj) implies that(Dj \Q) � (Di \Dk).

Lemma 2 implies that(Dj \Q) � (Di [Dk). See Figure 7 for an illustration.

Consider the walk on@Di starting fromli towardsri. Let p1 be the last point in this walk (p1 might not be inP)

which is inside a diskDg with g < i andDg 2 OPT. Let p2 be the first point in this walk (p2 might not be inP)

which is inside a diskDr with i < r andDr 2 OPT. We have two cases.

If p1 comes beforep2 on the walk on@Di, thenOPTn fDjg [ fDig is a solution of the same size asOPT, but of

bigger total area, as it includes the arc of@Di in betweenp1 andp2. This contradicts the assumption thatOPT is an

optimum solution with maximum area.

Now assumep2 comes no later thanp1 on the walk on@Di. Let Dg < Di andDr > Di be the disks inOPT

such thatp1 = @Di \ @Dg andp2 = @Di \ @Dr. The fact that there is a point in(Q \Di \Dk) nDj and Lemma

2 imply that@Di \ @Dk comes before@Di \ @Dj on the walk, and thereforer 6= j. As @Di \ @Dr comes no later

than@Di \ @Dg, Lemma 2 implies that(Di \Q) � (Dg [Dr). Then(Dj \ Q) � (Dg [Dr [Dk), implying that

OPTn fDjg is a solution. This contradicts the fact thatOPT is an optimum solution, and completes the proof.

From now on, we assume thatOPT is a fixed optimum solution which contains no supercovered disk.

Based on the previous lemma, anO(n4) exact algorithm for disk cover is immediate: eliminate all the supercovered

disks. After that, for every pointp 2 P , the set of disks which coverp forms an interval. Then the Interval Hitting

Algorithm finds the optimum solution.

To prove that the runtime of the Algorithm 3 isO(n2) we need to show that the total time spent in the innerwhile

loop (Step 4.b) isO(n). This fact follows from the following lemma.

Lemma 11 A disk cannot appear asD inside the innerwhile loop (Step 4.b) for two different points.

Proof. Assume, for a contradiction, that two points,p1 andp2, selected in this order in Step 4.a, use theD in Step
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4.b. Sincep2 is not removed from�P while processingp1, we haveDp1
f < Dp2

f . There is a disk�D which is not

supercovered and containsp2. We have�D � D, since otherwise�D would be selected byp2 in Step 4.c, andD would

not be processed byp2. ThusDp1
f < Dp2

f � �D � D � Dp1
q , and since�D is not supercovered, we deduce that�D

containsp1.

Let D1 be the disk selected in Step 4.c while processingp1. We cannot haveD1 < �D, since otherwise, while

processingp1, �D would have been considered asD0 beforeD1, and since�D is not supercovered,�D would be selected

by p1 in Step 4.c. So we haveDp2
f � �D � D1 � D � Dp2

q . AsD1 is selected while processingp1, the check in theif

statement ensures thatD1 containsp2. Sop2 is eliminated from�P in Step 4.d while processingp1, a contradiction.

Lemma 12 The runtime of Algorithm 3 isO(n2).

Proof. Using straightforwardfor loops, every inner step, except for the innerwhile loop (Step 4.b), of the algorithm

takes timeO(n). The replacement of a disk by a previous disk (inside the innerwhile loop) takes timeO(n) for a

given pointp. Checking the condition in the innerwhile loop (Step 4.b) takesO(n) time, and Lemma 11 ensures that

such a check is done at most once per disk.

Before proving the correctness of Algorithm 3, we give the intuition which motivates its steps.�P is the current set

of uncovered points. In each iteration of the outerwhile loop in Step 4, as in the Interval Hitting Algorithm, we pick

the point with the first last-covering disk. Then we select a disk which includes this point, as close as possible to the

last-covering disk (in order to include a larger number of points) subject to excluding supercovered disks. Note that

the innerwhile loop in Step 4.b simply jumps over disks which are supercovered.

Theorem 13 Algorithm 3 gives an optimal solution for the 1-hop Disk Cover problem in a quadrant.

Proof. First we show that every point is covered. We look at the current situation at the beginning of each execution

of the outerwhile loop in Step 4. By the time Step 4.b (the innerwhile loop) is finished,p is removed from�P. Indeed,

in OPT, there is a diskDp
opt which is not supercovered and which coversp, andDp

f � Dp
opt � Dp

q . Every disk ignored

by the algorithm in Step 4.b is supercovered, since by the choice ofp in Step 4.a, we haveDp0

f � D0 � Dp
q � Dp0

q .

Therefore the innerwhile loop will stop atDp
opt, if not earlier.

To prove optimality, letp1; p2; : : : ; ps be the set of points selected by the algorithm in Step 4.a. We claim that no

diskD ofOPT can includepi andpj , wherei < j. LetDi be the disk selected to coverpi in Step 4.c. Note that while

processingpi, the algorithm cannot ignoreD in Step 4.b, asD is not supercovered, and thereforeD � Di. Assuming

by contradiction thatD containspj , we obtain thatDpj
f � D. But thenDpj

f � Di, andpj should have been removed

from �P in Step 4.d.
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It follows thatjOPT j � s, and the theorem follows from the fact that the algorithm also selectss disks.

Theorems 1, 13, and Lemma 12 imply:

Theorem 14 Combined with Algorithm 3, Algorithm 1 runs inO(n2) time and has an approximation ratio of 3 for

the Minimum Forwarding Set problem.

5 An O(n log2 n) implementation of the combinatorial disk covering algo-

rithm

In this section we describe an enhanced data structure based on Voronoi diagrams which allows to implement Algo-

rithm 3 in timeO(n log2 n)

Step 1 can obviously be executed inO(n logn). Next we describe the data structure which we use for Step

2. Construct a balanced binary search treeT , with the centers of the individual disks as leaves, in the sorted order

obtained in Step 1. For a nodev 2 T , denote byAv the set of the centers in the subtree rooted atv. For every node

v in T , construct the Voronoi diagram ofAv , and preprocess the diagram for membership queries. A membership

query returns, for a give pointp, the face of the Voronoi diagram wherep lies. The preprocessing time for constructing

the Voronoi diagrams isO(n logn) per level inT (see, for example, Chapter 20.2 of [8]), for a total ofO(n log2 n).

The space requirement isO(n) per level ofT , for a total ofO(n logn). Preprocessing a nodev for membership

queries also takes timeO(jAv j log jAv j) and spaceO(jAv j), and a query can be answered in timeO(log jAv j) (see,

for example, Chapter 30.3 of [8]). The total time isO(n log2 n), and the total space isO(n logn).

With this data structure, given any nodev in T , and a pointp, one can find whether a disk in the subtree rooted

at v coversp in timeO(log n), by finding out in which cell of the Voronoi diagram ofAv p lies, and computing the

distance fromp to the center of that cell. Using this observation, a binary search inT can find for a pointp the disks

Dp
f andDp

q in timeO(log2 n).

Before proceeding to Step 3, in timeO(n logn), sort the points ofP with respect toDp
f and put them in a list

L1. To represent�P , we only use the position inL1 of the first point of �P ; this is enough since the points removed

from �P in Step 4.d are consecutive inL1, and include the first uncovered point ofL1. This representation allows the

implementation of Step 4.d in total timeO(n): to remove points from�P, simply move forward inL1, checking at

every step ifDp0

f � D.

Also, in timeO(n logn), sort the points ofP with respect toDp
q and put them in a separate listL2. This allows us

to implement Step 4.a to run in total timeO(n), by keeping track of where pointp is inL2, and moving only forward

in L2, ignoring the points which are not in the current�P.
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In the following, we describe how to use the data structureT to implement onereplacestatement inside the inner

while loop (Step 4.b) in timeO(log2 n). Start at the leaf ofT which has the center ofD. Let v be the current node

andp(v) be its parent inT . If v is a left child, then replacev by its parent, and repeat. Assume now thatv is a right

child, and letv0 be its sibling. In timeO(log n), we can check whether there is a center inAv0 whose disk includesp.

If yes, starting fromv0, find the last center inAv0 whose disk coversp (this is the same binary search procedure used

to computeDp
q ). If no, then replacev by its parent, and repeat. Theorem 13 implies that there always exists a disk

beforeD which containsp, and thus the above procedure is correct.

The condition of thewhile loop in Step 4.b is checked by using a data structureT 0 which we describe below.

T 0 is a balanced binary tree, whose leaves are the points ofP , sorted as inL1 (the smallerDf is first). For a node

v 2 T , denote byA0v the set of points in the subtree rooted atv. For every nodev in T , construct the furthest-

site Voronoi diagram ofA0v , and preprocess the diagram for membership queries. A cell of the furthest-site Voronoi

diagram contains points which have the same furthest site inA0v . The furthest-site Voronoi diagram can be constructed

in O(jA0v j log jA
0
v j) and usesO(jA0v j) space (see, for example, Chapter 20.3 in [8], and with the same time and

space bounds, it can be preprocessed for membership queries (Chapter 30.3 of [8]). The total preprocessing time is

O(n log2 n) and the total space isO(n logn). Given the center of a diskD, and a nodev 2 T 0, finding if all the points

of A0v are contained inD can be done in timeO(logn) by a membership query in the furthest-site Voronoi diagram of

A0v .

Now we describe how exactly to check if there is a pointp0 2 �P with Dp0

f < D andp0 62 D. GivenD, the set

of points of �P with Dp0

f < D are consecutive inL1. We denote byp1 andp2 the first, respectively last such point.

Note thatp1 is the first point in the remaining part ofL1, and thatp2 can be found by binary search inO(logn) time.

Checking the condition forp1 andp2 takes constant time. InO(logn) we can also locatep1 andp2 in the leavesv1

andv2 of T 0 (by binary search), and find the least common ancestorv of v1 andv2 in T 0. Letv0 bev1, andp(v0) be its

parent inT 0. As long asp(v0) 6= v, do the following: ifv0 is a left child, and ifv00 is its sibling, check ifD contains

A0v00 . Then letv0 bep(v0).

Similarly, letv0 bev2. As long asp(v0) 6= v, do the following: ifv0 is a right child, and ifv00 is its sibling, check if

D containsA0v00 . Then letv0 bep(v0). If any of the checks above fails, then there is a pointp0 2 �P with with Dp0

f < D

andp0 62 D; otherwise there is no such point. The total time for one diskD isO(log2 n), as there are at most2 logn

queries of the type: check whether all the points ofA0v are contained inD.

Finally, Lemma 11 implies that each diskD will need at most once such processing. Thus Step 4.b takes

O(n log2 n) time overall. Based on the discussion above, we have:

Theorem 15 Algorithm 3 can be implemented to run in timeO(n log2 n).
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6 The general minimum disk cover problem

In this section we describe a constant-factor approximation algorithm for the following

Minimum Disk Cover Problem. Given a set of unit disksD and a set of pointsP in the Euclidean plane, find a

minimum-size subsetF � D, such thatP � [fD 2 Fg.

This problem is NP-Hard since it contains as a special case Dominating Set in unit-disk graphs, a problem shown

to be NP-Hard in [5]. A polynomial-time algorithm with constant approximation ratio for Minimum Disk Cover was

first provided by [2].

If we can obtain a constant ratio for covering an unit-side equilateral triangle, we can obtain a constant ratio for

the whole plane, by tiling the plane into triangles and separately covering all the triangles, and using the fact that one

disk in the optimum can only cover points in a constant number of triangles.

LetABC be such a triangle. If no point ofP is in the triangle, there is nothing to be done. Also, if there is a disk

D 2 D whose center is in the triangle, thenD covers all the triangle. So, in the following, we assume all the points

are in the triangle, and all the centers of disks inD are outside the triangle.

The algorithm has four phases:

1. After removing those disks that do not intersect the triangle, partition the remaining disks into three setsD1,D2,

andD3, such that all the centers of the disks inD1 are on the other side of the lineAB thanC, all the centers

of the disks inD2 are on the other side of the lineBC thanA, and all the centers of the disks inD3 are on the

other side of the lineAC thanB. If a disk could be put in more than oneDi, pick one arbitrarily.

2. Fori = 1; 2; 3, let Qi be the triangleABC and letJi be a line which separates the centers of the disks ofDi

from the interior of the triangle. Find the skyline as in Section 3, and computeFi, the set of disks containing

some arc of the skyline.

3. Write the natural Integer Programming formulation involving only the disks inF1 [ F2 [F3. Solve the Linear

Programming relaxation.

4. Round the linear programming optimum to an integer solution, as described in Subsection 6.1.

Later we prove Theorem 16, which claims that the algorithm described above has approximation ratio at most 6

for the problem of covering the points inside the triangle.

First, we note that Lemma 2 holds easily whenJi is a straight line. For eachFi, Lemma 8 also holds. Let

F = F1 [ F2 [ F3, and assumeF is sorted withF1 (which is sorted) followed by the sortedF2, and followed by
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the sortedF3. Lemma 9 also holds, and thereforeF contains a solution at most twiceopt, the size of an optimum

solution.

6.1 Rounding

We use the natural IP, with variablesxD , for D 2 F :

minimize
X

D2F

xD

subject to
X

D : P2D

xD � 1 8P 2 P (1)

xD 2 f0; 1g 8D 2 D: (2)

Let LP be the linear programming relaxation of IP, obtain by replacing the constraints 2 by

xD � 0 8D 2 D: (3)

LetZ�
IP the value of the IP optimum. As argued above, we haveZ�

IP � 2 opt.

Let y be a (fractional) solution to LP. For a pointP 2 P , the set of disks covering it consists of at most three

intervals, sayIP1 , IP2 , andIP3 . For one of the three intervals, which we call simplyIP , we have:
P

D2IP yD � 1=3.

We introduce a second integer program, which we are able to solve in polynomial time exactly (see details below),

and which approximates well LP, the linear programming relaxation described above. Precisely, consider the integer

program IP’, with variablesxD, forD 2 F :

minimize
X

D2F

xD

subject to
X

D2IP

xD � 1 8P 2 P (4)

xD 2 f0; 1g 8D 2 D: (5)

Let LP’ be the linear programming relaxation of IP’. The matrix of IP’ is totally unimodular (see [6], Theorem

6.28, page 223, and Example 3 on the next page), and3y is a solution to LP’. Therefore IP’ has a solution of size at

most3
P

D2F yD, and an optimum for IP’ can be found easily by the greedy algorithm, as described at the end of

the proof of Theorem 3. Now, ify is an optimum solution to LP, then
P

D2F yD � Z�
IP � 2 opt, and therefore the

solution found by the greedy algorithm has size at most6opt.

Rounding consists of finding for each pointP 2 B the intervalIP , and then using the greedy algorithm to hit each

IP with elements ofF . In conclusion, we proved:
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Theorem 16 The algorithm described in this section has approximation ratio at most 6 for covering points inside a

unit-size equilateral triangle with sizes equal to 1 with unit-disks from a fixed setD.

Since a single disk from the optimum solution can cover points in at most 17 triangles of the tiling we conclude

Corollary 17 There is a 102-approximation algorithm for the Minimum Disk Cover problem.

7 Conclusions

In this paper we presented a geometricO(n logn) 6-approximation algorithm and a combinatorialO(n log2 n) 3-

approximation algorithm for selecting forwarding neighbors in wireless ad-hoc networks, significantly improving both

the running time and the approximation ratio of the best previously known algorithm. An extension of our method can

be used to obtain an alternative constant-ratio polynomial-time algorithm for the Minimum Disk Cover problem.

We mention that Theorem 13 is true in the following more general setting. LetJ be an infinite simple Jordan curve

which separates the plane into exactly two regions, and letB be one of these two regions. Let all pointsP be inB,

and eachDj be a region bordered by a simple closed Jordan curve@Dj . Assume that each@Dj intersects the infinite

curveJ in exactly two points, and, for any two regionsDj andDk, @Dj \ @Dk \B has at most one point. Moreover,

assume that, whenever two of the curves@Dj intersect, they cross each other. Then Lemma 10 holds, and therefore a

polynomial-time exact disk covering algorithm exists.

On the other side, if the disks have arbitrary radii, the boundaries of two disks in the regionB (as defined in the

paragraph above) can cross in two distinct points. Our arguments rely implicitly on the assumption that boundaries

intersect in at most one point inside of the regionB where all the points lie, and all the presented algorithms fail when

applied to arbitrary disks.

WhenP and the centers ofD are separated by a straight line, we can apply the techniques from this paper to

obtain a rounding procedure with ratio of 2 to the natural linear program LP. Then, as in Section 6, it follows that the

linear program LP has constant integrality ratio for the general Disk Cover problem. However, when the disks inD are

weighted, we do not know the integrality ratio of the corresponding integer and linear programs. The linear program

is given below:

minimize
X

D2D

wDxD

subject to
X

D : P2D

xD � 1 8P 2 P (6)

xD � 0 8D 2 D (7)
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This research work assumed that the wireless nodes are not able to adjust the range of transmission. When nodes

are able to adjust the range of transmission, it is possible that congestion can be further reduced. We leave for further

research the design of forwarding algorithms in the variable transmission range setting.

We also leave for further research the formulation of the overall broadcast problem, even if the algorithms one

obtains after doing it are centralized, and thus not practical. A comparison with the classical broadcasting problems in

the telephone and post office models would then be beneficial.

Student Yuchen Wu, whom we wish to thank, implemented the geometric 1-hop covering algorithm in a quadrant

(Algorithm 2), and the exactO(n2) combinatorial algorithm for the quadrant given in [3]. On random instances, the

much simpler geometric algorithm finds solutions which are on the average only 17–44% larger than the optimum

found by the exact combinatorial algorithm.
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