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Abstract

Rapid and reliable virus subtype identification is critical for accurate diagnosis of hu-
man infections, effective response to epidemic outbreaks, and global-scale surveillance
of highly pathogenic viral subtypes such as avian influenza H5N1. The Polymerase
Chain Reaction (PCR) has become the method of choice for virus subtype identifica-
tion. However, designing subtype specific PCR primer pairs is a very challenging task:
on one hand, selected primer pairs must result in robust amplification in the presence
of a significant degree of sequence heterogeneity within subtypes, on the other, they
must discriminate between the subtype of interest and closely related subtypes. In this
paper we present a new tool, called PrimerHunter, that can be used to select highly
sensitive and specific primers for virus subtyping. Our tool takes as input sets of both
target and non-target sequences. Primers are selected such that they efficiently amplify
any one of the target sequences, and none of the non-target sequences. PrimerHunter
ensures the desired amplification properties by using accurate estimates of melting
temperature with mismatches, computed based on the nearest-neighbor model via
an efficient fractional programming algorithm. Validation experiments with 3 Avian
influenza HA subtypes confirm that primers selected by PrimerHunter have high sen-
sitivity and specificity for target sequences.
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Introduction

RNA viruses such as avian influenza, hepatitis C virus, and human immunodeficiency virus
are characterized by a extensive genetic heterogeneity, primarily due to the lack of proofread-
ing mechanisms in their RNA polymerase. As a result, most RNA viruses can be subdivided
into distinct taxonomic subunits referred to as genotypes or subtypes. For example, over
100 avian influenza subtypes have been identified in wild birds as the result of independent
assortment of 16 subtypes of the RNA segment encoding the Haemagglutinin (HA) protein
with 9 subtypes of the segment encoding for Neuraminidase (NA). Rapid virus subtype iden-
tification is critical for accurate diagnosis of human infections, effective response to epidemic
outbreaks, and global-scale surveillance of highly pathogenic subtypes such as avian influenza
H5N1 [1].

The Polymerase Chain Reaction (PCR) has become the method of choice for virus subtype
identification, largely replacing traditional immunological assays due to its high sensitivity
and specificity, fast response time, and affordable cost [2]. However, designing subtype specific
PCR primer pairs is a very challenging task [3]: on one hand, selected primer pairs must
result in robust amplification in the presence of a significant degree of sequence heterogeneity
within subtypes, on the other, they must discriminate between the subtype of interest and
closely related subtypes.

Unfortunately, existing primer design tools are not well suited for designing PCR primers
for subtype identification. Commonly used packages such as Primer3 [4,5] seek to amplify
a single known target nucleic acid sequence, and cannot guarantee amplification sensitivity
in the presence of high sequence heterogeneity within a subtype. A widely-used approach to
primer design for virus identification relies on first constructing a “consensus gestalt” from
a multiple alignment of target virus sequences [6]. After masking regions that also appear
in the genome of related viruses, remaining “unique” regions are mined for primers using
standard tools such as Primer3. This approach can be quite successful at finding species-

specific primers, since virus genomes often include highly conserved genes and non-coding
regions that serve critical roles in replication, transcription, and packaging. However, the
approach has limited applicability when the goal is to discriminate between virus subtypes,
since most highly conserved regions are shared by all subtypes. The same limitation applies to
several suffix-tree based algorithms [7–9] that search for long substrings that appear exactly
or with a small number of mutations in all (or a large percentage) of the sequences of a given
target set, and in none of the sequences of a given non-target set.

Another common approach to ensuring amplification of heterogenous sets of nucleic acid
sequences is the use of primers with degenerate bases. Several methods have been proposed
for selecting degenerate primers, including various greedy algorithms [10–12] and heuristics
based on multiple alignments of nucleic acid [13] and protein sequences [14]. Unfortunately,
all these methods ignore primer specificity (i.e., preventing amplification of related virus
subtypes) which prevents their use for direct viral subtyping assays.

A comparison of the main features provided by a selection of most relevant existing primer



and probe selection tools [4,8,9,13–19] is presented in Table 1. As it can be seen from the table, ⇐Table
1most existing tools miss key features that make them inappropriate for use in designing PCR

primers for virus subtyping. Of the surveyed methods, only OligoSpawn [16] and SLICSel
[17] were successful at finding subtype specific probes when run on a large set of avian
influenza HA sequences. The other methods were either not available, could not handle
multiple target/non-target sequences, or simply did not find any subtype specific primers or
probes.

In this paper we present a new tool, called PrimerHunter, that can be used for selecting
highly sensitive and specific primers for virus subtyping and is likely to find applications in
other contexts that require discriminative probes/primers. As in [8,9,16], our tool takes as
input sets of both target and non-target sequences. To guarantee high sensitivity, primers
are selected such that they efficiently amplify any one of the target sequences represent-
ing different isolates of the subtype of interest. High specificity is ensured by requiring
that none of the non-target sequences be amplified by selected primers; non-targets typi-
cally being sequences representing isolates of closely related virus subtypes. Unlike previous
methods, which restrict the primer search space to the set of substrings shared by all target
sequences or to highly conserved regions in a multiple alignment, PrimerHunter achieves
a higher design success rate by generating an exhaustive set of candidate primers from the
target sequences and using accurate melting temperature computations to ensure the desired
amplification/non-amplification properties. Melting temperature computation is performed
based on the state-of-the-art nearest-neighbor model of [20]. Of critical importance in selec-
tive target amplification is accurate prediction of primer-template hybridization with mis-
matches. Melting temperature with mismatches is efficiently computed in PrimerHunter by
using the fractional programming approach of [21], modified to incorporate the salt correction
model of [20].

PrimerHunter has been used to design specific primer pairs for all avian influenza HA and
NA subtypes from complete sequences of North American origin in the NCBI flu database
[22]. Validation experiments confirm that primers selected by PrimerHunter are both specific
and robust in the PCR amplification of target sequences. The PrimerHunter web server, as
well as the open source code released under the GNU General Public License, are available
at http://dna.engr.uconn.edu/software/PrimerHunter/.

Materials and Methods

Problem Formulation

Unless stated otherwise, we assume that all sequences are over the DNA alphabet, {A, C, G, T},
and are given in 5′-3′ orientation. For a sequence s, we denote by |s| its length, and by s(l, i)
the subsequence of length l ending at position i, i.e., s(l, i) = si−l+1 . . . si−1si. We denote by
T (p, t, i) the melting temperature of the duplex formed by a primer p and the Watson-Crick
complement of t(|p|, i). In order to ensure sensitive amplification of target sequences, we
require for each selected primer p to have at least one position i within each target t such
that T (p, t, i) is greater than or equal to a user specified threshold T min

target. Since mismatches



at the 3′ end of the primer can significantly reduce amplification efficiency [23], we addi-
tionally require that the 3′ end of p match perfectly t(|p|, i) at a set of bases specified using
a 0-1 perfect match mask M . For example, a mask M = 3′-1101-5′ specifies that the first,
second, and fourth 3′-most bases of the primer must be matched exactly. For a primer p and
a target sequence t, we denote by I(p, t, M) the set of positions i of t at which the 3′ end
of p matches t(|p|, i) according to M . Thus, in order to ensure sensitive PCR amplification
of target sequences, we require that a selected primer p have, for every target t, at least one
position i ∈ I(p, t, M) for which T (p, t, i) ≥ T min

target.

To avoid non-specific amplification, we further require for each selected primer to have a
melting temperature T (p, t, i) below a user specified threshold T max

nontarget at every position i
of every non-target sequence t. The problem of selecting target-specific forward PCR primers
is therefore formulated as follows:

Discriminative Primer Selection Problem (DPSP)

Given: Sets TARGETS and NONTARGETS of 5′-3′ DNA sequences, perfect match mask
M , melting temperature thresholds T min

target and T max
nontarget, and constraints on primer length,

GC content, self-complementarity, etc.

Find: Primers p satisfying given constraints on primer length, GC content, self-complementarity,
etc., such that:

• For every t ∈ TARGETS, there exists i ∈ I(p, t, M) such that T (p, t, i) ≥ T min
target, and

• For every t ∈ NONTARGETS, T (p, t, i) ≤ T max
nontarget for every i ∈ {|p|, . . . , |t|}.

Melting Temperature Calculation

PrimerHunter estimates the melting temperature of primer-target and primer-nontarget du-
plexes using the nearest-neighbor model of [20], which is considered to be the most accurate
melting temperature model to date [24]. However, unlike most other primer design packages,
which only require estimates of the melting temperature between a primer and its perfectly
complementary template, PrimerHunter critically relies on accurate estimates of the melting
temperature for non-complementary duplexes. This requires finding the optimum thermo-
dynamic alignments for all evaluated duplexes, i.e., the alignments with minimum Gibbs
free energy. As in [21], optimum alignments are computed using the fractional programming
algorithm of [25]. In this section we describe our modification of the algorithm to incorporate
SantaLucia’s correction for the concentration of salt cations in the PCR mix [20]. As shown
below, incorporating this correction yields significantly improved estimates compared to [21].

In SantaLucia’s nearest-neighbor model [20], the melting temperature of a specific alignment
x between a 5′-3′ primer p with concentration cp and a 3′-5′ template t with concentration
ct is given by

TM(x) =
∆H(x)

∆S(x) + 0.368×N/2× ln(Na+) + R× ln(C)
(1)



where ∆H(x) and ∆S(x) are enthalpy and entropy changes for the annealing reaction result-
ing in a duplex with Watson-Crick pairings given by alignment x, N is the total number of
phosphates in the duplex, R is the gas constant, C is the total DNA concentration calculated
as cp−ct/2 if cp > ct and (cp/2) if cp = ct [20], and Na+ is the the concentration of salt cations.
For a given alignment x the enthalpy and entropy changes ∆H(x) and ∆S(x) are computed
by summing experimentally estimated contributions of constitutive dimer duplexes (includ-
ing internal mismatches and gaps), with additional terms for duplex initiation/termination
and (when applicable) symmetry correction.

The melting temperature between p and t is given by the most stable alignment x, i.e., it
is taken to be the maximum TM(x) over all possible alignments x. This maximum can be
found using Dinkelbach’s fractional programming algorithm [25], which relies on a simple
iterative procedure to maximize the ratio between two functions when linear combinations of
the two functions can be maximized efficiently. More specifically, given a finite set S and two
functions f, g : S → R with g > 0, the maximum ratio t∗ = maxx∈S

f(x)
g(x)

can be approximated
arbitrarily close via the following algorithm:

(1) Choose t1 ≤ t∗; i← 1
(2) Find xi ∈ S maximizing F (x) := f(x)− tig(x)
(3) If F (xi) ≤ ε for some tolerance ε > 0, output ti

(4) Else, set ti+1 ← f(xi)/g(xi) and i← i + 1, and then go to step 2

As shown by Dinkelbach, this algorithm produces values t1 < t2 < t3 < . . . converging to
t∗. When using Dinkelbach’s algorithm to maximize (1) over the set of alignments x, the
function to be maximized in Step 2 is −∆G(x) = ti[∆S(x)+ (0.368)×N/2× ln(Na+)+R×
ln(C)]−∆H(x). Since −∆G(x) is additively decomposable, the alignment x maximizing it
can be found efficiently by a standard dynamic programming algorithm, similar to [21]. As
shown in [21], the algorithm typically converges in a small number of iterations.

Algorithm

PrimerHunter works in two stages: in the first stage forward and reverse primers are selected
according to the problem formulation given above, while in the second stage feasible primer
pairs are formed using the primers selected in first stage.

The first stage starts with a preprocessing step that builds a hash table storing all occurrences
in the target sequences of “seed” nucleotide patterns consistent with the given mask M . This
is done by aligning the mask M at every position i of every target sequence t, and storing
in the hash table an occurrence of the seed pattern created by extracting from t(|M |, i) the
nucleotides that appear at positions aligned with the 1’s of M . For example, if M = 3′-
1101-5′ and t(4, i) = 5′-GATC-3′, we store in the hash table an occurrence of seed GTC at
position i of t.

Once the hash table is constructed, candidate primers are generated by taking substrings
with lengths within a user-specified interval [lm, lM ] from one or more of the target sequences.
Similar to the Primer3 package [4], PrimerHunter filters the list of primer candidates by



enforcing user-specified bounds on GC Content, 3′-end GC clamp, maximum number of
consecutive mononucleotide repeats, and self-complementarity. For each surviving candidate
p, PrimerHunter uses the hash table to recover for each target t the list I(p, t, M) of po-
sitions at which p matches t according to M . It then computes the melting temperature
of p with the Watson-Crick complement of t at each of these positions, retaining p only if
maxi∈I(p,t,M) T (p, t, i) ≥ T min

target. Finally, PrimerHunter computes the maximum melting tem-
perature between p and the Watson-Crick complements of non-target sequences, retaining p
only if maxi∈{|p|,...,|t|} T (p, t, i) ≤ T max

nontarget for every non-target sequence t.

The above process is repeated on the reverse complements of target and non target sequences
to generate reverse primers. Then, in the second stage of the algorithm, the lists of selected
forward and reverse primers are used to create feasible primer pairs by enforcing the following
constraints:

(1) Product length: for each target sequence the total product length must fall between
user specified bounds.

(2) Melting temperature similarity: for every target sequence, the difference between the
maximum and the minimum melting temperature of the two primers must not exceed
a user defined value.

(3) Primer dimers: a criteria similar to that used for preventing primer self-complementarity
is used to avoid hybridization between the two primers of the pair; the test is identical
to that implemented in Primer3 [4].

Algorithm Extensions

Since degenerate bases at specific primer positions yield perfect matches at these positions
regardless of target variability, the use of degenerate primers is an effective technique for
ensuring robust amplification of heterogenous targets. However, degenerate primer design is
a difficult problem due to the large space from which degenerate primers can be selected [10–
12]. To overcome this difficulty, we adopted a simple pattern-based approach to degenerate
primer design, based on the observation that most of a virus’ sequence is coding for proteins
and that the vast majority of sequence heterogeneity is observed at synonymous positions.
PrimerHunter uses a user-specified degeneracy mask, specifying the positions at which fully
degenerate nucleotides should be incorporated in candidate primers. Formally, the degeneracy
mask is a vector D of integers 1 or 4 in 3′ to 5′ orientation. In each position i where Di = 4,
a degenerate base N will be included in every primer. For example, if D = 3′-114114-5′,
every primer will end with the pattern 5′-NxxNxx-3′. A degeneracy mask may be used in
conjunction with a complementary perfect match mask (M = 3′-110110-5′ for the above D),
although this is not required. The only required change to the primer selection algorithm is in
the computation of melting temperatures: the range of melting temperatures for a degenerate
primer is obtained by computing the melting temperatures against the given template for
all compatible non-degenerate primers.

For target sets exhibiting a very high degrees of heterogeneity, or for overly stringent design
constraints, it may be impossible to find specific primer pairs that amplify all targets. When



detecting this situation, PrimerHunter automatically seeks and reports a small set of primer
pairs that collectively amplify all targets. The set of pairs is constructed using the classic
greedy set cover algorithm [26,27], where the elements to be covered are target sequences and
the sets correspond to pairs of compatible primers that amplify at least one of the target
sequences and none of the non-targets. From the well-known approximation guarantee in
[26,27] it follows that the greedy algorithm yields a number of primer pairs within a factor
of 1 + ln mt of optimum for mt target sequences.

When multiple primer pairs are needed to cover all targets, the number of primer pairs can
be further reduced by relaxing the constraint that forward and reverse primer candidates
must amplify all targets. As in [8], this is achieved in PrimerHunter by specifying a minimum
percentage of target sequences to which selected primers must hybridize. Similarly, the non-
targets filtering can be relaxed, allowing selected primers to hybridize to a small percentage
of non-targets. However, to maintain specificity, primer pairs that feasibly amplify one of the
non-target sequences are discarded before running the greedy set cover algorithm.

HA Fragment Cloning and Quantitative PCR

In order to assess the specificity and selectivity of designed primers, HA coding region frag-
ments from isolates of H3, H5, and H7 avian influenza viruses were cloned into pTOPO
(Invitrogen). The subtype identity of each cloned fragment was confirmed by sequencing
and confirmed plasmids were diluted and used as on-target and off-target templates for
quantitative PCR using selected primer pairs.

Quantitative PCR (Q-PCR) was performed on an Applied Biosystems 7500 using ABI SYBR
green master mix. PCR conditions were as follows: 1 cycle, 95◦C x 10min; 40 cycles, 95◦C x
15sec, 40◦C x 15sec, 60◦C x 1min. Following amplification and detection, melt curves from
60-95◦C were performed to confirm specificity of the amplicons.

Results

Accuracy of Melting Temperature Predictions

We compared the accuracy of estimates obtained based on (1) to those obtained as in [21] by
using a simplified formula that does not include the salt correction term 0.368×N/2×ln(Na+)
in the denominator. Figure 1 shows the mean and standard deviation of the difference be- ⇐Fig

1tween the melting temperature determined experimentally and that predicted by the two
models for a set of 812 duplexes of perfectly complementary oligonucleotides with lengths
between 9 and 30 base pairs, GC content between 8% and 80%, and salt concentrations
between 0.069M and 1.02M [24,28]. The data has been stratified in four categories of salt
concentration, with ranges given in Table 2. Table 2 also includes the Mean Squared Error ⇐Table

2(MSE) for each model and each salt concentration category. The results show that predic-
tions given by (1) have much lower MSE values for all salt concentration categories except
1 − 1.02M . Although the two models result in identical predictions at 1M concentration,
for salt concentrations larger than 1M applying the salt correction produces slightly worse



estimates. The difference between the two models is statistically significant: within each salt
concentration category the null hypothesis that prediction errors of the two models have the
same mean is rejected by the Wilcoxon signed-rank test with a p-value smaller than 10−16.

Since duplexes involving primers with atypical length or GC content could potentially skew
the results, we repeated the above comparison by considering only duplexes consisting of
primers with length between 20 and 25 base pairs and GC content between 25% and 75%,
which are typical values used in primer design and the default ranges for PrimerHunter. The
results shown in Supplementary Figure 1 and Table 2 show that the predictions given by
(1) remain more accurate than predictions based on [21] for salt concentrations below 1M
even when disregarding primers with extreme GC-content or length. In all categories, the
null hypothesis that prediction errors of the two models have the same mean is still rejected
by the Wilcoxon signed-rank test, with a p-value smaller than 10−14.

Unfortunately, experimental data on melting temperature of duplexes with mismatches is
much more limited. We could collect only 110 duplexes with one mismatch and 28 duplexes
with two mismatches from [29–32]. Duplexes with one mismatch have lengths between 9 and
16 base pairs and GC content between 21% and 78%, while duplexes with two mismatches
have lengths between 12 and 14 base pairs and GC content between 50% and 75%. Except
for twelve duplexes with one mismatch, the melting temperature of all these duplexes was
experimentally calculated at 1M of salt concentration. Since both prediction models produce
exactly the same answer for a salt concentration of 1M , we did not have enough informa-
tion to compare them for duplexes with mismatches. Table 3 gives the mean and standard ⇐Table

3deviation for the prediction errors made by the SantaLucia model (1). The results suggest
that, although less accurate than in the case of perfectly complementary duplexes, melting
temperature estimates for duplexes with mismatches still provide good approximations. (We
have also implemented the salt correction model of [28], but found the SantaLucia model to
be slightly more accurate.).

Design Success Rate

Primer Hunter has been implemented in C++ on a standard Linux platform. We designed
primer pairs for 14 HA subtypes using the complete Avian influenza HA sequences from
North America available in the NCBI flu database [22] as of March 2008 (a total of 574 HA
sequences). Figure 2 shows the unrooted phylogenetic tree generated using the TREEVIEW ⇐Fig

2program [33] from a multiple alignment of a subset of these sequences constructed using
ClustalW [34].

When designing primers for each subtype Hi we used all available HA sequences classified
as Hi as targets, and all NCBI HA sequences labeled with different subtypes as non-targets.
Primer selection was performed using the following parameters:

(1) Primer length between 20 and 25
(2) Amplicon length between 75 and 200
(3) GC content between 25% and 75%
(4) Maximum mononucleotide repeat of 5



(5) 3′-end perfect match mask M = 11
(6) No required 3′ GC clamp
(7) Primer concentration of 0.8µM
(8) Salt concentration of 50mM
(9) T min

target = T max
nontarget = 40◦C

We also attempted to design primer pairs for the 9 known NA subtypes based on the 668
avian Influenza NA sequences available in [22], using the same set of parameters as for HA
subtypes. An initial PrimerHunter run resulted in primer pairs selected for all subtypes
except N4 and N1. Upon inspection of the phylogenetic tree (see Supplementary Figure 2)
we detected an N1 sequence (GI:115278096) that was mis-labeled as N4. After correcting
the label of the sequence, PrimerHunter was able to select discriminative primer pairs for all
NA subtypes (see Supplementary Table 1).

The numbers of identified primer pairs using these parameters are summarized in Table 4. ⇐Table
4For comparison, we also include in Table 4 the number of probes reported by OligoSpawn

[16] and SLICSel [17]. These were the only methods among those listed in Table 1 that
were available and could run successfully run on the HA dataset. OligoSpawn and SLICSel
were run using similar settings as PrimerHunter for the common parameters. Using these
settings, all three methods were able to identify discriminative primers/probes for each sub-
type represented in the NCBI flu database. The number of discriminative primers found
by PrimerHunter is consistently larger than the number of probes found by OligoSpawn
and SLICSel. PrimerHunter identified at least a few tens of forward and reverse primers for
each subtype. With an amplicon length constrained to be between 75 and 200 base pairs,
PrimerHunter was able to always identify feasible primer pairs, i.e., pairs of primers pre-
dicted to amplify all target sequences and none of the non-target sequences when using an
annealing temperature of 40◦C in the PCR reaction. Identified primers typically have min-
imum primer-target melting temperature is significantly higher than 40◦C, and maximum
primer-non-target melting temperature is significantly lower than 40◦C (see supplementary
material). The large number of feasible primers enables further optimizations such as select-
ing most discriminative primers (based on the difference between minimum primer-target TM

and maximum primer-non-target TM) and TM matching the primers within selected primer
pairs.

Primer Validation

A total of 9 randomly selected primer pairs specific to H3, H5 and H7 subtypes (3 pairs per
subtype, see the supplementary material) were ordered from Integrated DNA Technologies
(IDT). In a first experiment, triplicate Q-PCR reactions were performed for each primer
pair with 1 : 103 dilutions of each of the 3 plasmid types as template. Triplicate reactions
with no template (no template controls, or NTC) were also performed. Figure 3 gives the ⇐Fig

3amplification curves for a typical experiment where 3 on-target and 6 off-target Q-PCR
reactions were performed with one of the H3-specific primer pairs. For each reaction, the
threshold cycle Ct is defined as the PCR cycle in which the fluorescent signal intensity passes
the self-calibrated detection threshold. When no detectable fluorescent signal is present (e.g.,



in a NTC reaction), Ct is set to 40.

For each reaction, ∆Ct is computed as the difference between the respective threshold cycle
and the average threshold cycle of the 3 NTC reactions. The minimum, maximum, and
average ∆Ct values for all 9 primer pairs and both on- and off-target templates are given
in Figure 4. The results show a large difference (15 cycles or more) between the average ⇐Fig

4on-target and off-target ∆Ct values.

To assess the discriminative power over a range of template concentrations, 3 primer pairs
(one specific to each of the 3 cloned subtypes) were used in triplicate Q-PCR reactions
performed using each of the on- and off-target plasmids at 10 different dilutions. As can be
seen from these graphs, PrimerHunter primer pairs showed template specific amplification
over 5 to 7 orders of magnitude. Figure 5 shows ∆Ct values of these reactions plotted against ⇐Fig

5approximate plasmid copy numbers.

Discussion

PrimerHunter is a new tool to design primers for subtype identification using PCR. Com-
pared to existing tools based on exact matches or multiple sequence alignment, PrimerHunter
achieves a higher design success rate by relying on accurate melting temperature computa-
tions allowing for mismatches based on the nearest-neighbor model of [20] and the fractional
programming approach of [21]. Using this approach, PrimerHunter can design primers that
will selectively amplify target sequences from a complex background of related targets.

We demonstrate the performance of PrimerHunter by designing thousands of primer pairs
specific to fourteen HA and nine NA Avian Influenza subtypes. For the HA subtypes, the
number of primers found by PrimerHunter is consistently larger than the number of probes
found by two probe design tools with closely related functionality [16,17]. The number of
discriminative primers and primer pairs found for a subtype is positively correlated with
the amount of variability within the subtype and negatively correlated with the average
similarity to closely related subtypes. Indeed, for pairs of subtypes such as (H3,H4), (H7,H10),
(H8,H12), and (H13,H16) which are nearest neighbors in the NA phylogenetic tree in Figure
2, the subtype with lower within-subtype dissimilarity (included in Table 4) always yields
a larger number of primer pairs. For our design parameters the number of suitable primer
pairs varies from 3 for the highly variable H6 subtype, which has an average within-subtype
dissimilarity of 15.4%, to 14,415 for the H8 subtype, which has an average within-subtype
dissimilarity of 6.3%. Degenerate primers were not needed by PrimerHunter when designing
primer pairs based on Avian Influenza originating from North America. We expect that
degenerate primers will become useful when designing discriminative primer pairs based
on world-wide subtype isolates, and we plan to experiment with degenerate primers in the
future.

In order to assess the specificity of these primers we tested 3 primer-pairs designed to amplify
HA fragments from H3, H5, and H7. To avoid the possibility of contaminated or non-clonal
primary viral samples, fragments of the HA gene from one isolate of each subtype were cloned



into a plasmid vector. This allowed us to test both the specificity of the PrimerHunter primers
on defined on- and off-target sequences, and to assess the performance of the primers over
a very large range of template concentrations. We found that in each of these experiments,
PrimerHunter primers selectively amplified the targeted HA subtype over 5-7 orders of mag-
nitude of target concentrations and that the target sequence was first detected at 104-106

fold lower concentrations than non-target templates. When template concentrations of both
targets are raised to detectable levels, the target is typically amplified to concentrations
> 215 fold greater than the off-target sequence.

In a typical field or clinical assay, target and off-target nucleic acid sequences are likely to be
present at low concentrations. In the case of retroviruses such as influenza, the target nucleic
acid will be viral RNA and any PCR assay will perforce be preceded by a reverse transcription
(RT) step resulting in a linear DNA template. While the sensitivity of such an assay will
be heavily dependent upon the efficiency of the RT step, we have shown that PrimerHunter
primers are functional and specific under a wide range of template concentrations and thus
are likely to be robust under a variety of experimental conditions including viral subtyping
by RT-PCR in the clinic and in the field [35–38].

The PrimerHunter web server, as well as the open source code released under the GNU Gen-
eral Public License, are available at http://dna.engr.uconn.edu/software/PrimerHunter/.
By default, PrimerHunter seeks to select primer pairs predicted to amplify all target se-
quences and none of the non-target sequences under specified reaction conditions. When
targets exhibit extremely large dissimilarity and such primer pairs cannot be found, Primer-
Hunter automatically seeks and reports a small set of primer pairs that collectively amplify
all targets and none of the non-targets. If the number of primer pairs required to cover all
targets is large, the pairs may need to be portioned into multiple multiplex PCR reactions
due to limitations on the number of primers that can be used in a single reaction.

Complete classification of unknown viral samples into subtypes can be achieved by using
PrimerHunter to design a specific primer pair (or set of primers) for each subtype, then
running n parallel PCR reactions where n is the number of subtypes. The number of PCR
reactions can be further reduced by designing primer pairs specific to sets of subtypes (e.g.,
superclades in the phylogenetic tree). By employing such non-specific primer pairs and group
testing methods similar to those in [39] the number of reactions can potentially be reduced
to log n, and we plan to explore such methods in future work.

We also plan to explore the potential application of PrimerHunter to designing PCR assays
for identification and subtyping of pathogens other than influenza, including bacteria, para-
sites and fungi. Another potential application for PrimerHunter is designing specific probes
for gene expression and genome enrichment microarrays. For large eukaryotic genomes these
applications would require very large numbers of melting temperature computations which
can be feasibly performed by parallelizing the testing of candidate primers.
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Design Multiple Non TM Salt Output

Tool Targets Targets Model Correction

Primer3 No Yes NN Yes Multiple

[4] (DB) primer pairs

Insignia Yes Yes None No Multiple

[9] (DB) (DB) signatures

QPrimer No No NN No Multiple

[15] (DB) primers

DePict Yes No None No Best

[14] (MSA) primer

PROBEMer Yes Yes NN No Multiple

[8] probes

Greene Yes No NN Yes Multiple

SCPrimer [13] (MSA) primer pairs

OligoSpawn Yes Yes NN No Multiple

[16] probes

SLICSel Yes Yes NN Yes Multiple

[17] probes

Primaclade Yes No NN No Multiple

[18] (MSA) primers

OligoArray Yes Yes NN No Multiple

[19] (DB) probes

PrimerHunter Yes Yes NN w/ Yes Multiple

(this paper) mismatches primer pairs

Table 1
Features comparison between primer and probe selection tools most similar to PrimerHunter. (DB:
user can select targets from a pre-constructed database; MSA: input must be provided as a multiple
sequence alignment; NN: nearest-neighbor model)



Primer length 9− 30 Primer length 20− 25

GC content 8%− 80% GC content 25%− 75%

Salt # MSE w/o salt MSE with salt # MSE w/o salt MSE with salt

Conc. (M) duplexes correction correction duplexes correction correction

0.069 − 0.15 351 150.03 2.30 158 148.91 2.25

0.22 152 47.44 2.71 72 43.14 3.18

0.62 − 0.621 152 8.98 2.52 72 6.90 1.38

1− 1.02 157 4.75 4.97 74 2.61 2.76

Table 2
Mean Squared Error (MSE) for residuals calculated as the difference (in degrees Celsius) between
experimental melting temperatures and predictions obtained by fractional programming without
salt correction [21] and with salt corrections performed using the SantaLucia model (1).



# Length GC content # Average Standard

mismatches range range duplexes difference deviation

1 9− 16 21%− 78% 110 0.56 2.06

2 12− 14 50%− 75% 28 −1.25 2.70

Table 3
Average and standard deviation for the difference (in degrees Celsius) between experimental melting
temperature and predictions made by the SantaLucia model (1) on duplexes with one and two
mismatches.



Subtype # # Avg. % # # # # Probes # Probes

Targets Non-Targets Diss. FP RP PP SlicSel OligoSpawn

H1 48 526 8.4 51 52 70 20 2

H2 41 533 9.1 42 43 187 14 2

H3 72 502 11.1 41 61 135 7 1

H4 67 507 7.4 265 225 3724 18 2

H5 69 505 9.1 68 66 160 17 1

H6 100 474 15.4 36 27 3 4 3

H7 55 519 8.9 77 81 260 2 1

H8 9 565 6.3 489 482 14415 100 1

H9 23 551 8.7 140 152 1222 58 1

H10 16 558 6.8 243 302 3712 35 1

H11 45 529 5.9 267 262 4117 32 1

H12 15 559 7.1 472 494 12895 52 1

H13 10 564 14.4 41 33 98 1 2

H16 4 570 9.5 367 352 7629 68 1

Table 4
Primers found for each subtype of Avian influenza HA and comparison with number of probes
generated by related tools. The dissimilarity within a subtype is calculated as the average pairwise
Hamming distance in the multiple sequence alignment expressed as percentage of the average
sequence length. (FP: Forward Primers; RP: Reverse Primers; PP: Primer Pairs)
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Fig. 1. Average and standard deviation of the difference (in degrees Celsius) between experimental
melting temperatures and predictions obtained by fractional programming without salt correction
[21] and with salt corrections performed using the SantaLucia model (1) for 812 duplexes of perfectly
complementary oligonucleotides with lengths between 9 and 30 base pairs and GC content between
8% and 80%
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Fig. 2. Phylogenetic tree of avian influenza HA sequences of North American origin from the NCBI
flu database (5 complete sequences selected at random for each subtype).



Fig. 3. Amplification curves using an H5-specific primer pair and H3, H5, H7 plasmids or no
template (3 replicates each).
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Fig. 4. Average ∆Ct for on-target (T), off-target (OT1 and OT2), and no template control (NTC)
Q-PCR amplification with 9 primer pairs (3 subtype-specific pairs for each of H3, H5, and H7; error
bars indicate minimum/maximum values).



Fig. 5. ∆Ct for triplicate Q-PCR reactions performed with H3-, H5-, and H7-specific primer pairs
at ten different dilutions of on- and off-target templates. Lines connect triplicate means at each
dilution. The legend in each graph indicates the color for the primer (numerator) and target (de-
nominator) combination.


