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Abstract

The problem of minimizing the trellis complexity of a code by coordinate permutation is
studied. Three measures of trellis complexity are considered: the total number of states, the
total number of edges, and the maximum state complexity of the trellis. The problem is proven
NP-hard for all three measures, provided the �eld over which the code is speci�ed is not �xed.
We leave open the problem of dealing with the case of a �xed �eld, in particular GF (2).

Index Terms{ NP-hardness, trellis complexity, MDS codes, Vandermonde matrices.

1 Introduction

The most used and studied way of performing soft-decision decoding is via trellises. Clearly, in
order to speed up decoding, it is important to minimize the size of the trellis for a given code.
Several measures of trellis complexity have been proposed by researchers: the total number of
states, the total number of edges, and the maximum state complexity of the trellis. It has been
established that every linear code (in fact, every group code) admits a unique minimal trellis that
simultaneously minimizes all these measures [2, 3, 7, 9], and much work has been done on obtaining
e�cient algorithms for constructing minimal trellises for linear codes as well as more general codes
[6, 13].

It is easy to see that the seemingly trivial operation of permuting the coordinates of a code, which
changes none of the traditional properties of the code, can drastically change the size of the minimal
trellis under all these measures. Indeed, the problem of minimizing the trellis complexity of a code
by coordinate permutations has been called the \art of trellis decoding" by Massey [7]. This
problem has attracted much interest recently; as stated by Vardy in a recent survey [11], \... seven
papers in [1] are devoted to this problem. Nevertheless, the problem remains essentially unsolved."
In this context, an important unresolved problem is determining the computational complexity of
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�nding the optimal permutation. Horn and Kschischang [5] prove the NP-hardness of �nding the
permutation that minimizes the state complexity of the minimal trellis at a given time index, and
conjecture that minimizing the maximum state complexity is NP-hard. In this paper, we prove
NP-hardness for all three measures, provided the �eld over which the code is speci�ed is not �xed;
however, we are able to �x the characteristic of the �eld. We leave open the problem of dealing
with the case of a �xed �eld, in particular GF (2).

Our proof uses several ideas from the recent breakthrough result of Vardy [12] showing the NP-
hardness of the problem of computing the minimum distance of a binary linear code thus settling a
conjecture of Berlekamp, McEliece and van Tilborg dating back to 1978. In particular, we use his
ingenious construction for obtaining MDS codes using Vandermonde matrices. Vardy also proves
the NP-hardness of determining whether a given linear code is MDS.We �rst show that this problem
is NP-hard even if the parity check matrix is restricted to have dimensions k � 2k. NP-hardness
for all three measures follows easily from this problem.

2 Preliminaries

A trellis T , for an (n; k)-linear code C over GF (q) is an edge-labeled directed layered graph. The
vertices of T are partitioned into disjoint subsets V0; V1; : : :Vn. The set Vi is referred to as the set
of states at time index i. V0 contains a unique start state v0, and Vn contains a unique terminating
state vn. Edges of T are allowed to run only between states in successive time indices; the set of
edges running from Vi�1 to Vi is denoted by Ei�1;i. We require that each state must be useful, i.e.
it must be on some path from v0 to vn. Notice that each path from v0 to vn has n edges. Edges
of T are labeled with elements of GF (q) in such a way that the set of n-tuples associated with the
paths from v0 to vn is exactly C.

A proper (co-proper) trellis is a trellis in which there is no state with two outgoing (incoming)
edges having the same label. A trellis is called biproper if it is both proper and co-proper. If T is a
biproper trellis, then Vi and Ei�1;i can be seen as vector spaces over GF (q) [2, 3]. Let si = dim(Vi)
and ei = dim(Ei�1;i); then (s0; : : : ; sn) and (e1; : : : ; en) are known as the state and edge complexity
pro�les of T , respectively.

A remarkable property of any biproper trellis is that it minimizes state and edge pro�les, i.e.,
for each i, si and ei are minimum [2, 9]. In particular, a biproper trellis minimizes the following
quantities:

1. maximum state complexity, smax = maxi si;

2. total vertex complexity, jV j =
Pn

i=0 q
si ;

3. total edge complexity, jEj =
Pn

i=1 q
ei .

It is easy to see that by permuting the coordinates of C the minimal trellis might change drastically
with respect to above mentioned measures. So far, there is no general agreement on what is the
best measure of trellis complexity (see [8] for a recent position in this matter). As we shall see, the
intractability result of this paper holds for any choice of measure from the above list.
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3 NP-hardness of Restricted MDS Code

Recently, Vardy [12] proved that it is NP-hard to �nd whether or not a given linear code is MDS.We
show that the problem remains NP-hard even when restricted to (2k; k)-linear codes; this restricted
version of the MDS Code problem will be used to derive the results of the next section.

Problem: Restricted MDS Code (RMDSC)

Let p be a �xed prime.

Instance: A k � 2k matrix H over GF (p3(k�1)).

Question: Does H have a set of at most k dependent columns?

We will establish the NP-hardness of RMDSC in three steps. First, we prove that a restricted
version of 3-Dimensional Matching is NP-hard. Then, we reduce it to a version of Finite Field
Subset Sum (FFSS). Finally, this version of FFSS is reduced to RMDSC.

The restricted version of 3-Dimensional Matching (3DM) we will use is the following:

Problem: Restricted 3-Dimensional Matching (R3DM)

Instance: Three disjoint sets, W;X; Y , each of cardinality r, and a set M � W � X � Y of
cardinality 2r+ 1.

Question: Does M contain a matching, i.e. a subset M 0 � M such that jM 0j = r and no two
elements of M 0 agree on any coordinate?

Lemma 3.1 Restricted 3-Dimensional Matching is NP-hard.

Proof. We will reduce 3-Dimensional Matching [4] to R3DM; basically by adding elements to
W;X; Y and M so that jM j = 2jW j+ 1.

Let (M;W;X; Y ) be an instance of 3DM, where W;X; Y are disjoint sets with r elements and
M � W �X � Y . If jM j = 2r+ 1 then (M;W;X; Y ) is a valid instance of R3DM. If jM j > 2r+ 1,
add k = jM j � (2r+ 1) new elements to each of the sets W;X and Y , and add to M any k triples
matching these new elements. Finally, if jM j < 2r+1 we obtain an instance of R3DM by repeating
(2r + 1)� jM j times the following augmentation: add two new elements to each of the sets W;X

and Y , while adding to M �ve of the eight triples that can be formed with the new elements.

Thus (M;W;X; Y ) is converted in polynomial time to an instance of R3DM, and it is not di�cult
to check that the new instance has a matching if and only if (M;W;X; Y ) has one 2

Next we reduce this R3DM to the following version of Finite Field Subset Sum:

Problem: Restricted Finite Field Subset Sum (RFFSS)

Let p be a �xed prime.

Instance: A set of 2r+ 1 distinct elements �1; �2; : : : ; �2r+1 2 GF (p3r), an element � 2 GF (p3r).

Question: Is there a subset f�i1 ; �i2 ; : : : ; �irg of f�1; �2; : : : ; �2r+1g such that �i1 +�i2 + : : :�ir =
�?
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Lemma 3.2 Restricted Finite Field Subset Sum is NP-hard.

Proof. Let (M;W;X; Y ) be an instance of R3DM with jW j = jX j = jY j = r and jM j = 2r+ 1.
The elements ofW[X[Y are numbered from 1 to 3r in some �xed order. Then a triple (a; b; c)2M

is represented as the binary 3r-tuple which has 1 at i; j and kth position only, where a; b and c are
i; j and kth elements of W [ X [ Y resp. Let �1; �2; : : : ; �2r+1 2 GF (2)3r represent the 2r + 1
elements of M .

Now consider the 3r-tuple � consisting of all 1's. It is clear that there will exist a subset f�i1 ; �i2 ; : : : ;

�irg of f�1; �2; : : : ; �2r+1g such that �i1 + �i2 + : : :�ir = � if and only if M has a matching. By
[10], these binary 3r-tuples can be considered as elements of GF (p3r). Hence RFFSS is NP hard 2

We can now prove the NP-hardness of RMDSC:

Theorem 3.3 For every prime p, Restricted MDS Code is NP-hard.

Proof. We will reduce RFFSS to RMDSC using Vardy's construction [12]. Let �1; �2; : : : ; �2r+1;
� 2 GF (p3r) be an instance of RFFSS. We obtain an instance of RMDSC by taking k = r+1, and

H =

2
666666666664

1 1 : : : 1 0
�1 �2 : : : �2r+1 0
�21 �22 : : : �22r+1 0
...

...
...

...
...

�r�2
1 �r�2

2 : : : �r�2
2r+1 0

�r�1
1 �r�1

2 : : : �r�1
2r+1 1

�r
1 �r

2 : : : �r
2r+1 �

3
777777777775

:

It is easy to see that any set of r columns of H is independent: after removing the last row of H ,
any r columns will form a Vandermonde determinant. Since H has r + 1 rows, any set of r + 2
columns of H is dependent. It follows that the minimum number of dependent columns of H is
either r + 1 or r + 2. The following lemma by Vardy distinguishes between these two cases:

Lemma 3.4 (Vardy [12]) H has r + 1 dependent columns i� �i1 + �i2 + : : : +�ir = � for some
i1; :::; ir:

By Lemma 3.4, the answer to the instance of RFFSS is \no" i� every set of r+ 1 columns of H is
independent. Hence RMDSC is NP-hard 2

4 NP-hardness of minimizing trellis complexity

Let H be an m � n matrix over GF (q). De�ne wi to be the dimension of the intersection of the
space spanned by the �rst i columns with the space spanned by the last n � i columns of H . The
width of H is de�ned to be maxifwig.
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Lemma 4.1 (Horn and Kschischang [5]) If H is the parity-check (or generator) matrix of C,
then, for each i, the minimal trellis has si = wi.

Thus smax is the width of the parity-check (or generator) matrix of the code, and the problem
of �nding a coordinate permutation minimizing the maximum state complexity can be rephrased
as the the problem of �nding a permutation that minimizes the width of the parity-check (or
generator) matrix.

Problem: Finite Field Minimum Width (FFMW)

Let p be a �xed prime.

Instance: A k � 2k matrix H over GF (p3(k�1)).

Question: Is there a matrix H 0 obtained by permuting columns of H such that the width of H 0 is
less than k?

We prove NP-hardness of FFMW by a reduction from RMDSC.

Theorem 4.2 For any prime p, Finite Field Minimum Width is NP-hard.

Proof. Let H be a k�2k instance of RMDSC. If every set of k columns of H is independent, the
width of any matrix obtained by column permutations from H is k. Indeed, the �rst k columns and
the last k columns of such a matrix generate the entire k-dimensional space. On the other hand,
if there exists a set of k dependent columns, then by listing these columns �rst and the remaining
columns next, we obtain a permutation of width less than k. Hence, H has k dependent columns if
and only there exists a permutation of its columns for which the width is less than k. This proves
that FFMW is NP-hard 2

Corollary 4.3 Finding a coordinate permutation that minimizes smax is NP-hard.

We will also reduce RMDSC to the problem of minimizing jV j by coordinate permutations. Let
H be an instance of the RMDSC problem, say H is a k � 2k matrix, and let C be the linear code
generated by H . If no k columns of H are dependent, it is easy to see that wi = minfi; 2k� ig for
any permutation of the columns of H . So, the minimal trellis for any coordinate permutation of C
has (0; 1; 2; :::; k� 1; k; k� 1; :::; 2; 1; 0) as the state complexity pro�le. Hence, jV j is a constant, K,
over all coordinate permutations of C. On the other hand, if there exist k dependent columns in H ,
by moving these columns in the �rst k positions we obtain a permutation such that wk < k. Since
wi � minfi; 2k� ig for every i, it follows that the minimal trellis associated with this permutation
has strictly less than K states. Hence we obtain:

Theorem 4.4 Finding a coordinate permutation that minimizes jV j is NP-hard.

Similarly, we have:

Theorem 4.5 Finding a coordinate permutation that minimizes jEj is NP-hard.
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Proof. From the characterization of edge spaces given in [2, 3] it follows that the minimal trellis
of the code generated by a k � 2k matrix H has ei equal to the dimension of the intersection of
the space spanned by the �rst i columns with the space spanned by the last 2k � i + 1 columns
of H (this di�ers from the de�nition of wi in that the ith column is included in both terms of the
intersection).

We obtain a reduction of RMDSC to the problem of minimizing jEj by coordinate permutations
by observing that: (i) if no k columns of H are dependent, then, for any column permutation,
the minimal trellis has ei = minfi; 2k � i + 1g for every i, and (ii) if there exist k dependent
columns, placing these columns in the �rst k positions gives a permutation with ek < k and
ei � minfi; 2k� i+ 1g for every i 6= k 2

Remark. For purposes of decoding, it is better to consider a more compact form of trellises in
which parallel edges are represented by a single edge labeled with a set of symbols (see [13] for
instance). Note that in the proof of Theorem 4.5, if no k columns of H are dependent then the
resulting minimal trellis has no parallel edges. Hence minimizing the number of edges for the
compact form of trellises also remains NP-hard.

It is natural to ask whether or not minimizing trellis complexity becomes tractable for a �xed �eld.
We concur with Horn and Kschischang [5] and Vardy [11, 12] in the belief that the answer is \no",
in particular that the following problem is NP-hard:

Problem: Minimum Width

Let GF (q) be a �xed �eld.

Instance: An integer w > 0 and an m� n matrix H over GF (q).

Question: Is there a matrix H 0 obtained by permuting columns of H such that the width of H 0 is
less than w?

We believe that this will be a challenging problem.
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