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Abstract | The problem of minimizing the trellis

complexity of a code by coordinate permutation is

proven NP-hard for three di�erent measures of trellis

complexity, provided the �eld over which the code is

speci�ed is not �xed.

I. Introduction

Every linear code admits a unique minimal trellis for a
�xed coordinate permutation (see e.g. [2, 4]) which simulta-
neously minimizes (1) the number of states, (2) the number of
edges, and (3) the maximum state complexity. Even though
permuting the coordinates of the code changes none of its tra-
ditional properties, it can drastically change the size of the
minimal trellis under all these measures. Indeed, the prob-
lem of minimizing the trellis complexity of a code by coordi-
nate permutations has been called the \art of trellis decoding"
by Massey [4]. This problem has attracted much interest re-
cently; as stated by Vardy in a recent survey [5], \... seven
papers in [1] are devoted to this problem. Nevertheless, the
problem remains essentially unsolved." In this context, an im-
portant unresolved problem is determining the computational
complexity of �nding the optimal permutation. We prove NP-
hardness for all three measures, provided the �eld over which
the code is speci�ed is not �xed; however, we are able to �x
the characteristic of the �eld. We leave open the problem of
dealing with the case of a �xed �eld. The related problem of
�nding a permutation that minimizes state complexity at a
given time index was known to be NP-hard [3].

II. NP-hardness of minimizing the maximum

state complexity

Minimizing the maximum state complexity by coordinate
permutation is equivalent to minimizing width of the parity-
check matrix (the width of matrix H is de�ned as maxiwi,
where wi is the dimension of intersection of the space spanned
by the �rst i columns with the space spanned by the last n� i
columns of H).

Theorem II.1 For any prime p, the following is NP-hard:
Problem: Finite Field Minimum Width (FFMW)
Instance: A k � 2k matrix H over GF (p3(k�1)).
Question: Is there a matrix H 0 obtained by permuting

columns of H such that the width of H 0 is less than k?

This will follow from:

Theorem II.2 For every prime p, the following is NP-hard:
Problem: Restricted MDS Code (RMDSC)
Instance: A k � 2k matrix H over GF (p3(k�1)).
Question: Does H have a set of k dependent columns?
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Proof sketch. First, we show that 3-Dimensional Matching
(given three disjoint sets W;X;Y , each of cardinality r, and
M � W � X � Y , decide whether M contains a matching,
i.e. a subset M 0 � M such that jM 0j = r and no two ele-
ments of M 0 agree on any coordinate) remains NP-hard even
when restricted to instances in which jM j = 2r + 1. Next,
we prove that given �1; �2; : : : ; �2r+1; � 2 GF (p3r), it is NP-
hard to decide whether � can be written as the sum of r of
the �i's. Finally, we reduce this problem to RMDSC using
Vardy's construction [5]. We obtain an instance of RMDSC
by taking k = r + 1, and

H =

2
666666664

1 1 : : : 1 0
�1 �2 : : : �2r+1 0
�21 �22 : : : �22r+1 0
...

...
...

...
...

�
r�2
1 �

r�2
2 : : : �

r�2
2r+1 0

�
r�1
1 �

r�1
2 : : : �

r�1
2r+1 1

�r

1 �r

2 : : : �r

2r+1 �

3
777777775
:

It is easy to see that any set of r columns of H is indepen-
dent: after removing the last row of H, any r columns will
form a Vandermonde determinant. Since H has r + 1 rows,
any set of r+2 columns of H is dependent. It follows that the
minimum number of dependent columns of H is either r + 1
or r+2. The following lemma by Vardy distinguishes between
these two cases. 2

Lemma II.3 (Vardy [5]) H has r + 1 dependent columns
i� �i1 + �i2 + : : : +�ir = � for some i1; :::; ir.

Proof of Theorem II.1. Let H be an instance of RMDSC.
If every set of k columns of H is independent, the width of
any matrix obtained by column permutations from H is k. On
the other hand, if there exists a set of k dependent columns,
then by listing these columns �rst and the remaining columns
next, we obtain a permutation of width less than k. 2
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