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Abstract

The element connectivity problem falls in the category of survivable network design problems
– it is intermediate to the versions that ask for edge-disjoint and vertex-disjoint paths. The edge
version is by now well understood from the view-point of approximation algorithms [17, 5, 8],
but very little is known about the vertex version. In our problem, vertices are partitioned into
two sets: terminals and non-terminals. Only edges and non-terminals can fail – we refer to
them as elements – and only pairs of terminals have connectivity requirements, specifying the
number of element-disjoint paths required. Our algorithm achieves an approximation guarantee
of factor 2Hk, where k is the largest requirement and Hn = 1 + 1

2
+ · · ·+ 1

n
. Besides providing

possible insights for solving the vertex-disjoint paths version, the element connectivity problem
is of independent interest, since it models a realistic situation.

1 Introduction

Given an undirected graph G = (V, E) with non-negative costs ce for edges e ∈ E, and a value ruv

for each pair of vertices u, v ∈ V , the survivable network design problem (SNDP) is that of finding
a minimum-cost subgraph such that there are ruv disjoint paths between each pair of vertices u
and v. The paths can be required to be either edge-disjoint or vertex-disjoint; we refer to the
former as the edge-connectivity SNDP (EC-SNDP) and the latter as the vertex-connectivity SNDP
(VC-SNDP). The survivable network design problem is a natural generalization of the Steiner tree
problem, and captures the problem of designing a minimum-cost network such that u and v are
still connected in the network after up to ruv − 1 links fail (for EC-SNDP) or up to ruv − 1 links
or nodes fail (VC-SNDP). The survivable network design problem arises from problems in the
telecommunications industry (c.f. [7, 11]) and has been studied from many different approaches
including polyhedral combinatorics [15, 7], interchange heuristics [12], min-max relations [1] (in the
unweighted case), approximation algorithms [17, 5, 13], and implementations thereof [11]. In this
paper, we consider approximation algorithms for the SNDP. A ρ-approximation algorithm for the
SNDP runs in polynomial time and finds a solution of value no more than ρ times the value of an
optimal solution.

There appears to be a qualitative difference in difficulty between EC-SNDP and VC-SNDP. For
example, although an exact min-max formula is known for the number of edges needed to add to
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a graph to have it satisfy the edge-disjoint paths constraint [1], no similar formula is known in the
case of the vertex-disjoint paths.

The first approximation algorithm for EC-SNDP, achieving a guarantee of factor 2k, where
k = maxu,v ruv, was given by Williamson, Goemans, Mihail and Vazirani [17]. This paper also
formalized a basic mechanism for using the primal-dual schema. The algorithm of [17] picks edges
for the desired subgraph in k phases. The augmentation problem for each phase can be written
as an integer program, the LP-relaxation of which is solved within factor 2 by the primal-dual
process alluded to above. A clever reordering of the augmentations led to a 2Hk-approximation
algorithm due to Goemans, Goldberg, Plotkin, Shmoys, Tardos and Williamson [5], where Hn =
1 + 1

2 + · · ·+ 1
n ≈ lnn. Jain has given a 2-approximation algorithm for the problem [8], using a

rounding-based algorithm. For a detailed overview of these algorithmic ideas and the primal-dual
schema, we refer the reader to the survey article [6] or the book [16].

In the case of VC-SNDP, however, very little is known in terms of approximation algorithms.
Using the basic algorithmic outline established in [17, 5], Ravi and Williamson [13, 14] give a 3-
approximation algorithm in the case that ruv ∈ {0, 1, 2}. For the problem in which ruv = k for all
u, v ∈ V , also known as the minimum-cost k-vertex-connected subgraph problem, there is also a
(2 + 2(k−1)

n )-approximation algorithm due to Khuller and Raghavachari [10] in the case that edge
costs obey the triangle inequality. However, no non-trivial approximation algorithm is known for
the vertex-connectivity survivable network design problem in its full generality.

In this paper we make progress on this important problem by considering a natural problem
intermediate to EC-SNDP and VC-SNDP. We call it the element connectivity survivable network
design problem (ELC-SNDP). In this version of the problem, the vertices are partitioned into
terminals and nonterminals. Nonterminals and edges can fail; these are the elements. On the other
hand, terminals cannot fail. Further, for each pair of terminals, u, v, we are given a connectivity
requirement ruv. The problem is to find a minimum-cost subgraph such that for each pair of
terminals, u, v, despite the failure of any ruv−1 elements, there is still a path left connecting u and
v; that is, there are ruv element-disjoint paths between each pair of terminals u and v. Notice that
nonterminals do not have any connectivity requirements. This model is realistic, since in many
practical situations, the terminals are robust and do not fail, whereas intermediate nodes, which do
not have connectivity requirements, do fail. In the VC-SNDP, all vertices and all edges are allowed
to fail. The EC-SNDP is a special case of the ELC-SNDP with an empty set of nonterminals.

Our central result is a 2Hk-approximation algorithm for this problem, where k = maxu,v ruv is
the largest connectivity requirement. Our algorithm also follows the basic algorithmic and proof
outline established in [17, 5]. The main difficulty in solving VC-SNDP is that there is no known
way of writing the augmentation problem for each phase as an integer program. (An example of
the kinds of constraints one gets using the usual way of breaking the problem into phases is: pick
either edge e1 or both e2 and e3.) The problem ELC-SNDP is defined precisely in a way to get
around this difficulty. However, even after the integer program is written, the ideas of [17, 5] do
not apply in a straightforward manner.

The remainder of the paper is structured as follows. In Section 2 we give the integer program-
ming formulation and its LP-relaxation. In Section 3 we show how the problem is decomposed
into phases and we prove the approximation guarantee, assuming the correct implementation of
a phase. In Section 4 we give the phase algorithm. In the last section we give a tight example,
thereby showing that no better guarantee can be established for our algorithm.

Since the appearance of an extended abstract of this result [9], several related results have
appeared. Cheriyan, Vempala, and Vetta [2] give a 6Hk-approximation algorithm for VC-SNDP
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that contain at least 6k2 vertices. A 2Hk-approximation algorithm for ELC-SNDP is also obtained
as a special case of an algorithm by Zhao, Nagamochi, and Ibaraki [18]. Fleischer [3] has obtained a
2-approximation algorithm for VC-SNDP when rij ∈ {0, 1, 2}, and Fleischer, Jain, and Williamson
[4] have developed a 2-approximation algorithm for ELC-SNDP. The latter two results draw upon
the rounding algorithm and analysis developed by Jain [8] for EC-SNDP.

2 The Problem, its Integer Programming Formulation and LP-

Relaxation

Let G = (V, E) be an undirected graph with non-negative costs ce on edges. The set V is partitioned
into two disjoint sets R and S. R is the set of terminals; there is a non-negative connectivity
requirement ruv between each pair of terminals. We assume that these vertices are reliable. On
the other hand vertices in S, also known as nonterminals, and all the edges are unreliable. We
call the members of S ∪ E elements. We define the element connectivity problem as choosing a
minimum-cost set of edges E ′ ⊆ E, so that in the subgraph H = (V, E ′) for every pair u and v,
there still remains a path between them in case ruv − 1 elements fail. In other words there are ruv

element disjoint paths between u and v. For convenience we extend the definition of ruv to any
pair u and v of vertices by assuming that ruv = 0 if at least one of u and v is a nonterminal.

Let H be a feasible solution to this problem. Suppose that a set of elements A ⊆ S ∪ E has
failed. Now the surviving graph, H − A, should have at least ruv − |A| element-disjoint paths for
every pair u and v. Note that as far as the integer program is concerned, for a pair u and v, it
is sufficient to consider A’s of cardinality ruv − 1 only, and write cut constraints that ensure the
existence of a path from u to v. However, it is easy to show that the LP-relaxation of this integer
program has a bad integrality gap. Consider an unweighted complete graph on n vertices from
which we want to select a low-cost k-edge-connected subgraph. Since the degree of every vertex in
the optimal solution should be at least k, the cost of optimal solution is at least nk

2 . If we form the
linear program only for A’s of cardinality k − 1 then picking every edge to the extent of 1

n−k will

be a valid feasible solution. This gives us the integrality gap of at least k(n−k)
n−1 . Choosing k = n

2
makes the integrality gap at least n

4 .
Hence, we include in the integer program constraints corresponding to sets A of all cardinali-

ties. As a corollary of our algorithm, we show that the LP-relaxation of this integer program has
integrality gap bounded by 2Hk.

Let f(B) = maxu∈B,v 6∈B ruv . The integer program is:

min
∑
e∈E

cexe(1)

subject to
∀A ⊆ S ∪ E, B ⊆ V − A :

∑
e∈δG−A(B)

xe ≥ f(B)− |A|

∀e ∈ E : xe ∈ {0, 1},
where δG−A(B) denotes the set of edges with one endpoint in B after removing A from graph G.

To get the linear program we further relax the condition xe ∈ {0, 1} to xe ≥ 0. The following
is the dual of the above linear program,
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max
∑

A⊆S∪E,B⊆V−A

(f(B)− |A|)yBA(2)

subject to
∀e ∈ E :

∑
B,A:A⊆S∪E,B⊆V−A, e∈δG−A(B)

yBA ≤ ce

∀A ⊆ S ∪ E, B ⊆ V − A : yBA ≥ 0.

Let OPT be the optimal cost of IP (1). By weak duality theorem any solution to (2) will be a
lower bound on OPT.

We will use the fact that f is weakly supermodular [5], i.e., f(V ) = 0 and, for every A, B ⊆ V ,
at least one of the following holds

• f(A) + f(B) ≤ f(A−B) + f(B −A)

• f(A) + f(B) ≤ f(A ∩B) + f(A ∪B).

3 High level description of the algorithm

Given an infeasible solution H to IP (1), define the deficiency of a constraint as the difference
between the right-hand side and the left-hand side of the constraint. Only unsatisfied constraints
will have positive deficiency. The deficiency of a set B ⊆ V is defined to be the maximum deficiency
of a constraint in which B is involved.

As in [5] our algorithm has k phases numbered from k to 1. We design the algorithm so that at
the start of pth phase, the deficiency of a set can be at most p and at the end of the phase it can
be at most p− 1. So at the end of the 1st phase we have a feasible solution and we output that.

Let H be the partial solution constructed at the beginning of the pth phase. Let h be defined
by

h(B) =

{
1, if deficiency of B is p
0, otherwise.

Let ΓH(B) be the set of nonterminals which are not in B but have a neighbor with respect to
H in B. Let ρH(B) be the set of those edges of H which have one endpoint in B and the other in
R−B. Finally, we define the element neighborhood of set B w.r.t. H to be εH(B) = ΓH(B)∪ρH(B).

Observation 3.1 The deficiency of B is f(B) − |εH(B)| and is the deficiency of the constraint
corresponding to the set pair εH(B) and B. Moreover inclusion of any edge of E−H which decreases
the deficiency of this constraint will also decrease the deficiency of B.

So the integer program we want to solve for the pth phase is:

min
∑

e∈E−H

cexe(3)

subject to
∀B ⊆ V :

∑
e∈δG−εH (B)(B)

xe ≥ h(B)

∀e ∈ E −H : xe ∈ {0, 1}
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Let I be a feasible solution of this integral program. By Observation 3.1 the deficiency of any
set with respect to I ∪H will be at most p− 1.

By relaxing xe ∈ {0, 1} to xe ≥ 0 we get a linear program, whose dual is:

max
∑

B⊆V

h(B)yB(4)

subject to
∀e ∈ E −H :

∑
B:e∈δG−εH (B)(B)

yB ≤ ce

yB ≥ 0

In the next section we will prove:

Theorem 3.2 We can find in polynomial time a feasible solution, F , for IP (3) and a feasible
solution, y, for LP (4) such that cost(F ) ≤ 2

∑
B⊆V h(B)yB .

Let y be as in the above theorem. Let

yBA =

{
yB, if A = εH(B)
0, otherwise.

It is easy to verify that y is a feasible solution for LP (2).

Lemma 3.3

cost(F ) ≤ 2
p
·OPT.

Proof. By definition, h(B) = 1 iff f(B)− |εH(B)| = p. So,

∑
B⊆V

h(B)yB =
∑

B⊆V

h(B)yBεH(B) =
1
p

∑
B⊆V

(f(B)− |εH(B)|)yBεH(B) ≤
1
p
·OPT.

The claim follows immediately from Theorem 3.2.

Corollary 3.4 The cost of edges chosen by the algorithm in all k phases is at most

2
(

1
k

+
1

k − 1
+ . . . + 1

)
·OPT = 2Hk ·OPT.

4 The algorithm for a phase, and its analysis

4.1 The algorithm

We now present the algorithm for a phase, which will augment sets whose deficiency is p. Our
augmentation algorithm follows those in [17] and [5]. We first give the algorithm, then turn to
stating and proving Theorem 3.2.

Let I be an infeasible solution to IP (3). A set is violated with respect to I if the constraint
corresponding to it in IP (3) is unsatisfied. A violated set is active if none of its proper subsets is
violated. Our algorithm for a phase is as follows:
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Algorithm for phase p

I ←− ∅, y ← 0, i← 0
While there are violated sets w.r.t. I

i← i + 1
Find all active sets (an algorithm will be discussed below).
Increase yB uniformly for all active sets B until some dual constraint becomes tight,

i.e., until
∑

B:e∈δG−εH (B)(B) yB = cei for some edge ei /∈ I.
I ← I ∪ {ei}

For l← i downto 1
If there are no violated sets w.r.t. I − {el}

I ← I − {el}

4.2 Proof of Theorem 3.2

To prove that this algorithm satisfies Theorem 3.2, we follow the general proof framework of [17].
From now on H is fixed as the partial solution obtained at the end of (p + 1)st phase and we fix an
iteration i of the while loop of the algorithm above. We will call this the “current iteration”. Let
I be the partial solution at the beginning of this iteration. Let F be the final set of edges returned
at the end of the phase. We claim that Theorem 3.2 follows from the theorem below; after stating
the theorem, we will establish the claim.

Theorem 4.1 If C is the set of active sets in this iteration, then∑
C∈C
|F ∩ δG−εH(C)(C)| ≤ 2|C|.

Proof of Theorem 3.2. We wish to show that

cost(F ) ≤ 2
∑

B⊆V

h(B)yB .

Note that by the properties of the algorithm ce =
∑

B:e∈δG−εH (B)(B) yB for each e ∈ F . Thus the
theorem follows if ∑

e∈F

∑
B:e∈δG−εH (B)(B)

yB ≤ 2
∑

B⊆V

h(B)yB .

We can rewrite the lefthand side as
∑

B⊆V |F ∩ δG−εH(B)(B)|yB , so that the theorem follows if
∑

B⊆V

|F ∩ δG−εH(B)(B)|yB ≤ 2
∑

B⊆V

h(B)yB .

We prove this by induction on the value of y during the course of the algorithm. Initially y = 0,
so the inequality holds. In any iteration, if C is the set of active sets in that iteration, and each yC

for C ∈ C is increased by γ, then the left-hand side increases by

γ
∑
C∈C
|F ∩ δG−εH(C)(C)|,

while the right-hand side increases by 2γ|C|. The theorem then follows by Theorem 4.1.
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4.3 Proof of polynomial time

We now turn to proving that the algorithm can be implemented in polynomial time. To do this,
we will need some definitions and a theorem, which we provide below.

Definition 4.2 Two sets A, B ⊆ V εH∪I-cross if A 6⊆ B, B 6⊆ A, A ∩ (B ∪ εH∪I(B)) 6= ∅ and
B ∩ (A ∪ εH∪I(A)) 6= ∅.

Note that since A, B ⊆ V and εH∪I ⊆ E ∪ V , we could have replaced εH∪I with ΓH∪I in the
definition above.

Definition 4.3 A family of subsets of V is εH∪I-laminar if no two sets in the family εH∪I-cross.

Observation 4.4 Let X ⊆ Y ⊆ V ∪ E, and A, B ⊆ V . If A and B εX -cross, they also εY -cross.
Similarly, if a family of sets is εY -laminar, then they are also εX -laminar.

Note that this is a stronger notion than the usual notion of laminarity, which is reproduced
below. A laminar family according to this notion is also laminar according to the usual notion.

Definition 4.5 Two sets A, B ⊆ V cross if A 6⊆ B, B 6⊆ A, and A ∩B 6= ∅.

Definition 4.6 A family of subsets of V is laminar if no two sets in the family cross.

Theorem 4.7 If A, B ⊆ V are violated sets with respect to I, then either A ∩ B and A ∪ B are
also violated or A−B − εH∪I(B) and B − A− εH∪I(A) are also violated.

We defer the proof of this theorem for the moment. The theorem implies the following corollary.

Corollary 4.8 No violated set with respect to I εH∪I-crosses any active set with respect to I.

Proof. If a violated set A εH∪I-crosses an active set B, then by the theorem, either A ∩ B or
B −A − εH∪I(A) is also violated. This contradicts the minimality of B.

Theorem 4.7 thus implies that the algorithm can be implemented in polynomial time.

Theorem 4.9 The algorithm for a phase can be implemented in polynomial time.

Proof. It follows from Corollary 4.8 that the active sets are disjoint. Hence each vertex can be in
at most one active set. Consider a network on H ∪ I , where the capacity of each edge and each
nonterminal is one and the capacity of each terminal is unbounded. Consider a vertex u: it will
be in an active set if there exists a vertex v such that the minimum u-v cut with respect to edges
H ∪ I is of capacity ruv −p. Let v be one such vertex. The active set in which u lies is the minimal
(inclusion-wise) u-v min-cut. This can be found in polynomial time using a max-flow subroutine.
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We now prove Theorem 4.7. To prove this theorem we need the following definitions and
lemmas.

Definition 4.10 Let ϕ : 2V → ZZ+. We say that ϕ is εH∪I-submodular if ϕ(V ) = 0 and, for every
A, B ⊆ V , the following two conditions hold:

1. ϕ(A) + ϕ(B) ≥ ϕ(A∩ B) + ϕ(A∪ B)

2. ϕ(A) + ϕ(B) ≥ ϕ(A− B − εH∪I(B)) + ϕ(B −A − εH∪I(A)).

Lemma 4.11 |εH∪I| is εH∪I-submodular.

Proof. We need to prove the two inequalities in the definition of εH∪I-submodularity.

1. One can easily verify that the contribution of any element to the left-hand side of the inequality
is at least the contribution of the element to the right-hand side of the inequality. This proves
the first condition of εH∪I-submodularity.

2. The proof of this inequality is similar to the proof of the first inequality except for the case
when there is an edge rs, r ∈ R, s ∈ S ∩ A ∩ B and either r ∈ A − B − εH∪I(B) or
r ∈ B − A− εH∪I(A). In this case s contributes to the right-hand side of the inequality but
does not contribute to the left-hand side. But to counteract the contribution of s, edge rs

contributes only to the left-hand side of the inequality.

Definition 4.12 Let ϕ : 2V → ZZ. We say that ϕ is weakly εH∪I-supermodular if ϕ(V ) = 0 and,
for every A, B ⊆ V , at least one of the following two conditions hold:

1. ϕ(A) + ϕ(B) ≤ ϕ(A∩ B) + ϕ(A∪ B)

2. ϕ(A) + ϕ(B) ≤ ϕ(A− B − εH∪I(B)) + ϕ(B −A − εH∪I(A)).

Lemma 4.13 f(B) = maxu∈B,v 6∈B ruv is weakly εH∪I-supermodular.

Proof. Since εH∪I(B) does not contain any terminals, f(A−B − εH∪I(B)) = f(A−B). Similarly,
f(B−A− εH∪I(A)) = f(B−A). The lemma follows from the fact that f is weakly supermodular
[5].

Now we are ready to prove Theorem 4.7.

Proof of Theorem 4.7. Since A and B are violated sets, their deficiency is p, which is the maximum
deficiency for this phase. Hence,

2p = (f(A)− |εH∪I(A)|) + (f(B)− |εH∪I(B)|)
= (f(A) + f(B))− (|εH∪I(A)|+ |εH∪I(B)|).

Since f is weakly εH∪I-supermodular, either f(A)+f(B) ≤ f(A∩B)+f(A∪B) or f(A)+f(B) ≤
f(A − B − εH∪I(B)) + f(B − A − εH∪I(A)). Suppose the former holds. By εH∪I-submodularity,
we also have |εH∪I(A)|+ |εH∪I(B)| ≥ |εH∪I(A ∩ B)|+ |εH∪I(A ∪B)|. Hence,

2p ≤ (f(A ∩B) + f(A ∪ B))− (|εH∪I(A ∩B)|+ |εH∪I(A ∪B)|)
= (f(A ∩B) − |εH∪I(A ∩B)|) + (f(A∪ B)− |εH∪I(A ∪B)|)
≤ 2p.
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The last inequality results from the fact that no set has deficiency more than p. Since (f(A ∩
B) − |εH∪I(A ∩B)|) + (f(A ∪ B) − |εH∪I(A ∪B)|) is at most as well as at least 2p, it is 2p. This
is possible only if A ∩ B and A ∪ B are violated.

Similarly, if f(A)+ f(B) ≤ f(A−B− εH∪I(B)) + f(B−A− εH∪I(A)), then A−B− εH∪I(B)
and B − A− εH∪I(A) are violated.

4.4 Proof of Theorem 4.1

Finally, we turn to the proof of Theorem 4.1. Let C be the collection of active sets in the current
iteration. Let Y be the set of edges e ∈ F for which there exists C ∈ C such that e ∈ δG−εH(C)(C).
For each edge e ∈ Y we define a witness set, We ⊆ V , as a set that meets the following conditions:

1. |εH∪I∪F (We)| = f(We)− p + 1;

2. |εH∪I∪F−{e}(We)| = f(We)− p.

To see that a witness set We must exist for every e ∈ Y , observe that by construction of the
algorithm I ∪ F − {e} is not a feasible solution; thus there must be some violated set We which is
a witness set. A witness family for Y is a family of subsets of V , so that it exactly contains one
witness for each edge in Y . Note that it cannot be the case that the same set W is a witness for
two different edges e and f .

Theorem 4.14 There is a εH-laminar witness family for Y .

Proof. Given a witness family, suppose two sets We and Wf εH-cross. Then they will εH∪F∪I-cross
also. Let X and Y be the two sets obtained from Theorem 4.7; that is, either We∩Wf and We∪Wf

or We−Wf−εH∪F∪I(Wf) and Wf−We−εH∪F∪I(We). These sets do not εH∪F∪I-cross since neither
sets We∩Wf and We∪Wf εH∪F∪I-cross nor sets We−Wf−εH∪F∪I(Wf ) and Wf−We−εH∪F∪I(We)
εH∪F∪I-cross. We will replace We and Wf by two other sets Xe and Yf . We will show that these
sets Xe and Yf will be witnesses for edges e and f . When the first case of Theorem 4.7 is valid,
we will have that these two sets are We ∩Wf and We ∪Wf . When the second case of the theorem
holds, Xe and Yf will be subsets of We −Wf − εH∪F∪I(Wf) and Wf −We − εH∪F∪I(We). Note
that in either case the two sets do not εH-cross. Also notice that this process cannot continue
indefinitely without decreasing the minimum cardinality of a witness in the family, so it must end
with a laminar witness family.

For the sake of argument, we assume that the first case of Theorem 4.7 holds; the other case is
similar, and we will explain the minor differences at the end of the proof.

Since We and Wf are witnesses we get

|εH∪F∪I(We)|+ |εH∪F∪I(Wf)| = f(We) + f(Wf)− 2p + 2.

By the arguments in the proof of Theorem 4.7 we can use the weak εH∪F∪I-supermodularity of
f(·) and the εH∪F∪I-submodularity of |εH∪F∪I(·)| to get that

|εH∪F∪I(We ∩Wf )|+ |εH∪F∪I(We ∪Wf)| ≤ f(We ∩Wf ) + f(We ∪Wf)− 2p + 2.

Note that this is possible, because the option which holds for f(·) does not depend upon the ε
function. Since F ∪ I is a feasible solution to this phase, |εH∪F∪I(We ∩Wf)| ≥ f(We ∩Wf)− p + 1
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and |εH∪F∪I(We∪Wf )| ≥ f(We∪Wf)−p+1. Thus the above inequality implies that |εH∪F∪I(We∩
Wf )| = f(We ∩Wf )− p + 1 and |εH∪F∪I(We ∪Wf )| = f(We ∪Wf )− p + 1.

Now consider e. Applying the definition of witness for e we get

|εH∪F∪I−{e}(We)|+ |εH∪F∪I−{e}(Wf )| ≤ f(We) + f(Wf)− 2p + 1.

Using the weak εH∪F∪I−{e}-supermodularity of f(·) and εH∪F∪I−{e}-submodularity of |εH∪F∪I−{e}(·)|,
we get that

|εH∪F∪I−{e}(We ∩Wf )|+ |εH∪F∪I−{e}(We ∪Wf )| ≤ f(We ∩Wf ) + f(We ∪Wf)− 2p + 1.

Now by the feasibility of H we know that |εH∪F∪I−{e}(We∩Wf )| ≥ f(We∩Wf )−p and |εH∪F∪I−{e}(We∪
Wf )| ≥ f(We ∪ Wf ) − p. Thus for at least one of We ∩ Wf and We ∪ Wf , say We ∩ Wf ,
|εH∪F∪I−{e}(We ∩ Wf )| = f(We ∩ Wf ) − p. Then We ∩ Wf is a witness set for e and we set
Xe = We ∩Wf . A similar argument will show that the other set is a witness set for edge f .

We now return to the case that the result of Theorem 4.7 are the two sets We−Wf−εH∪F∪I(Wf)
and Wf −We− εH∪F∪I(We). The argument proceeds much as above, except that it will show that
one of We −Wf − εH∪F∪I−{e}(Wf ) and Wf −We − εH∪F∪I−{e}(We) is a witness for e, and the
corresponding opposite of the pair We −Wf − εH∪F∪I−{f}(Wf) and Wf −We − εH∪F∪I−{f}(We)
is a witness for f .

Given the laminar witness family, we can construct a rooted tree T , as follows. Let L be the
set of sets in the witness family, plus the set of vertices V . We create a node of the tree for each
L ∈ L; the node corresponding to V will be the root of T . The node corresponding to A ∈ L is a
parent of the node corresponding to B ∈ L if A is the smallest set in L strictly containing B. We
associate each active set C ∈ C with the node in the tree corresponding to the smallest set in L
that contains C; note that this notion is well-defined by Corollary 4.8.

In a moment, we will prove the following lemma.

Lemma 4.15 Let B be the set of active sets associated with a node v in the tree T . Then the degree
of node v in the tree T is at least

∑
C∈B |F ∩ δG−εH(C)(C)|.

First, let us show how the lemma implies Theorem 4.1.

Proof of Theorem 4.1. Let us color the nodes of the tree T ; we color a node blue if it has an active
set associated with it, and red otherwise. Let Red and Blue be the sets of red and blue nodes
respectively, and let deg(v) be the degree of node v in tree T . Note that every leaf of the tree is
blue: since each leaf corresponds to a violated set, it must contain some minimal violated set inside
it. Then we have∑

C∈B
|F ∩ δG−εH(C)(C)| ≤

∑
v∈Blue

deg(v)(5)

=
∑

v∈Blue∪Red

deg(v)−
∑

v∈Red

deg(v)

≤ 2(|Blue|+ |Red| − 1)− 2(|Red| − 1)(6)
≤ 2|Blue|
≤ 2|C|,(7)

where (5) follows by Lemma 4.15, (6) by the fact that T is a tree, and all red nodes (excepting
perhaps the root) have degree at least two, and (7) follows since each blue node has at least one
member of C associated with it.
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We now complete the proof.

Proof of Lemma 4.15. By the definition of Y ,
∑

C∈B |F ∩ δG−εH(C)(C)| = ∑
C∈B |Y ∩ δG−εH(C)(C)|.

Given a node v of the tree T , and the set of active sets B corresponding to it, let YB be the set of
edges YB =

⋃
C∈B(Y ∩ δG−εH(C)(C)). Note that there must be a witness set corresponding to each

edge in YB , and at most one can be the set W corresponding to v itself. The proof follows if we
can show that each remaining edge of YB can be mapped to a unique child of v; that is, a unique
witness set X such that W is the smallest witness set containing X . Thus we simply need to show
that for an edge e ∈ YB, if its witness set is not W , it must be the case that for its witness set X ,
X ⊂W , and there is no witness set Z such that X ⊂ Z ⊂W .

We prove these statements by contradiction. First assume that X 6⊂ W . Since the witness
sets are laminar, this implies that X ∩W = ∅. We know e ∈ δG−εH(C)(C) with C ⊂ W for some
active C ∈ B, and e ∈ δG−εH(X)(X) by the definition of a witness set. If e ∈ δG−εH(W )(W ), this
contradicts the fact that X is the unique witness set for e. The only way this cannot occur is if the
endpoint of e in X is in the element neighborhood of W , εH(W ), a possibility which is eliminated
since X and W do not εH -cross. Next, suppose that there is a witness set Z such that X ⊂ Z ⊂W .
As above, we know that e ∈ δG−εH(X)(X) and e ∈ δG−εH(C)(C), where C ⊆ W , but C ∩ Z = ∅.
Thus there is one endpoint of e in C and the other in X . If e ∈ δG−εH(Z)(Z), this contradicts the
fact that X is the unique witness set for e. The only way this cannot occur is if the endpoint of e in
C is in the element neighborhood of Z, εH(Z), a possiblity which is eliminated since by Corollary
4.8 the active set C does not εH -cross the violated set Z.

5 Tight example

For the special case when the set of nonterminals is empty, our algorithm reduces to the algo-
rithm of [5] for edge connectivity. A 2Hk-approximation tight example to this algorithm for edge-
connectivity is given in the same paper.
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