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Abstract

The element connectivity problem falls in the category of

survivable network design problems { it is intermediate to

the versions that ask for edge-disjoint and vertex-disjoint

paths. The edge version is by now well understood from

the view-point of approximation algorithms [11, 2, 5], but

very little is known about the vertex version. In our

problem, vertices are partitioned into two sets: terminals

and non-terminals. Only edges and non-terminals can

fail { we refer to them as elements { and only pairs of

terminals have connectivity requirements, specifying the

number of element-disjoint paths required. Our algorithm

achieves an approximation guarantee of factor 2Hk, where

k is the largest requirement and Hn = 1 + 1

2
+ � � � + 1

n
.

Besides providing possible insights for solving the vertex-

disjoint paths version, the element connectivity problem is

of independent interest, since it models a realistic situation.

1 Introduction

Given an undirected graph G = (V;E) with non-
negative costs ce for edges e 2 E, and a value ruv
for each pair of vertices u; v 2 V , the survivable
network design problem (SNDP) is that of �nding a
minimum-cost subgraph such that there are ruv disjoint
paths between each pair of vertices u and v. The
paths can be required to be either edge-disjoint or
vertex-disjoint; we refer to the former as the edge-
connectivity SNDP (EC-SNDP) and the latter as the
vertex-connectivity SNDP (VC-SNDP). The survivable
network design problem is a natural generalization of
the Steiner tree problem, and captures the problem of
designing a minimum-cost network such that u and v

are still connected in the network after up to ruv � 1
links fail (for EC-SNDP) or up to ruv � 1 links or
nodes fail (VC-SNDP). The survivable network design
problem arises fromproblems in the telecommunications
industry (c.f. [4, 7]) and has been studied from many
di�erent approaches including polyhedral combinatorics
[10, 4], interchange heuristics [8], min-max relations
[1] (in the unweighted case), approximation algorithms
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[11, 2, 9], and implementations thereof [7]. In this
paper, we consider approximation algorithms for the
SNDP. A �-approximation algorithm for the SNDP runs
in polynomial time and �nds a solution of value no more
than � times the value of an optimal solution.

There appears to be a qualitative di�erence in dif-
�culty between EC-SNDP and VC-SNDP. For exam-
ple, although an exact min-max formula is known for
the number of edges needed to add to a graph to
have it satisfy the edge-disjoint paths constraint [1],
no similar formula is known in the case of the vertex-
disjoint paths. Similarly, in the case of approximation
algorithms, a 2Hk-approximation algorithm has been
known for a few years for EC-SNDP [11, 2], where
Hn = 1 + 1

2 + � � �+
1
n
� lnn and k = maxu;v ruv. Very

recently, Jain gave a 2-approximation algorithm for the
problem [5]. However, in the case of VC-SNDP very lit-
tle is known in terms of approximation algorithms. Ravi
and Williamson [9] show a 3-approximation algorithm in
the case that ruv 2 f0; 1; 2g, and a 2Hk-approximation
algorithm in the case that ruv = k for all u; v 2 V .
For the latter problem, also known as the minimum-
cost k-vertex-connected subgraph problem, there is also

a (2 + 2(k�1)
n

)-approximation algorithm due to Khuller
and Raghavachari [6] in the case that edge costs obey
the triangle inequality. However, no non-trivial approx-
imation algorithm is known for the vertex-connectivity
survivable network design problem in its full generality.

In this paper we make progress on this important
problem by considering a natural problem intermediate
to EC-SNDP and VC-SNDP. We call it the element
connectivity survivable network design problem (ELC-
SNDP). In this version of the problem, the vertices are
partitioned into terminals and Steiner vertices. Steiner
vertices and edges can fail; these are the elements. On
the other hand, terminals cannot fail. Further, for
each pair of terminals, u; v, we are given a connectivity
requirement ruv. The problem is to �nd a minimum-
cost subgraph such that for each pair of terminals, u; v,
despite the failure of any ruv � 1 elements, there is still
a path left connecting u and v; that is, there are ruv
element-disjoint paths between each pair of terminals
u and v. Notice that Steiner vertices do not have any
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connectivity requirements. This model is realistic, since
in many practical situations, the terminals are robust
and do not fail, whereas intermediate nodes, which do
not have connectivity requirements, do fail. In the VC-
SNDP, all vertices and all edges are allowed to fail. The
EC-SNDP is a special case of the ELC-SNDP with an
empty set of Steiner vertices.

Our central result is a 2Hk-approximation algo-
rithm for this problem, where k = maxu;v ruv is the
largest connectivity requirement.

Our algorithm follows the basic algorithmic ap-
proach used in the 2Hk-approximation algorithms for
EC-SNDP in Williamson et al. [11] and Goemans et
al. [2] and the cases of VC-SNDP considered in Ravi
and Williamson [9]. The algorithms in these papers
break down the problem into a number of phases. In
each phase, we solve a certain augmentation problem by
specifying vertex sets S which must be augmented; that
is, we must choose an edge from �(S), the set of edges
with one endpoint each in S and V �S. This augmenta-
tion problem is formulated as an integer programming
problem, and the problem is solved by using the primal-
dual method for approximation algorithms. We follow
the paper of Ravi and Williamson [9], which shows that
if the augmentation problem meets certain conditions,
then the primal-dual method gives a good approxima-
tion algorithm for the augmentation problem. For a
more detailed presentation of these algorithms and an
overview of the primal-dual method, we refer the reader
to the survey of Goemans and Williamson [3].

The central technical di�culty in modifying these
algorithms is de�ning the appropriate notion of an
augmentation for this problem and then showing that
the conditions of [9] are met for this notion. The
adaption is non-trivial. For example, previous work on
the EC-SNDP needed to augment sets S by adding an
edge from �(S), and proofs relied on the well-known
properties of the function �(S). Here we must not only
choose carefully the sets S to augment and the set of
edges e(S) from which we must choose, but also prove
the corresponding properties about e(S).

The remainder of the paper is structured as follows.
In Section 2 we give the integer programming formula-
tion and its LP-relaxation. In Section 3 we show how
the problem is decomposed into phases and we prove
the approximation guarantee, assuming the correct im-
plementation of a phase. In Section 4 we give the phase
algorithm. In the last section we give a tight example,
thereby showing that no better guarantee can be estab-
lished for our algorithm.

2 The Problem, its Integer Programming

Formulation and LP-Relaxation

Let G = (V;E) be an undirected graph with non-
negative costs ce on edges. The set V is partitioned into
two disjoint sets R and S. R is the set of terminals; there
is a non-negative connectivity requirement ruv between
each pair of terminals. We assume that these vertices
are reliable. On the other hand vertices in S, also known
as Steiner vertices, and all the edges are unreliable. We
call the members of S [ E elements. We de�ne the
element connectivity problem as choosing a minimum-
cost set of edges E0 � E, so that in the subgraph
H = (V;E0) for every pair u and v, there still remains
a path between them in case ruv � 1 elements fail. In
other words there are ruv element disjoint paths between
u and v. For convenience we extend the de�nition of ruv
to any pair u and v of vertices by assuming that ruv = 0
if at least one of u and v is Steiner.

Let H be a feasible solution to this problem. Sup-
pose that a set of elements A � S [E has failed. Now
the surviving graph,H�A, should have at least ruv�jAj
element-disjoint paths for every pair u and v. Note that
as far as integer program is concerned, for a pair u and
v, it is su�cient to consider A's of cardinality ruv � 1
only, and write cut constraints that ensure the existence
of a path from u to v. However, it is easy to show that
the LP-relaxation of this integer program has a bad in-
tegrality gap. Consider an unweighted complete graph
on n vertices from which we want to selected a low-cost
k-edge-connected subgraph. Since the degree of every
vertex in the optimal solution should be at least k, the
cost of optimal solution is at least nk

2 . If we form the
linear program only for A's of cardinality k � 1 then
picking every edge to the extent of 1

n�k will be a valid
feasible solution. This gives us the integrality gap of at

least k(n�k)
n�1 . Choosing k = n

2 makes the integrality gap
at least n

4 .
Hence, we include in the integer program con-

straints corresponding to sets A of all cardinalities. As
a corollary of our algorithm, we show that the LP-
relaxation of this integer program has integrality gap
bounded by 2Hk.

Let f(B) = maxu2B;v 62B ruv. The integer program
is:

min
X
e2E

cexe(2.1)

subject to

8A � S [E;B � V �A :
X

e2�G�A(B)

xe � f(B) � jAj

8e 2 E : xe 2 f0; 1g;
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where �G�A(B) denotes the set of edges with one
endpoint in B after removing A from graph G.

To get the linear program we further relax the
condition xe 2 f0; 1g to xe � 0. The following is the
dual of the above linear program,

max
X

A�S[E;B�V�A

(f(B) � jAj)yBA(2.2)

subject to

8e 2 E :
X

BA:A�S[E;B�V �A;e2�G�A(B)

yBA � ce

8A � S [E;B � V �A : yBA � 0:

Let OPT be the optimal cost of IP (2.1). By weak
duality theorem any solution to (2.2) will be a lower
bound on OPT.

We will use the fact that f is weakly supermodular
[2], i.e., f(V ) = 0 and, for every A;B � V , at least one
of the following holds
� f(A) + f(B) � f(A �B) + f(B � A)

� f(A) + f(B) � f(A \B) + f(A [B):

3 High level description of the algorithm

Given a partially feasible solution H to IP (2.1), de�ne
the de�ciency of a constraint as the di�erence between
the right-hand side and the left-hand side of the con-
straint. Only unsatis�ed constraints will have positive
de�ciency. The de�ciency of a set B � V is de�ned to
be the maximum de�ciency of a constraint in which B

is involved.
As in [2] our algorithm has k phases numbered from

k to 1. We design the algorithm so that at the start of
pth phase, the de�ciency of a set can be at most p and
at the end of the phase it can be at most p � 1. So at
the end of the 1st phase we have a feasible solution and
we output that.

Let H be the partial solution constructed at the
beginning of the pth phase. Let h be de�ned by

h(B) =

�
1; if de�ciency of B is p
0; otherwise.

Let �H(B) be the set of Steiner vertices which are
not in B but have a neighbor with respect to H in B.
Let �H (B) be the set of those edges of H which have
one endpoint in B and the other in R� B. Finally, we
de�ne the element neighborhood of set B w.r.t. H to be
"H(B) = �H(B) [ �H (B).

Lemma 3.1. The de�ciency of B is f(B)�j"H (B)j
and is the de�ciency of the constraint corresponding to
the set pair "H (B) and B. Moreover inclusion of any
edge of E � H which decreases the de�ciency of this
constraint will also decrease the de�ciency of B.

So the integer program we want to solve for the pth

phase is:

min
X

e2E�H

cexe(3.3)

subject to

8B � V :
X

e2�
G�"H (B)(B)

xe � h(B)

8e 2 E �H : xe 2 f0; 1g

Let I be a feasible solution of this integral program.
By Lemma 3.1 the de�ciency of any set with respect to
I [H will be at most p� 1.

By relaxing xe 2 f0; 1g to xe � 0 we get a linear
program, whose dual is:

max
X
B�V

h(B)yB(3.4)

subject to

8e 2 E �H :
X

B:e2�
G�"H (B)(B)

yB � ce

yB � 0

In the next section we will prove:

Theorem 3.1. We can �nd in polynomial time a
feasible solution, I, for IP (3.3) and a feasible solution,
y, for LP (3.4) such that cost(I) � 2

P
B�V h(B)yB .

Let y be as in the above theorem. Let

yBA =

�
yB; if A = "H (B)
0; otherwise.

It is easy to verify that y is a feasible solution for
LP (2.2).

Lemma 3.2.

cost(I) �
2

p
�OPT:

Proof. By de�nition, h(B) = 1 i� f(B)�j"H (B)j =
p. So, X

B�V

h(B)yB =
X
B�V

h(B)yB"H (B)

=
1

p

X
B�V

(f(B) � j"H (B)j)yB"H (B)

�
1

p
�OPT:

The claim follows immediately from Theorem 3.1.

Corollary 3.1. The cost of edges chosen by the
algorithm in all k phases is at most

2

�
1

k
+

1

k � 1
+ : : :+ 1

�
�OPT = 2Hk �OPT:
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4 The algorithm for a phase, and its analysis

We now present the algorithm for a phase, which will
augment sets whose de�ciency is p. Our augmentation
algorithm follows those in [11] and [9]. To prove
Theorem 3.1, we use results of Ravi and Williamson [9]
(see Corollary 4.8), which imply Theorem 3.1 if certain
conditions on the augmentation problem are met. We
�rst give the algorithm, then turn to stating and proving
the conditions.

Let I be a partial solution to IP (3.3). A set is
violatedwith respect to I if the constraint corresponding
to it in IP (3.3) is unsatis�ed. A violated set is active
if none of its proper subsets is violated. Our algorithm
for a phase is as follows:

Algorithm for phase p
I  � ;
y  0
i 0
While there are violated sets w.r.t. I

i i+ 1
Find all active sets (an algorithm will be

discussed below).
Increase yB uniformly for all active sets B

until a dual constraint becomes tight
(i.e.

P
B:e2�

G�"
H

(B)(B) yB = ce) for

some ei 2 E � ("H (B) [ I) for some
active set B.

I  I [ feig
For l i downto 1

If there are no violated sets w.r.t. I � felg
I  I � felg

To prove that this algorithm satis�es Theorem 3.1
we need to prove the three conditions given in [9]. To
state those three conditions in our setting we need the
following de�nitions.

From now on H is �xed as the partial solution
obtained at the end of (p + 1)st phase and we �x an
iteration i of the while loop of the algorithm above. We
will call this the \current iteration". Let I be the partial
solution at the beginning of this iteration.

Definition 4.1. Two sets A;B � V "H[I -cross
if A 6� B, B 6� A, A \ (B [ "H[I (B)) 6= ; and
B \ (A [ "H[I (A)) 6= ;.

Definition 4.2. A family of subsets of V is "H[I -
laminar if no two sets in the family "H[I -cross.

Note that this is a stronger notion than the usual
notion of laminarity, which is reproduced below. A
laminar family according to this notion is also laminar
according to the usual notion.

Definition 4.3. Two sets A;B � V cross if A 6�
B, B 6� A, and A \B = ;.

Definition 4.4. A family of subsets of V is lami-
nar if no two sets in the family cross.

Let F be the �nal set of edges returned by the
algorithm for phase p. Let B be the collection of active
sets in the current iteration. Let Y be the set of
edges e 2 F for which there exists B 2 B such that
e 2 �G�"H(B)(B). For each edge e 2 Y we de�ne a
witness set, We � V , as a set that meets the following
conditions:
1. j"H[I[F (We)j = f(We) � p+ 1;

2. j"H[I[F�feg(We)j = f(We)� p.
To see that a witness set We must exist for every
e 2 Y , observe that by construction of the algorithm
I [ F�feg is not a feasible solution; thus there must be
some violated set We which is a witness set. A witness
family for Y is a family of subsets of V , so that it exactly
contains one witness for each edge in Y .

Now we can state the needed three conditions in our
setting with respect to the current iteration.

1. No violated set with respect to I "H[I -crosses any
active set with respect to I.

2. The active sets with respect to I can be computed
in polynomial time.

3. There exists a laminar witness family for Y .

Though we replaced the properties of crossing
and laminaritywith "H[I -crossing and "H[I -laminarity,
given these conditions the proof of Theorem 3.1 follows
from the techniques of [11, 9]. We do not repeat the
part of these papers showing how Theorem 3.1 follows
from the above conditions.

To prove the conditions, we will need the following
theorem.

Theorem 4.1. If A;B � V are violated sets with
respect to I, then either A\B and A[B are also violated
or A � B � "H[I (B) and B � A � "H[I (A) are also
violated.

The theorem implies the following corollary, which
gives the �rst condition.

Corollary 4.1. No violated set with respect to I

"H[I -crosses any active set with respect to I.

Proof. If a violated set A "H[I -crosses an active set
B, then by the theorem, either A\B or B�A�"H[I(A)
is also violated. This contradicts the minimality of B.

It is also not di�cult to see that Theorem 4.1
implies the second condition. It follows from the
corollary that the active sets are disjoint. Hence each
vertex can be in at most one active set. Consider a
network on H[I, where capacity of each edge and each
Steiner vertex is one and capacity of each terminal is
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unbounded. Consider a vertex u: it will be in an active
set if there exists a vertex v such that the minimum u-v
cut with respect to edges H[I is of capacity ruv�p. Let
v be one such vertex. The active set in which u lies is
the minimal (inclusion-wise) u-v min-cut. This can be
found in polynomial time using a max-
ow subroutine.

We now prove Theorem 4.1, and then see how it
implies the last condition. To prove this theorem we
need the following de�nitions and lemmas.

Definition 4.5. Let ' : 2V ! ZZ+. We say that
' is "H[I -submodular if '(V ) = 0 and, for every
A;B � V , the following two conditions hold:

1. '(A) + '(B) � '(A \B) + '(A [B)

2. '(A) + '(B) � '(A �B � "H[I (B)) + '(B �A�
"H[I (A)):

Lemma 4.1. j"H[I j is "H[I -submodular.

Proof. We need to prove the two inequalities in the
de�nition of "H[I-submodularity.
1. One can easily verify that the contribution of any

element to the left-hand side of the inequality is at
least the contribution of the element to the right-
hand side of the inequality. This proves the �rst
condition of "H[I -submodularity.

2. The proof of this inequality is similar to the proof of
the �rst inequality except for the case when there
is an edge rs, r 2 R, s 2 S \ A \ B and either
r 2 A � B � "H[I(B) or r 2 B � A � "H[I (A).
In this case s contributes to the right-hand side of
the inequality but does not contribute to the left-
hand side. But to counteract the contribution of
s, edge rs contributes only to the left-hand side of
the inequality.

Definition 4.6. Let ' : 2V ! ZZ. We say that ' is
weakly "H[I-supermodular if '(V ) = 0 and, for every
A;B � V , at least one of the following two conditions
hold:

1. '(A) + '(B) � '(A \B) + '(A [B)

2. '(A) + '(B) � '(A �B � "H[I (B)) + '(B �A�
"H[I (A)):

Lemma 4.2. f(B) = maxu2B;v 62B ruv is weakly
"H[I -supermodular.

Proof. Since "H[I (B) does not contain a required
vertex f(A � B � "H[I (B)) = f(A � B). Similarly,
f(B � A � "H[I (A)) = f(B � A). The lemma follows
from the fact that f is weakly supermodular [2].

Now we are ready to prove Theorem 4.1.
Proof of Theorem 4.1. Since A and B are vio-

lated sets, their de�ciency is p, which is the maximum

de�ciency for this phase. Hence,

2p = (f(A) � j"H[I(A)j) + (f(B) � j"H[I (B)j)

= (f(A) + f(B)) � (j"H[I (A)j+ j"H[I (B)j):

Since f is weakly "H[I -supermodular, either f(A)+
f(B) � f(A \ B) + f(A [ B) or f(A) + f(B) �
f(A � B � "H[I (B)) + f(B � A � "H[I (A)). Suppose
the former holds. By "H[I-submodularity, we also have
j"H[I (A)j+ j"H[I(B)j � j"H[I (A\B)j+ j"H[I (A[B)j.
Hence,

2p � (f(A \B) + f(A [B))

� (j"H[I(A \B)j+ j"H[I (A [B)j)

= (f(A \B) � j"H[I(A \B)j)

+ (f(A [B) � j"H[I (A [B)j)

� 2p:

The last inequality results from the fact that no set
has de�ciency more than p. Since (f(A\B)�j"H[I (A\
B)j) + (f(A [B)� j"H[I (A[B)j) is at most as well as
at least 2p, it is 2p. This is possible only if A \B and
A [B are violated.

Similarly, if f(A) + f(B) � f(A �B � "H[I (B)) +
f(B � A � "H[I (A)), then A � B � "H[I (B) and
B � A� "H[I (A) are violated.

We can now see how the theorem implies the last
condition.

Theorem 4.2. There is a laminar witness family
for Y .

Proof. Given a witness family, suppose two sets We

and Wf cross. Then they will "H[F[I -cross also. Let
X and Y be the two sets obtained from Theorem 4.1
(observing that neither sets We [ Wf and We \ Wf

"H[F[I -cross nor sets We � Wf � "H[F[I (Wf ) and
Wf �We�"H[F[I (We) "H[F[I -cross). We will replace
We and Wf by two other sets Xe and Yf . We will show
these sets, Xe and Yf will be witnesses for e and f .
When the �rst case of Theorem 4.1 is valid, we will
have Xe = X and Yf = Y . When the second case of
the theorem is valid Xe and Yf will be the subsets of
We�Wf andWf �We. Notice that this process cannot
continue inde�nitely without decreasing the minimum
cardinality of a witness in the family, so it must end
with a laminar witness family. So only claim remains to
show is that Xe and Yf are witnesses for e and f .

Since We and Wf are witnesses we get

j"H[F[I (We)j+j"H[F[I (Wf )j = f(We)+f(Wf )�2p+2:

Using the weak "H[F[I -supermodularity of f(�) and
"H[F[I -submodularity of j"H[F[I (�)j, we get that

j"H[F[I (X)j+ j"H[F[I (Y )j = f(X) + f(Y )� 2p+ 2:
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Since F [I is a feasible solution to this phase, the above
equality implies that j"H[F[I (X)j = f(X) � p + 1 and
j"H[F[I (Y )j = f(Y )� p+ 1.

Now consider e. Applying the de�nition of witness
for e we get

j"H[F[I�feg(We)j+ j"H[F[I�feg(Wf )j

� f(We) + f(Wf )� 2p+ 1:

Using the weak "H[F[I�feg-supermodularity of f(�) and
"H[F[I�feg-submodularity of j"H[F[I�feg(�)j, we get
that

j"H[F[I�feg(X
0)j+ j"H[F[I�feg(Y

0)j

� f(X 0) + f(Y 0) � 2p+ 1;

where X0 and Y 0 are obtained by applying the same
option of weak "H[F[I�feg-supermodularity which was
applied to obtain the sets X and Y from the options of
weak "H[F[I -supermodularity (e.g., if X = We [Wf

and Y = We \ Wf , then X0 = We [ Wf and Y 0 =
We\Wf ). Note that this is possible, because the option
which holds does not depend upon the " function.

Now by the feasibility of H we know that
j"H[F[I�feg(X

0)j � f(X 0)� p and j"H[F[I�feg(Y
0)j �

f(Y 0) � p. Thus for at least one of X0 and Y 0, say X0,
j"H[F[I�feg(X

0)j = f(X0) � p. In case X and X 0 are
same then X is a witness for e, so we set Xe = X = X0.

In case X and X0 are di�erent then, it must be
the case that the de�nition of X and X0 involved
"H[F[I and "H[F[I�feg respectively. There are now
two possibilities,
1. X = We�Wf �"H[F[I (Wf ) and X

0 = We�Wf �
"H[F[I�feg(Wf )

2. X = Wf �We�"H[F[I (We) and X 0 = Wf �We�
"H[F[I�feg(We)
Whichever be the case clearly X0 is a witness for e.

So we set Xe = X0. We apply the same procedure with
f to obtain a witness Yf .

5 Tight example

For the special case when the set of Steiner vertices is
empty, our algorithm reduces to the algorithm of [2] for
edge connectivity. A 2Hk-approximation tight example
to this algorithm for edge-connectivity is given in the
same paper.
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