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Gene duplication and loss is a dynamic and ongoing process during evolution

and both play a significant role in the rise of variable size gene families originating

from a single ancestral gene. Re-creating the evolutionary history of these gene

families is an important goal of contemporary comparative genomics as under-

standing gene family histories can reveal many of the evolutionary forces acting

on the lineage in question.

In order to accurately unravel gene family histories, the precise relationship be-

tween genes in the gene family must be determined. Relationship can be described

in two terms: orthologous and paralagous. Orthologous genes are correspond-

ing copies of an ancestral gene in two descendent genomes. Paralagous genes are

multiple copy genes in a given genome related by gene duplication events. Many

methods have been proposed for the determination and identification of these re-

lationships between members of large gene families. To date the vast majority

of these methods rely upon protein sequence information to determine orthology.

However, as the protein sequence is under strong selective constraints for function

the relationship between the protein sequences of two members of a gene fam-

ily would be a reflection of both the function of those genes and the ancestral

relationship between them.

In an attempt to separate these two confounding factors this thesis proposes

several methods for utilizing non-coding sequence information to determine ances-

tral relationship between members of a gene family. This approach has several

advantages including independence from selective influences on the protein cod-

ing region, freedom from computationally intensive multiple alignment methods,

and the ability to incorporate pseudogenes as explicit markers of gene loss in gene

family histories.
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Chapter 1

Introduction

Over the course of evolutionary time, gene duplication and loss has led to the

evolution of highly complex genomes with thousands of genes and hundreds of

gene families (Lynch, 2007). The rate of gene duplication and loss is sufficiently

high that variation in gene copy number is not only revealed between species but

is also an important component of individual variation within populations (Fortna

et al., 2004). Changes in gene copy number can impact fitness in dramatic ways

including in a number of human health conditions (McCarroll & Altshuler, 2007;

Redon et al., 2006). For this reason, the impact of changes in gene copy number

on evolution and human health are under increasing scrutiny.

In order to reconstruct gene family evolution we must infer a probable evo-

lutionary history of a set of homologous genes using existing characters of those

genes. The inferred relationships between the members of this group represents the

history of gene family and can be represented as a tree of genes with duplication

and loss events on each branch of the tree. If we understand when and what types

of evolutionary events happened in the gene family, it will reveal the evolutionary

driving forces and constraints on the gene family, for example, the lineage specific

gene duplication and deletion rates.
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Many discrete molecular mechanisms can lead to duplication or loss. Four pri-

mary mechanisms of gene duplication have been described in consensus (Hahn,

2009; Li, 1997): whole genome duplication or polyploidization (Hurley et al., 2005;

Skrabanek, 1998; Van de Peer et al., 2003), unequal crossing over or tandem du-

plication (Shoja & Zhang, 2006), duplicative transposition (Bailey et al., 2003;

Friedman & Hughes, 2004; Samonte & Eichler, 2002), and retrotransposition (Har-

rison et al., 2005; Zhang et al., 2002). The retention rates of gene duplicates by

different mechanisms have extremely varied (Lynch, 2007, Ch. 8). Of these, whole

genome duplication, tandem duplication, and duplicative transposition are DNA-

mediated duplication events (abbreviated here as DD for DNA Duplication), while

retrotransposition is RNA-mediated (abbreviated here as RD for RNA Duplica-

tion). Whole genome duplication has been important to the evolution of many

lineages (Jaillon et al., 2004; Van de Peer et al., 2003), but it is a relatively rare

event (Panopoulou & Poustka, 2005). Unlike whole genome duplication events,

tandem duplication and duplicative transposition (sometimes collectively referred

to as segmental duplications) occur continuously and have contributed significantly

to the divergence of gene content between mammalian genomes. Duplication by

retrotransposition also occurs quite frequently, but because retrotransposed gene

copies are duplicated by an RNA-mediated mechanism they lack the promoter and

other flanking regulatory sequences of the parental gene. For this reason, retrodu-

plication events have long been believed to give rise primarily to non-functional

pseudogenes (Petrov & Hartl, 1999; Shemesh et al., 2006). Recent studies however,

have indicated the presence of many apparently functional retrocopies in various

mammalian genomes, challenging traditional perspectives on the relevance of this

event to genome evolution (Kaessmann et al., 2009; Sakai et al., 2007; Svensson

et al., 2006; Vinckenbosch et al., 2006). Very recently retrotransposition has also

been shown to contribute siRNA genes to the genome (Tam et al., 2008; Watanabe
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et al., 2008).

Once a gene or genes have been duplicated the retention of those new gene

copies in the genome is subject to evolutionary forces. Under neutral conditions

population genetics indicates that the vast majority of newly duplicated genes will

be lost. The fact that many duplicates are retained has led to the generation of

many models attempting to account further retention of gene duplicates . Several

of these models have been tested in computational simulations (e.g. Innan, 2009),

and in molecular genetic experiments on small model organisms (e.g. Hendrickson

et al., 2002). In general these models predict four major fates of newly duplicated

gene copies (Hahn, 2009): 1) conservation, 2) subfunctionalization, 3) neofunc-

tionalization, and 4) nonfunctionalization or gene deletion. Although a handful

of examples for each of these outcomes have been described, most gene families

cannot be explained by just one model, or sometimes by none of them (Dharia

et al., 2010).

An essential step in reconstructing the evolutionary history of a gene family

is determining the precise relationship between homologous members of that fam-

ily. Two relationships are particularly important in this process: orthology and

paralogy. Orthologs are the genes in different species that derive from a common

ancestor, and paralogs are homologous genes that have diverged by gene duplica-

tion (Fitch, 2000; Koonin, 2005).

Selective pressure on the coding region of the genes and/or various mutation

rates on specific lineages/timeframes, and the lack of diversification of very recent

duplicates (Fitch, 2000) can make the precise determination of orthology and par-

alogy very difficult. Many approaches to detect true orthologs within a group of

homologous genes have been attempted. Reciprocal best hit (RBH) based methods

and their clustering variants are one type of approach in this field. For example,

Inparanoid (Berglund et al., 2008) is quite successful at pinpointing the true or-
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thologs from homologous genes by using protein sequence similarity. However,

these cluster-based approaches do not use a tree to define the clusters, thus leav-

ing the detailed orthology unclear. In contrast, phylogenetic tree based approaches

can accurately identify the evolutionary history of a gene family (Arvestad, 2003),

but their heavy computational load often makes these methods impractical.

One of the difficulties in detecting orthology and reconstructing gene family

evolution arises from gene duplication and loss events. For example, with two

duplicates on each genome of the species being compared, many combinations

of gene loss events can lead orthology definition problem to a wrong orthology

inference (Figure 1.1A). This pattern becomes problematic for a gene family evo-

lutionary tree reconstruction due to the possible combination of wrong orthology

relationships. Although there has been a significant amount of work on phylo-

genetic gene tree building to deal with the duplication and loss events, much of

this work is confounded by gene loss events. I address this problem by including

in our study pseudogenes as explicit evidence of gene loss. Pseudogenes are non-

functional copies of duplicated genes that arise from gene duplications followed by

disablements (frame shift or in-frame stop codon). Even with the limited power of

detecting older fossils of lost genes, pseudogenes are still very useful information

and, at least for young loss events, it is quite accurate to revive the gene loss events

on mammalian lineages (Schrider et al., 2009).

It is worth noting that the definitions of orthology might be different in various

contexts. Functional orthologs (Bandyopadhyay et al., 2006; Fang et al., 2010) are

orthologs that play the same biological role in different species. On the other hand,

we are interested in ancestral orthologs, which are the direct descendants of the

ancestral genes. Sankoff (1999) called such genes the true exemplars, namely, the

ones that best reflect the original position of the ancestral gene in the ancestral

genome. Ancestral orthologs might not be functional orthologs when the current
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role of functional orthologs was affected by evolutionary forces, for example, con-

vergent evolution. As shown in Figure 1.1A, gene deletion events can introduce

incongruence between ancestral orthology and functional orthology. In this case,

pseudogenes can help us define the ancestral orthologs. Being the remnants of

lost genes, pseudogenes can act as placeholders along the reconstruction process

of gene family evolutionary history.

Furthermore, when there is not significant difference between two young gene

duplicates, especially between inparalogs, the duplicates after the last speciation,

(Figure 1.1B), functional or ancestral orthology definition can be indecisive on

the newly duplicated genes. Frequent and continuous duplication events in mam-

malian genomes make the orthology identification problem more challenging due

to many new duplicates. However, if we incorporate the duplication mechanisms in

defining orthology, it might be possible to distinguish the ancestral orthologs from

inparalogs simply because a retrotransposed copy cannot be an ancestral ortholog,

as shown in Figure 1.1B.

A more important issue in orthology detection and tree reconstruction ap-

proaches is that the vast majority of these methods use protein sequences for

measuring evolutionary distance or divergence. Orthology relationships or gene

trees inferred from these measures can be confounded by functional constraints of

the protein coding sequence and therefore might not reveal the ancestral relation-

ship correctly. A number of molecular genetic events including gene displacement,

concerted evolution, and functional convergence can lead to the convergence of

protein coding sequence that might not reflect the ancestral relationship between

genes.

To address this issue, I use non-coding sequence information to infer ancestral

orthology. Since the gene order and the gene structure are less sensitive to the

selective pressure on the genes of interest, I use local synteny and intron orthology
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A1

Intact gene

B A1 A2

Duplication

B’

Deletion

B
Pseudogene

A2

A

B

Speciation

Functional
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Ancestral
orthologs

(A)

A1

Intact gene

B A’ A BA2

A

Speciation Retrotransposition

Inparalogs Ancestral
orthologs

(B)

Figure 1.1: Challenges of orthology definition. (A) Gene deletion events can lead
to a wrong orthology inference. Without the pseudogenes, A2 and B intact genes
can be inferred as orthologs. However, (A2 intact gene, B’ pseudogene) and (A1
intact gene, B intact gene) on the right are the ancestral ortholog pairs. (B)
Retrotransposed copy, A’, is not an ancestral ortholog of B gene.

between genes to infer their orthology and gene family evolution history. Using

non-coding sequence information for this purpose is not novel. Gene order infor-

mation (Fu et al., 2007; Wapinski et al., 2007a; He & Goldwasser, 2008) and gene

structure information (Csurös et al., 2007; Csurös, 2008; Pavesi et al., 2008) have

been used to define orthology and to reconstruct gene family evolutionary history.

However, as far as we know, using local synteny and gene structure together in

one framework has not been tried. Additionally, by using non-coding sequences,

we can distinguish duplicate genes arising from different duplication mechanisms,

e.g. retrotranspositions and DNA-mediated duplications, which is helpful to find
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the ancestral orthologs (Figure 1.1B). Once we understand the gene family evolu-

tionary history, we can pursue detailed studies on 1) relative contribution of new

functional genes by different duplication mechanisms, 2) lineage and family specific

preference of duplication mechanisms, and 3) the fates of gene duplicates and their

retention models.

The rest of this thesis is organized as follows. I present local synteny driven

orthology in Chapter 2 of this thesis. In Chapter 3, I show how to use this idea

to identify gene duplication events of two different duplication mechanisms: DNA-

mediated and RAN-mediated. Using this method, in Chapter 4, I analyze the

evolutionary history of mammalian gene families, and try to answer the above

three questions. Finally, I summarize the current status of this work together with

possible future work in Chapter 5.
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Chapter 2

Local Synteny Driven Orthology

Definition

The accurate determination of orthology is central to comparative genomics. Pin-

pointing the origin of new genes, understanding the evolution of new gene families,

and assessing the impact of gene and genome duplication events all require the

accurate assignment of orthology between genes in distinct genomes. In com-

plex genomes with large gene families this task requires differentiating between

genes that have diverged through a speciation event (orthologs) and those derived

through duplication events (paralogs). Determination of orthology and paralogy is

especially challenging in mammalian species. Very large gene families, high rates of

gene duplication and loss, multiple mechanisms of gene duplication, and high rates

of retrotransposition all combine to make the determination of orthology between

mammalian genes difficult.

Given the importance of accurate orthology assignment, many methods have

been developed to identify orthologous genes. Most of these methods rely upon

analysis of the inferred protein sequence of the genes in question by clustering the

1The results presented in this chapter are published in Jun et al. (2009a)
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results of protein sequence comparisons in the classification of putative orthologs.

Examples of this approach include reciprocal best BLAST (Altschul, 1997) hits and

more inclusive BLAST based clustering methods. Splitting of these clusters based

on relative similarity can distinguish between older and newer duplication events

and is implemented in the widely used Inparanoid algorithm (Berglund et al., 2008)

and related approaches (e.g. Li et al., 2003) While these methods are robust and

easily implemented, they rely upon a single character, the protein sequence, for

classifying genes into orthologous groups.

Recently, methods have been proposed that use genomic context in addition to

protein sequence to improve orthology assignment. These methods have been most

successfully implemented in fungal genomes (Kellis et al., 2004; Wapinski et al.,

2007b) and in prokaryotic genomes (Lemoine et al., 2007, 2008), where gene order is

far less variable than in eukaryotes. An interesting implementation of this approach

is found in the SOAR and MSOAR algorithms (Fu et al., 2006, 2007), which

seek to assign orthology by minimizing the recombination distance between two

genomes. In most of these approaches, synteny blocks covering some percentage

of the genome are used hierarchically with protein coding information to assign

orthology between similar genes. Approaches that exploit synteny information

can be particularly useful in resolving ambiguous sequence based matches between

putative orthologs. Recently, Han & Hahn (2009) used local synteny information

to identify parent-daughter relationships among duplicated genes. However, it is

worth noting that “phylogenetic shadowing” (Boffelli et al., 2003) approaches used

in genome assembly might lead to a lack of independence between sequence and

synteny information.

In this study, I evaluate a simple method of using gene order (local synteny) in

the identification of mammalian orthologs (2.2). I explicitly compare the relative

performance of local synteny with other well-known orthology definition methods,
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including Inparanoid, in terms of relative accuracy (2.4). I also analyze the cases of

discordance between local synteny and Inparanoid to examine the false detection

rates of each method (2.5). Finally, the local synteny and gene structure informa-

tion are applied to resolve ambiguous many-to-many orthology relationships into

one-to-one ortholog pairs (2.6). I start by introducing the terminology and infor-

mal definition of the problem followed by the previous approaches (2.1). I conclude

by presenting experimental results showing that local synteny only can determine

the orthology and sometimes it can improve the orthology while the traditional

methods cannot.

2.1 Problem Definition and Previous Approaches

Given the sets of homologous genes on multiple genomes, we want to find coun-

terpart pairs (or clusters) of homologous genes with various objective functions.

The objective function in a typical orthology definition problem is to minimize the

sum of pairwise distances or to minimize the evolutionary events to explain the

data being analyzed. Since most methods assume that there is a strong correlation

between DNA or proteins sequences and biological functions, a typical orthology

definition problem can be considered as functional orthology definition problem.

Fang et al. (2010) classified the (functional) orthology definition methods into two

classes: 1) clustering pairs of the same biological functional genes, and 2) identi-

fying the evolutionary events using phylogenetic tree, thus defining orthologs.

The most straightfoward and intuitive way to find the same biological functional

genes is RBH (reciprocal best hits) on protein sequences, under the assumption

that one gene does the same role in two genomes and both are present. Inparanoid

algorithm (Berglund et al., 2008) is one of widely accepted methods in this category.

However, not only this simple assumption makes the RBHs far from the true
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orthology sometimes, also the transitive issues of using RBH are well understood.

For handling more than two genomes, a transitivity rule should be in place. For

example, MultiParanoid (Alexeyenko et al., 2006) uses single-linkage clustering on

the multiple pairwise Inparanoid outputs. However, Johnson (2007) shows that

the statistical proof that RBHs with a simple transitivity rule are neither sufficient

nor necessary condition for orthology. To avoid this transitive issue, COG uses a

three-way RBH to define COGs (Clusters of Orthologous Groups of protein) and

combines these COGs with stringent conditions (Tatusov, 1997). However, due to

the much denser RBH graph in eukaryote genomes, this approach can introduce

higher false positive errors compared to prokaryotes. To overcome this issue, more

comprehensive approaches have been developed. OrthoMCL uses the adjusted p-

values of protein alignment in order to normalize the biased gene distances followed

by Markov clustering algorithm (Li et al., 2003). Another approach to handle

the transitivity issue of RBH is OMA (Roth et al., 2005) and Roundup (Deluca

et al., 2006). Both use the global sequence alignment instead of local sequence

alignment in RBH identification to minimize a false positive RBH owing to sharing

common protein domain. Roundup uses RSD (reciprocal smallest distance (Wall

et al., 2003)) which relies on global sequence alignment and maximum likelihood

estimation of evolutionary distances to detect orthologs between two genomes.

Compared to this clustering based approach, as Fitch (2000) claimed that all

the evolutionary process in principle could be uncovered by a phylogenetic tree,

phylogenetic tree based approach is promising to minimize the transitive issue.

The tree based approach uses gene/species tree reconciliation for orthology detec-

tion, i.e. the incongruence between species and gene tree must be explained by

the evolutionary events, such as gene duplication, deletions, and horizontal gene

transfer. Main challenge in tree based orthology inference methods is from ‘tree

reconciliation’ step. Although the reconciliation step itself is very intuitive, some

11



combination of evolutionary events on the genomes and genes can lead to a wrong

gene tree for an input for the reconciliation step. Since the reconciliation defines

the evolutionary events on the tree, most tree reconciliation methods also provide

orthology relationship. SYNERGY (Wapinski et al., 2007a), TreeBEST (Li et al.,

2006), NOTUNG (Chen et al., 2000) and PrIME-GSR (Akerborg et al., 2009) are

in this category. Some of these methods use parsimonious approach for reconcil-

iation (NOTUNG and SYNERGY), and the rest use likelihood based approach

(PrIME-GSR). TreeBEST is a hybrid one using a stochastic context free grammar

approach to minimize duplication and loss events over the multiple gene trees, by

various tree building algorithms including maximum likelihood one. This approach

is being used for the orthology definition in Ensembl Compara database (Vilella

et al., 2009).

Another distinct approach is to minimize the evolutionary events. MSOAR/

MultiMSOAR (Fu et al., 2007; Fu & Jiang, 2008) and gene team model (He &

Goldwasser, 2008) are designed to find a set of orthologs (MSOAR) and conserved

gene clusters (gene team model) by minimizing the reversal events. However, not

only these methods need excessive computational power, they might give the user

wrong orthology information if gene conversion or convergent evolution occurred,

as they are primarily designed to use coding sequences.

Even with multiple methods for the orthology definition problem, we still have

the following issues: 1) circular usage of coding sequences, both for distance mea-

sure and evolutionary fates, 2) paralogs being too similar to identify the original

copy, when they are young duplicates, and 3) impractical computational burden

for some methods.

I use local gene order information to define orthologous genes, similar to MSOAR

and gene team model use the gene order information. However, in order to mini-

mize the impact of gene deletion issue, impractical computational time, and micro-
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rearrangements inducing the noise to global optimization algorithm, I use local

synteny information. I propose a simple method for the measurement of gene or-

der (local synteny) for the identification of mammalian orthologs in the following

section.

2.2 Measures of Local Synteny

Several orthology inference methods, such as Inparanoid (Berglund et al., 2008)

and OrthoMCL (Li et al., 2003), use coding sequence similarity (for example Blastp

score (Altschul, 1997), Protdist (Felsenstein, 2004)) as primary orthology signal.

Instead, I used local synteny information to determine orthology. I define the lo-

cal synteny of two genes as the maximum number of unique homologous matches

between their six neighboring genes (three upstream and three downstream im-

mediate neighbors for each gene (Figure 2.1). Homology between two neighboring

genes is defined as Blastp E-value<1e-5. To validate the use of local synteny for

inferring orthology, I evaluated the correlation between Protdist and local synteny

using a dataset derived from the Pfam protein family database. Pfam families are

highly accurate protein families based on protein domains (Finn et al., 2006). I ran-

domly selected 1,000 cross-species homologous protein pairs (homologs belonging

to a given Pfam family) from five mammalian genomes: Homo sapiens (human),

Pan troglodytes (chimp), Mus musculus (mouse), Rattus norvegicus (rat), and Ca-

nis familiaris (dog). To avoid protein family-specific bias in this analysis, I chose

one homologous pair from each Pfam family. For each pair, I computed Prot-

dist and the degree of local synteny between the two genes. Figure 2.2A shows

that there is negative correlation between Protdist and the local synteny of these

samples (r = –0.67 with p-value<0.0001). This is not surprising as gene order is

conserved between DNA segments resulting from speciation or large-scale segmen-
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tal duplication events. However, as local synteny is not directly computed based

on the coding sequence, we can use local synteny to test hypotheses of orthology

between two genes independent of their coding sequence.

sp1

sp2

Homologous matches

GOI

Maximum unique matches

5’

5’

3’

3’
(1) (3)(2)

(4)

Downstream neighboring genesUpstream neighboring genes

Figure 2.1: Diagram illustrating the computation of the maximum number of
unique homologous matches. I counted the homologous matches between 3 neigh-
boring genes (shown as filled arrows with corresponding gene orientations) on each
side of the two genes of interest (GOI, shown as two black boxes). Homology
between neighboring genes (shown as line between genes) is defined as Blastp E-
value<1e-5. The homologous matches do not need to be between the genes with
the same orientations (1) or on the same strand (2). Also they do not need to
be co-linear (3). When there are many-to-many homologous matches, I choose
the maximum unique matches (4). The number of maximum unique homologous
matches in this case is 5.

Theoretically two non-orthologous genes should not share homologous neigh-

boring genes. However, there is a small probability of homology matches occurring

by chance. Moreover, rearrangements, insertions, and deletions will lead to loss

of local synteny between orthologous genes. In order to account for these events,

I wanted to determine an optimal window size and match percentage that could

reliably identify orthologs based on local synteny. In Figure 2.2B, I test the im-

pact of the number of matches between six neighboring genes to determine local

synteny. Student’s t-tests comparing Protdist means illustrate that 0, 1, and >1

matches have significantly different Protdist means (p-value ≤ 0.05). In order to

choose the threshold of homologous matches, I calculate the false positive rate
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Figure 2.2: The box plot of Protdist in each level of local synteny. Local synteny
is measured by the maximum number of unique homologous matches between 6
neighboring genes. (a) It shows a negative relationship between Protdist and the
number of matches (r = –0.67 with p-value<0.0001). (b) No match, one match
and more than one match have significantly different Protdist means (Student’s
t-test, p-value< 0.05). Protdist and the numbers of matches are calculated from
the randomly sampled 1,000 cross-species homologous protein pairs (defined as
belonging to the same Pfam families).

(FP) and false negative rate (FN) to Inparanoid orthologs and Ensembl orthologs

then choose the threshold that minimizes the sum of FP and FN events. For six

neighbors, the pairs with more than one homologous match minimizes FP and FN

rates (0.152 to Inparanoid orthologs, and 0.151 to Ensembl orthologs (Table 2.1).

Increasing the window size to 10 or 20 flanking genes does not show a significant

difference in detecting orthology. Based on these results I define orthology by local

synteny when the number of maximum unique homologous matches between the

six neighboring genes is greater than one. I will refer to those pairs as syntenic

from now on.
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No. To Inparanoid orthologs To Ensembl orthologs
neighbors Threshold FP(%) FN(%) Sum(%) FP(%) FN(%) Sum(%)

6 >0 16.6 3.0 19.6 16.1 3.9 20.0
6 >1 10.3 4.9 15.2 9.4 5.7 15.1
6 >2 8.0 9.2 17.2 7.2 10.1 17.3
10 >2 10.1 4.7 14.8 9.1 5.5 14.6
10 >3 8.7 5.9 14.6 7.7 6.7 14.4
10 >4 8.2 10.5 18.7 7.4 11.3 18.7
20 >3 10.8 4.0 14.8 9.8 4.8 14.6
20 >4 9.8 4.4 14.2 8.9 5.1 14.0
20 >5 9.6 5.2 14.8 8.6 6.0 14.6

Table 2.1: False positive (FP) and false negative rates (FN) of local synteny mea-
sures to the Inparanoid orthologs and Ensembl orthologs, with using different
number of neighbors (6, 10 and 20) and different thresholds to be syntenic.

2.3 Method and Datasets

2.3.1 Datasets for ortholog definitions

Five species analyzed (human, chimp, mouse, rat and dog) were obtained from

Ensembl release 48 (Ensembl, 2007). I only used protein coding genes in the En-

sembl database. For genes with multiple alternative transcripts I used the longest

transcripts as the representative ones. I used Pfam families (Finn et al., 2006) to

choose ortholog candidates. Since there are more than hundreds of millions possi-

ble protein pairs among five genomes in Pfam families, I sampled our datasets in

the following way. First, I randomly selected 1,000 families from 3,418 Pfam fam-

ilies which have at least two representative proteins from different genomes. One

cross-species protein pair was selected from each Pfam family in order to avoid a

bias from big families. I used 10 sample datasets for the LCA experiment and one

of them was used in the discordance analysis.
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2.3.2 Local synteny based and other orthology definitions

Local synteny is measured by homology between the neighboring genes of two genes

of interest. In this study the maximum unique homology matches between two

sets of six neighboring genes (three upstream and three downstream neighbors)

was used. The matches do not need to be co-linear or between genes on the

same strand/orientation either (see Figure 2.1), which allows for genome micro-

rearrangements as well as gene losses and insertions in the flanking region. The

homology between neighboring genes is decided by pre-calculated Blastp (Altschul,

1997) results in the Ensembl Compara database (Flicek et al., 2008). To avoid

having high local synteny due to proximate tandem array genes, I considered the

tandem array genes as one neighboring gene. Within a tandem array, each gene

was counted separately.

I used five orthology detection methods and Ensembl orthology in comparison

with our local synteny based orthology. For each of the five orthology detection

methods – namely Inparanoid (Berglund et al., 2008), OrthoMCL (Li et al., 2003),

SBH (single or one-way best hits), RBH (reciprocal best hits) and BLASTP (one-

way Blastp hits with the threshold) – I used the pre-computed Blastp outputs in

Ensembl database as input data. Parameters and thresholds used for each method

are as follows:

1. BLASTP: homology detection using E-value cutoff (= 1e-5).

2. SBH: Single-way or One-way Best Hit. ‘Best-hit’ is defined as the hit (or

multiple hits tied) with the highest E-value (E-value cutoff = 1e-5).

3. RBH: Reciprocal Best Hit. ‘Best-hit’ is defined as same as SBH (E-value

cutoff = 1e-5).

4. Inparanoid (v2.0): bit score cutoff = 50 bits and sequence overlap cutoff =
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0.5.

5. OrthoMCL (v1.4): E-value cutoff = 1e-5 and MCL inflation index = 1.5;

MCL package (v02-063) was used.

2.3.3 Latent Class Analysis (LCA)

The accurate determination of orthology is critically important to comparative

genomics. However it has been a challenge to compare the various orthology de-

termination methods without a reliable gold-standard orthology dataset (Hui &

Zhou, 1998; Chen et al., 2007). The statistical technique of Latent Class Analy-

sis allows estimates of false positive and false negative rates from data based on

agreement and disagreement between various ortholog definitions.

The frequency table of agreements and disagreements between orthology de-

tection methods was calculated and used for LCA. LCA was performed using the

LEM package (Vermunt, 1997) with default parameters to estimate the false posi-

tive and false negative rates. I used a basic latent model to produce Figure 2.3A

assuming independence between various orthology detection methods. However,

all methods I considered are solely or partially based on protein sequences. In

order to account for these dependencies, I applied another latent model with an

extra latent variable. With such a model, called latent class model with random

effects or a continuous factor (CFactor) model, the responses of different tests are

assumed to be independent (Qu et al., 1996; Chen et al., 2007). Although the esti-

mated error rates from the CFactor model (Figure 2.3B) are less tightly distributed

than ones from the basic model, the relative values are not changed significantly

compared with Figure 2.3A. The looser distribution of values in the CFactor model

is likely due to a lack of convergence in these runs. I discarded the LCA runs with

poorly converged error rates, which stopped at the local optima.
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Figure 2.3: Latent class models. (A) A basic model with one latent variable (X)
to estimate the error rates of orthology detection methods. (B) A CFactor model
with another a continuous factor (Y) to account for the dependencies between
orthology detection methods. I: Inparanoid, O: OrthoMCL, B: BLASTP, S: SBH,
R: RBH, E: Ensembl, and L: Local synteny.

2.3.4 Intron Conservation Ratio (ICR)

Gene structure similarity is measured by the intron conservation ratio (ICR) be-

tween two intron-bearing genes (Rogozin et al., 2003). For genes with multiple

alternative transcripts we developed a collapsed gene model that incorporates all

potential exons of that gene. Resulting exon coordinates were used to obtain the

protein alignments and also to align the positions of introns. ICR between two

homologous genes was calculated as the ratio of the number of positional homolo-

gous introns divided by the total number of intron positions from the protein/intron

alignment, similar to the method in Rogozin et al. (2003). Introns with less than

40BP were ignored in ICR calculation.

2.3.5 Case analysis

For the discordant cases between Inparanoid, local synteny, and/or ICR based or-

thology (Section 2.5) I investigated: 1) any significant Blastp hits other than the
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sampled pairs with low ICR values for detecting false positive cases of Inparanoid

orthology, 2) the other Inparanoid orthologs in all 5 species in order to confirm re-

arrangement history in those families, and 3) Inparanoid orthologous counterparts

of non-Inparanoid sampled pairs in Figure to confirm these sampled pairs from

distant paralogs.

Mouse-rat many-to-many Inparanoid ortholog groups were collected and ana-

lyzed to reconstruct their evolutionary history by considering the genomic loca-

tion and intron content of their member genes (Section 2.6). Two example ortholog

groups were chosen due to their unambiguous evolutionary history: for most groups

it is difficult to unambiguously reconstruct the full evolution due to the presence

of intermingled events.

2.4 False Positive and False Negative Rates Es-

timated by LCA

Since many orthology detection methods use more complicated algorithms than

just coding sequence similarity, a high correlation between Protdist and local syn-

teny (Figure 2.2) is not sufficient evidence that local synteny captures true orthol-

ogy. For a more rigorous analysis I compared local synteny based orthology to the

orthology relationships inferred by six well-known orthology detection methods:

Inparanoid (Berglund et al., 2008), OrthoMCL (Li et al., 2003), RBH (Reciprocal

Best Hit), SBH (Single-way or One-way Best Hit), BLASTP, and orthology data

from Ensembl (Flicek et al., 2008). Since there is no gold standard of orthology,

I performed Latent Class Analysis (LCA) (Chen et al., 2007; Hui & Zhou, 1998)

to estimate the accuracy (sensitivity and specificity) in the absence of a reliable

standard. LCA estimates false positive (FP) and false negative rates (FN) based

on agreement and disagreement between various ortholog definitions. To mini-
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mize sampling bias 10 LCA’s were performed on random samples with a size of

1,000 orthologous genes from five mammalian genomes using the same sampling

method described in Section 2.2. For one sample 1,000 Pfam families were ran-

domly selected, then one cross-species protein pair was selected from each Pfam

family for analysis by the seven compared orthology inference methods. For all

methods based on coding sequence similarity, the longest proteins were used as the

representative proteins of the genes.

Figure 2.4A shows that orthology inference based on local synteny yields a lower

FP rate than SBH/BLASTP and a lower FN rate than OrthoMCL, reinforcing the

interpretation that orthology can be accurately inferred without coding sequence

information. However, local synteny has a slightly higher FN rate than the four

orthology methods based on coding sequence similarity (BLASTP, SBH, RBH and

Inparanoid). This is partially due to the fact that these coding sequence based

methods cannot distinguish retrotransposed genes from the original copies unless

retrotransposed genes are sufficiently diverse. This might lead to incorrect orthol-

ogy assignments (retrotransposed copies replace the original ortholog genes) or

ambiguous orthology assignments (one-to-many or many-to-many ortholog groups

including retrotransposed copies as their members) by these methods. Local syn-

teny also has a slightly higher FP rate than Inparanoid and RBH. This is likely due

to the fact that local synteny cannot distinguish DNA-mediated duplicates from

the original copies. I analyze these discordances in more detail in the following

section.

Because error rates estimated in this way may be affected by which methods

are included in the analysis, we must consider the FP and FN rates estimated here

as relative error rates. Furthermore, these error rates might not reflect rates ob-

tained from a genome-wide implementation of these methods. There is an ongoing

effort on standardizing protein datasets for benchmarking orthology determination
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Figure 2.4: Estimated false positive (FP) and false negative rates (FN) for seven
orthology detection methods with (A) a basic model and (B) a CFactor latent
model. FP and FN rates are estimated for each method by using LCA from 10
sampling replicates. Inset figures show the FP and FN rates of orthology detection
methods having lowest FP and FN rates.

methods (Gabaldón et al., 2009) which would help resolve this issue. In Figure

2.4, Inparanoid and RBH agree more closely than any other pair of orthology def-

initions. This is in accord with the fact that Inparanoid uses the reciprocal best
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hit to start core ortholog idenfitication. SBH and BLASTP have zero FN rates

and higher FP rates than Inparanoid and RBH due to less stringent conditions

used for ortholog detection in these methods. The order of FP rates (BLASTP >

SBH > RBH) is concordant with the stringency of each method. The FP rate of

local synteny based orthology falls between SBH and RBH (Figure 2.4A). This is

reasonable considering the fact that SBH and local synteny based orthology can-

not distinguish close paralogs from ortholog pairs, but local synteny can separate

retrotransposed paralog copies from orthologs. The FN rate of local synteny based

orthology is higher than those of Blastp based orthologies (Inparanoid, RBH, SBH,

and BLASTP). This may be due to distant paralogs retaining flanking genes, but

diverging in their coding sequences enough to be distinguishable by Blastp. Retro-

copies miscalls by Inparanoid (e.g. Figure 2.6) are also likely to have contributed

to the relative FN rate of local synteny based orthology. Due to the fact that

OrthoMCL detected the smallest number of orthologs in any sample (data not

shown) the estimated FN rates from OrthoMCL are the highest in this experi-

ment (approximately 0.3). This is opposite from the result of Chen et al. (2007).

where OrthoMCL and Inparanoid were shown to have lowest estimated FP and

FN rates and OrthoMCL has lower FN rates than Inparanoid. The apparent dis-

parity between these results could be explained by the fact that LCA is designed

to estimate consensus FP and FN rates without any guarantee that the estimated

rates are close to absolute values, and difference in the species sets used in the

two experiments: our dataset of five mammalian genomes and the comparatively

distant seven eukaryotic genomes used in Chen et al. (2007).

Figure 2.4B shows the estimated error rates by using the CFactor model (Fig-

ure 2.3B) for seven orthology detection methods. Not like Figure 2.4A, which is

from a basic model (Figure 2.3A), the error rates of Inparanoid and RBH are over-

lapped each other and the estimated rates from the CFactor model are less tightly
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distributed, e.g. standard errors of the estimated FP and FN of Inparanoid with a

basic model are 0.0008 and 0.0008 respectively, while ones from the CFactor model

are 0.0013 and 0.0016. However, the relative positions of the estimated error rates

from two models are very similar. In fact, the averaged distances between the error

rates of Inparanoid and synteny-based method are very close; 0.0934 from a basic

model and 0.0927 from the CFactor model.

2.5 Discordance Between Inparanoid Orthologs

and Local Synteny Driven Orthologs

Because Inparanoid is one of the most widely used ortholog definition methods

(Bandyopadhyay et al., 2006; Su et al., 2006; Ho Sui et al., 2007) and is purely

based on the coding sequence information, I decided to do a more thorough com-

parison of Inparanoid and local synteny based orthology. Figure 2.5 shows the

agreement and disagreement between these two orthology prediction methods. The

majority of these samples are concordant between two ortholog predictions (syn-

tenic/Inparanoid (55.1%) and non-syntenic/non-Inparanoid (37.9%)), which agree

with the LCA results (Figure 2.4). However, 2.5% of Inparanoid orthologs are

non-syntenic, and 4.5% of gene pairs are syntenic but not Inparanoid orthologs. In

order to identify the source of this discordance I employed intron-based evidence,

as described in the Method section 2.3.

Figure 2.5 shows ICR histograms for pairs of genes falling in each of the four

classes of agreement/disagreement between Inparanoid and local synteny. In both

concordance cases, namely for syntenic Inparanoid orthologs (Figure 2.5A) and

non-syntenic non-Inparanoid orthologs (Figure 2.5D), ICR is in strong agreement

with the orthology assignments made by the two methods. Indeed, most of the

syntenic Inparanoid orthologs have ICR of 1 (Figure 2.5A), and the majority of
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Figure 2.5: Intron conservation ratio (ICR) histograms in four concordant and
discordant cases between Inparanoid orthology and local synteny based orthology.
7% of disagreement between Inparanoid orthology and local synteny based orthol-
ogy and the majority (93%) of sample pairs are concordant between two orthology
methods. Most of the pairs concordant between local synteny and Inparanoid, (A)
syntenic Inparanoid ortholog (denoted as LS(+)/Inp(+) ) and (D) non-syntenic
non-Inparanoid pairs ( LS(-)/Inp(-) ), are also concordant with ICR: orthologs
have a high ICR and non-orthologs have a low ICR. However in discordant cases,
(B) syntenic non-Inparanoid ( LS(+)/Inp(-) ) and (C) non-syntenic Inparanoid
orthologs ( LS(-)/Inp(+) ), ICR histograms show a partial agreement with two or-
thology definitions. Also there are small numbers of non-syntenic non-Inparanoid
pairs ( LS(-)/Inp(-) ) having perfect ICR in panel (D).

non-syntenic non-Inparanoid orthologs have ICR < 0.5 (Figure 2.5D). In the two

discordant cases (7% of the evaluated gene pairs) intron evidence can be used to

resolve the conflicting assignments made by Inparanoid and local synteny. About

3/4 of syntenic non-Inparanoid orthologs (Figure 2.5B) have ICR > 0.5 and half of

non-syntenic Inparanoid orthologs (Figure 2.5C) have ICR = 0. This suggests that

in these cases local synteny based orthology assignments are more often concordant

with gene structure evidence (ICR) than those based on coding sequence similarity.

However, the ICR histogram of non-syntenic Inparanoid orthologs (Figure 2.5C)

has a bimodal distribution, which might arise from a mixture of FNs from local
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synteny (pairs with high ICR) and FPs from Inparanoid (pairs with low ICR). I

further investigate these cases in the following subsections.

2.5.1 Non-syntenic Inparanoid orthologs with zero ICR:

Retrotransposed copies

All the non-syntenic Inparanoid ortholog pairs with zero ICR contain one intron-

less copy and one intron-bearing member. Based on local synteny information

and intron conservation ratio, these intronless copies are probably retrotransposed

copies of the original orthologs. Of all the samples, 1.2% are non-syntenic 0-

ICR Inparanoid orthologs. Inparanoid likely included retrotransposed copies in

these orthologous groups because the retrotransposed copies have not diverged

sufficiently to be distinguished from their parent gene. In 0.2% of samples Inpara-

noid chose retrotransposed copies even though there were other syntenic high-ICR

copies. Figure 2.6 shows one of these pairs. In this case, the Blastp score of the

dog gene to the retrotransposed rat gene (shown as Rat A) is smaller than to the

syntenic high-ICR rat gene (Rat B), which caused an Inparanoid miscall, assigning

the retrotransposed paralog as the ortholog.

The rest of non-syntenic 0-ICR Inparanoid orthologs (1.0%) of all samples are

classified as one-to-many orthologs by Inparanoid. In many of these one-to-many

orthologs, syntenic high-ICR pairs are chosen as “core orthologs” (based on the

Inparanoid scores) with additional retrotransposed copies added to the orthology

group because their protein sequences are still close to those of the original copies.

By using local synteny, the retrotransposed copies in one-to-many orthologs would

be distinguished from the other members. Thus, local synteny based orthology

separates retrotransposed copies from those generated by speciation or other du-

plication mechanisms and can be more informative in recovering the evolutionary

26



Homology
Homologous introns

Chr9.
- strand

Chr3.
+ strand

Chr9.
- strand

6.76Kb

3.06Kb

//
18.84Kb

Inparanoid 
1-to-1 ortholog

Syntenic and
high ICR

Gene
(# cds introns)

Rat A
(0)

Rat B
(2)

Dog
(3)

GOI Downstream neighborsUpstream neighbors

Arpc5l

20211

RGD1560362Gpr45

Tgfbrap1

RGD1310553

24652

Mrps9 Pou3f3

20212
2021320214

20208 20206 20203

RGD1566237LOC690485Olfml2a
Golga1 LOC690538 Ppp6c

Ensembl
orthologs

Figure 2.6: One example of the retrotransposed copy miscall cases by Inpara-
noid which is confirmed with local synteny and ICR. The Ensembl IDs of
GOIs are ENSRNOG00000016444 (Rat A), ENSRNOG00000014317 (Rat B) and
ENSCAFG00000020211 (Dog). Genes are shown corresponding to the strand of
GOI in order to show the homology between neighboring genes. Five digits gene
IDs are the last five digits of Ensembl gene IDs. IDs in italic typeset are predicted
ones. Homology between two neighboring genes are defined by Blastp E-value<1e-
5.

history of a gene family.

2.5.2 Non-syntenic Inparanoid orthologs with non-zero ICR:

Loss of local synteny

All non-syntenic Inparanoid orthologs with an ICR > 0 (1.3%) are likely to result

from the loss of local synteny. They each have one homologous match between

neighboring genes (lower than the threshold of being syntenic) and are selected

from distant species pairs (i.e. not human-chimp or mouse-rat). Each of these

distant pairs is part of larger orthology groups (5 species), in which the counterparts

in closer species pairs have higher local synteny (more than 1 match). This loss of

local synteny likely results from rearrangements and gene insertions or gene losses

in more distant species.
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2.5.3 Syntenic non-Inparanoid orthologs: Distant paralogs

There are 2.3% syntenic non-Inparanoid orthologs with an ICR ≥ 0.5 (Figure

2.5B). The majority (2.1/2.3%) of syntenic non-Inparanoid orthologs with high

ICR are likely distant paralogs: both genes are in different syntenic Inparanoid

orthology groups with high ICR. This may result from old DNA-mediated du-

plication events followed by speciation events without significant local genome

rearrangements. Local synteny cannot distinguish between orthologs created by

large-scale segmental duplications and by polyploidy events. Moreover, the syn-

tenic non-Inparanoid pairs with an ICR < 0.5 (1.1% of all tested pairs) are also

likely distant paralogs, by old tandem duplications with different gene structures

resulting in lower ICR.

2.5.4 Non-syntenic non-Inparanoid orthologs with ICR of

1: More distant paralogs

In the non-syntenic non-Inparanoid case (Figure 2.5D), where the most of these

pairs have low ICR, we still find 2.2% of pairs with ICR equal to 1. All these pairs

are likely distant paralogs. Table 2.2 contains the summary of all of these cases.

2.6 Local Synteny Breaks the Tie

Since local synteny is able to differentiate some speciation and duplication events, a

phylogenetic tree (or duplication-speciation history) of ambiguous many-to-many

orthologs may be determined using local synteny information. In mouse-to-rat

ortholog definitions from Inparanoid, there are 131 many-to-many ortholog groups.

The majority (∼75%) of many-to-many groups are comprised of DNA-mediated

duplicated copies (usually from tandem duplications combined with one or two
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Orthology ICR Explanations

Non-syntenic Inparanoid
orthologs

ICR = 0
Retrotransposed copy miscalls (0.2%)

Part of 1-to-many (1.0%)

ICR > 0 Loss of local synteny (1.3%)

Syntenic non-Inparanoid
orthologs

ICR ≥ 0.5
Retrotransposed copy miscalls (0.2%)

Distant paralogs (2.1%)

ICR < 0.5 Distant paralogs (1.1%)

Non-syntenic
ICR = 1 Distant paralogs (2.2%)

non-Inparanoid orthologs

Table 2.2: Summary of disagreement among three measures: Inparanoid orthology,
local synteny based orthology, and intron conservation ratio (ICR).

distant segmental duplication events) while ∼20% have true orthologs (confirmed

by local synteny and ICR) as well as non-syntenic intronless copies (probably

from retrotransposition events). I present two many-to-many Inparanoid ortholog

groups where the local synteny determines the order of evolutionary events in the

gene family.

One of them is an example of orthologs from distant DNA-mediated duplica-

tion event(s) followed by possible rearrangements or gene gains/losses, and then

speciation event (Figure 2.7). In this ortholog group, there are three mouse gene

members, ENSMUSG00000001175 (MGI symbol: Calm1), ENSMUSG00000019370

(Calm3), ENSMUSG00000036438 (Calm3, which referred to Calm3x in the figure

to avoid confusion) and two rat gene members, ENSRNOG00000004060 (Calm1),

ENSRNOG00000016770 (Calm3). All the genes are on different chromosomes and

the transcripts of these (protein coding) genes are known. Since all the cross-species

pairwise sequence similarity measures are equal, Inparanoid could not pick distinct

orthologs nor could phylogenetic tree-building programs determine the tree. Nei-

ther could ICR break the tie due to a high conservation of gene structure. Finally,

no Ensembl ortholog prediction is made between these genes. However, in the fig-
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ure, two Calm1 genes (ENSMUSG00000001175 and ENSRNOG00000004060) and

two Calm3 genes (ENSMUSG00000019370 and ENSRNOG00000016770) have high

local synteny (4 and 5 matches, respectively) and any other local synteny is either

0 or 1. In this specific case, local synteny helps break the tie in sequence based

similarity. Using this information I can infer an old DNA-mediated duplication

(DD) event before mouse-rat speciation giving rise to the Calm1 and Calm3 an-

cestors followed by rearrangements reducing the local synteny between these two

mouse and rat ortholog pairs (Figure 2.7). The third mouse gene (Calm3x) has

just one match with mouse Calm1 gene and rat Calm1 gene, and high levels of in-

tron conservation, indicating a DNA-mediated duplication event, but I do not have

enough local synteny information to tell precisely when the duplication occurred.

Also since the mouse Calm3x gene has only one match with the rat Calm1 gene,

local synteny does not find this apparent ortholog.

Another case where local synteny clarifies the history of closely related groups

of duplicates can be seen in a mouse-rat many-to-many Inparanoid ortholog group

including retrotransposed or RNA-mediated duplicated (RD) copies (Figure 2.8).

This example contains two members from each species, ENSMUSG00000013701

(MGI symbol: Timm23 referred as Mm1 in the figure), ENSMUSG00000069622

(Timm23 as Mm2) and ENSRNOG00000019811 (Timm23 as Rn1), ENSRNOG000000-

32900 (TIM23 RAT as Rn2), where each has one known transcript on different chro-

mosomes. Again, neither Inparanoid nor pairwise Protdist analysis could discrim-

inate orthologs due to identical cross-species Blastp measures. Ensembl has a

bigger ortholog group including these four genes, but no better information about

which are orthologs or RD copies. However two intron bearing genes have perfect

local synteny (= 6) and an ICR = 1, and two intronless copies do not have any

local syntenic match to the two intron bearing genes. Therefore, I can infer that

two intron bearing genes are the main orthologs and two intronless genes are RD
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Figure 2.7: One example of many-to-many Inparanoid ortholog groups where
a DD event proceeded mouse-rat speciation. The Ensembl gene IDs of GOI
are ENSMUSG00000001175 (Calm1mm), ENSMUSG00000019370 (Calm3mm),
ENSMUSG00000036438 (Calm3xmm), ENSRNOG00000004060 (Calm1rn),
ENSRNOG00000016770 (Calm3rn). The gene structures and neighboring
gene orders of five Calm1 and Calm3 genes in mouse and rat genomes are shown.
The event tree on the left side is predicted based on the local synteny. DD:
DNA-mediated duplication. Genes are shown corresponding to the strand of GOI
in order to show the homology between neighboring genes. Five digits gene IDs are
the last five digits of Ensembl gene IDs. IDs in italic typeset are predicted ones.
Homology between two neighboring genes are defined by Blastp E-value<1e-5.

copies of these orthologs. Furthermore, since intronless genes are not syntenic to

each other, I infer that the two intronless genes are the result of two separate RD

events on each species lineage.

2.7 Discussion and Conclusions

2.7.1 Gene order as a measure of conservation

Synteny information has been used to cluster synteny blocks between two related

genomes in order to detect orthologous gene pairs (Fu et al., 2007; Zheng et al.,
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Figure 2.8: One example of many-to-many Inparanoid ortholog groups where
RD events followed the mouse-rat speciation. The Ensembl gene IDs of
GOI are ENSMUSG00000013701 (Mm1), ENSMUSG00000069622 (Mm2) and
ENSRNOG00000019811 (Rn1), ENSRNOG00000032900 (Rn2). The gene struc-
tures and neighboring gene orders of four Timm23 genes in mouse and rat genomes
are shown. The event tree on the left side is predicted based on the local synteny.
RD: retrotransposition. Genes are shown corresponding to the strand of GOI in
order to show the homology between neighboring genes. Homology between two
neighboring genes are defined by Blastp E-value<1e-5.

2005) and to reconstruct phylogenetic trees (Wapinski et al., 2007a). These syn-

teny blocks are generally used as “genomic anchors” (Altschul, 1997) or to place

gene loss/deletion events on phylogenetic trees (Chen et al., 2000; Poptsova &

Gogarten, 2007), not as a definitive measure to distinguish close paralogs from

distant paralogs. In Zheng et al. (2005), one of three methods to define orthologs

between human and mouse used a genomic anchor approach. They identified syn-

teny anchors and synteny blocks (Waterston et al., 2002; Mural et al., 2002) then

introduced a local synteny approach for the anchor-poor regions by accepting the

pairs of genes flanked by previously identified ortholog pairs. With this approach

they found 11% more orthologs than by RBH alone. Another similar approach

to local synteny was used to reconstruct phylogenetic gene trees from coding se-
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quence similarity and local gene order (Wapinski et al., 2007a). In the algorithm

SYNERGY, Wapinski et al. measure a synteny similarity score for a pair of genes

by counting the neighboring genes in syntenic blocks. However, SYNERGY has

not been tested in mammalian genomes. Finally, MSOAR (Fu et al., 2007) uses

combinatorial optimization on global gene order to identify orthologs based on

minimal rearrangement scenarios. However, Fu et al. point out that the global

optimization might lead to false ortholog links in some scenarios. Because our local

synteny exploits proximate synteny information I expect lower false positive ratios

than those obtained with MSOAR.

Moreover, local synteny information has been widely used to confirm the orthol-

ogous genes: distinguishing parents and daughters (Han et al., 2009), confirming

unitary pseudogenes (Zhang et al., 2010) and determining the orthology of LTR

(Kijima & Innan, 2010).

Most importantly, when the orthology is defined by codon sequence similarity,

testing any hypothesis of selective pressures on orthologous gene presents tauto-

logical challenges. Since orthology detection by local synteny is not based on the

comparison of coding sequence information between candidate orthologs, testing

the selective pressure between orthologs becomes a valid comparison of largely in-

dependent variables. However, gene order also degrades over evolutionary time.

How well synteny will be able to effectively identify ancient orthologs remains to

be seen.

2.7.2 Gene duplication mechanisms and orthologs

Gene duplications are a major force in genome evolution (Ohno, 1970). Genes are

duplicated through two main duplication mechanisms; DNA-mediated and RNA-

mediated (Ohno, 1970; Zhang, 2003). DNA-mediated duplications (DD) can in-

clude multiple genes and associated intergenic sequences and introns. On the other
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hand, RNA-mediated duplication (RD), or retrotransposition, only copies coding

sequences in the duplication event. Retrotransposed genes had been considered

mostly “dead on arrival”, but recent studies (Sakai et al., 2007; Vinckenbosch

et al., 2006) show that there are many functional RD copies in the human and

mouse genomes. Sometimes the difference between coding sequences of parental

genes and RD copies is not large enough to distinguish the RD copy from the par-

ent. RD copies, however, do not share introns or flanking genes with the parental

paralog. Therefore, local synteny and gene structure can often separate the RD

copy from the original gene. However, when neither has an intron, only local syn-

teny will distinguish parental and RD copies. Based on our random sampling,

approximately 8∼10% of Pfam orthologs are intronless gene pairs.

2.7.3 Gene order helps illuminate gene family evolution

Reconstructing phylogenetic trees informs our understanding of the evolutionary

history of gene families. Using tree reconciliation between a species tree and gene

tree we can identify duplication and lost events on the tree. However by dis-

tinguishing two duplication mechanisms, DNA-mediated and RNA-mediated, not

just identifying duplication events, we can sometimes place duplication events in

an appropriate phylogenetic context. For example, as Figure 2.7 and Figure 2.8

show, when coding sequence does not distinguish paralogs, local synteny can de-

termine whether DNA or RNA-mediated duplication occurred first. Local synteny

can also help place RD duplication events before or after speciation (Figure 2.8).

Even when the coding sequence of RD duplicates drifts apart, pre-speciation RD

genes often retain local synteny. Conversely, when RD duplicates are young enough

to be indistinguishable by coding sequence comparison, synteny can discriminate

between pre-speciation duplications, and independent RD duplication events in

parallel lineages. Finally, local synteny information can often resolve the order of
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iterative DNA-mediated duplication events in large gene families (see also Han &

Hahn (2009)).

2.7.4 Conclusions

In this chapter, I show that local synteny alone is sufficient to identify orthologs

within this five-mammal clade. Latent class analysis reveals that false positive and

false negative rates of local synteny based orthology are comparable to those of

coding sequence based methods. Also I investigate the reasons for concordance

and a discordance between coding sequence based orthology (Inparanoid) and lo-

cal synteny based orthology. In the five mammalian genomes studied, 93% of

the sampled inter-species pairs were found to be concordant between the two or-

thology methods, illustrating that local synteny can largely substitute for coding

sequence in identifying orthologs. However, 7% of pairs were found to be discor-

dant. Discordance is often associated with evolutionary events like retrotranspo-

sition, iterative DNA-mediated duplication, and genome rearrangement. Analysis

of discordant cases between local synteny and Inparanoid shows that local synteny

can differentiate between true orthologs and recent retrogenes, can split ambigu-

ous many-to-many orthology groups into more precise one-to-one ortholog pairs,

and, when employed in a genome-wide screen, might help in highlighting possible

cases of non-orthologous gene displacement by retrocopied paralogs in mammalian

genomes.

Although our local synteny based method is reliable enough to define orthology

and can easily distinguish RNA-mediated copies from source copies, local synteny

information tends to have less discriminating power for successive DNA-mediated

duplication events. This makes tandemly duplicated copies and inparalogs from

DNA-mediated duplication hard to handle. Another challenge arises from the

nature of local synteny in that local synteny depends entirely on the quality of
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genome assembly. Situations of low coverage and low quality intergenic sequence

can make local synteny information unreliable. As more advanced sequencing

technologies and corresponding assembly algorithms are available, however, we

expect more reliable genome assemblies and, thus more reliable local synteny based

orthology detection.

As possible future work, we want to answer the following questions: (1) Can

local synteny be used to define orthology between distant species and, if so, how

many neighboring genes do we need to use? (2) Can we apply a simple tran-

sitivity rule for more than two genomes? The answer to these questions may

require more accurate rearrangement models than simple counting of homologous

matches. With these improvements we might be able to detect non-orthologous

gene displacement (Koonin et al., 1996) and convergent evolution in wider range

of mammalian genomes.
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Chapter 3

A Method for Gene Duplication

Events Detection

In order to reconstruct the evolutionary history of a gene family, we need to pre-

cisely locate the gene duplication and loss events on the phylogenetic tree. With

a known species tree, the location of gene duplication and loss events is identical

to the reconstruction of gene family evolution history. Previous gene family evo-

lution reconstruction approaches attempt to minimize the gene duplication/loss

(parsimony approach), e.g. Notung (Chen et al., 2000), or to find the most prob-

able evolutionary history by maximum likelihood approach or Bayesian approach,

e.g. PrIME-GSR (Akerborg et al., 2009). As discussed in earlier chapters, using

coding sequence similarity and ignoring pseudogene information can lead these

reconstruction approaches to incorrect conclusions. To overcome this problem, I

developed a method to detect the gene duplication events on phylogenetic trees by

using: 1) non-coding sequence information including local synteny and gene struc-

ture information, and 2) pseudogene information (Jun et al., 2008). By including

pseudogenes into the data process pipeline, we minimize distortion associated with

1The results presented in this chapter are published in Jun et al. (2009b)
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gene loss events.

In addition, by avoiding the use of coding sequences to define orthologs and

build a tree, we can measure evolutionary forces on ancestral relationships inde-

pendent of the tautologies born from defining relationships based on the characters

of evolutionary interest (the coding sequence). For this reason I believe that local

synteny may be a better method for estimating lineage specific selective pressure

on the fate of gene duplicates. Furthermore, there are additional advantages to

using non-coding sequence information to differentiate duplication mechanisms.

RNA-mediated duplicated (RD) genes cannot bring the flanking sequences and

intron sequences; whereas gene copies by DNA-mediated duplication (DD) mech-

anisms may keep the neighboring genes and similar gene structure. Our method,

therefore, can detect and differentiate duplication events arising from these two

different duplication mechanisms.

In this chapter, the problem definition and our contributions in this problem

are introduced first (3.1). Then the detailed steps for gene duplication events

detection method are illustrated (3.2) followed by some discussions and possible

future work (3.3).

3.1 Problem definition

Given a set of homologous genes in various genomes (a gene family) with the cor-

responding species tree, we want to reconstruct an evolutionary history of that

gene family. Available information for solving this problem includes coding se-

quences, gene structures and gene order information. Most previous approaches

use coding sequences for building trees. The sequences can be used as a string of

characteristics, e.g. DNA sequences or amino acid sequences, and then parsimony

or statistical approaches can be applied to it. ML (Addario-Berry et al., 2003)
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or Bayesian methods (Arvestad, 2003) can be easily applied on these strings of

characteristics. In addition to coding sequence information, some methods use

non-coding sequence information to build a tree. SYNERGY (Wapinski et al.,

2007a) incorporated coding sequences and gene order information together for re-

constructing an evolutionary events history.

As the ortholog definition problem suffers from the gene duplication/deletion

issues, reconstruction problem of gene family evolution history also has been strug-

gling with them. Especially, gene deletion events make this problem very hard,

since a parsimonious solution is not always accurate to understand deletion events.

To overcome this gene deletion problem, I use the pseudogene information as place-

holders for gene deletion events. I start by augmenting the pseudogenes of every

member of a gene family, which enable us to capture more duplication events and

help us minimize the wrong orthology assignment due to gene deletion events.

3.2 Methods

3.2.1 Family definition

I used Ensembl protein families (release 37) (Hubbard et al., 2005) as the ini-

tial families. Ensembl protein family database is defined by running the Markov

Clustering (MCL) algorithm (Enright, 2002). For genes with multiple alternative

transcripts we developed a collapsed gene model that incorporates all predicted

exons of the gene. Resulting exon coordinates were used to obtain a representative

protein sequence that was used for subsequent homology assignment and dN/dS

computations.

Pseudogenes were identified using PseudoPipe (Zhang et al., 2006) seeded with

known transcripts from Ensembl. Each pseudogene was added to the corresponding

Ensembl gene families. This process resulted in super-families consisting of both
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protein coding genes and their related pseudogenes.

3.2.2 Identification of duplication events

Within each super-family a local synteny level was computed for all pairwise com-

binations of super-family members. Local synteny is defined as homology of up-

stream and downstream neighboring genes, as described in Chapter 2. For each

pair, I checked homology between the 3 nearest up- and downstream neighboring

Ensembl annotated genes. Homology between neighbors was defined by a Blastp

(Altschul, 1997) E-value<1e-5. After this analysis, for every pair (gi, gj) of family

members I obtained two numbers 0 ≤ nij
u , n

ij
d ≤ 3 representing the homology up-

stream and downstream neighbors. A synteny level si,j of 2 was assigned to every

pair of genes or pseudogenes that had homologous neighbors on both sides, up and

down (i.e., whenever nij
u , n

ij
d ≥ 1). When one side lacked homologous neighbors, I

assigned a synteny level si,j of 1 only if the other side had at least two homologous

neighbors; otherwise, I assigned a synteny level si,j of 0.

Local synteny levels were used in a two-stage clustering algorithm (Figure 3.1 to

identify syntenic ortholog/paralog clusters. In our algorithm, for a set X of genes

and pseudogenes, Sp(X) denotes the set of species represented in X. For a set S

of species, LCA(S) denotes the last common ancestor in the phylogenetic tree. In

the first stage, I used a single-linkage clustering algorithm to obtain core clusters

by merging pairs of genes and pseudogenes with local synteny level of 2, predicted

to be either orthologs or paralogs resulting from DD events which preserve up

and downstream neighbors. In the second stage, I merged pairs of core clusters

if every member of one cluster had synteny level of 1 to every member of the

other cluster (also predicted to be orthologs or paralogs from DD events). Any

two non-overlapping clusters from this two-stage clustering algorithm are mutually

non-syntenic. Second stage clusters spanning a phylogenetically contiguous subset
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Input: Family of genes and pseudogenes, F = {g1, g2, . . . , gN} with species
information and pairwise synteny levels si,j

Initialize:

C ← ∅
U ← {g1, g2, ..., gN}

(Stage 1) Single-linkage clustering with synteny level 2:

While U 6= ∅ do

Select an arbitrary member gi of U

U ← U \ {gi}; Copen ← {gi}
While there exists gi ∈ U with synteny 2 to a member of Copen, do

U ← U \ {gi}; Copen ← Copen ∪ {gj}
C ← C ∪ Copen

(Stage 2) Merging of clusters with high average pairwise synteny:

While there is a pair (Ci, Cm) where SYNTENIC TEST(Ci, Cm) is true,
do

C ← C \ {Ci, Cm}
C ← C ∪ {Ci ∪ Cm}

Return C

SYNTENIC TEST (A, B)

If Sp(A) and Sp(B) are subsets of different lineages, i.e.
LCA(Sp(A)) 6= LCA(Sp(A ∪B)) and LCA(Sp(B)) 6= LCA(Sp(A ∪B)), then

If Si,j = 1 for every pair gi ∈ A, gj ∈ B then, return true

Else, if LCA(Sp(A)) = LCA(Sp(A ∪B)), then

A′ ← set of genes and pseudogenes of A of species descending from
LCA(Sp(B))

If si,j = 1 for every pair gi ∈ A′, gj ∈ B then return true

Else, return false

Figure 3.1: Two-stage clustering algorithm. For a set X of genes and pseudogenes,
Sp(X) denotes the set of species represented in X. For a set S of species, LCA(S)
denotes the last common ancestor in the phylogenetic tree.
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of the species represented in larger clusters from the same super-family represent

putative descendants of RD events or DD events that have lost local synteny. Since

retrotransposed gene copies generally lack introns due to their RNA-intermediate

nature, I distinguish between these possibilities using intron content conservation

scores as described below.

Within each cluster produced by the above clustering algorithm, there may

be successive DD events. I used UPGMA (Unweighted Pair Group Method with

Arithmetic mean) (Sokal & Sneath, 1973) to find these DD events. For input to

UPGMA I compute the distance between two members gi and gj as the Pearson’s

correlation coefficient between the two vectors, (nik
u + nik

d )k and (njk
u + njk

d )k, i.e.,

sums of upstream and downstream homologous neighbors with remaining genes

gk in the cluster. Given the UPGMA gene trees, I counted the inner nodes as

DD events when two subtrees from such an inner node are in a species-subset

relationship. If two subtrees from an inner node had disjoint species sets, this

node was considered as a speciation event (Figure 3.2).

I distinguish between putative descendants of RD events or DD events that

have lost local synteny using intron conservation scores between descendant genes

and pseudogenes. The intron conservation rate between two paralogous genes was

calculated as the ratio of the number of shared introns divided by the total number

of intron positions from the protein/intron alignment between two genes (based

upon the method of Rogozin et al. (2003)). An event was identified as an RD

duplication if the average intron conservation rate to paralogs outside the cluster

was below 1/3.

For RD events that do not have Ensembl gene models we lack Ensembl intron

predictions. Accordingly, for these RD duplicates I used PseudoPipe intron pre-

dictions (Zhang et al., 2006). I filtered out RD events for which more than half

of the descendant PseudoPipe predicted pseudogenes are annotated as probable
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intron bearing copies.

3.2.3 Event assignment to tree branches

I used parsimony to assign each inferred duplication event to a specific branch of the

5-species tree. I assigned each event to the tree branch corresponding to the exact

set of species spanned by the descendant genes of the detected duplication event,

which I refer to as assigned events. Intact events are defined as those duplication

events that have no apparent disruption (e.g., in-frame stop codons) of the protein

coding sequence and an Ensembl annotated gene in each of the species spanned

by the cluster.

3.3 Discussions

There is a significant number of gene families composed of tandem duplications,

and many earlier gene family evolution reconstructions have been focused on these

families (e.g. β-globin family (Patel et al., 2008)). Although using local synteny

information to infer the duplication events is effective to discriminate the RD

events from DD events, it is largely ineffective inside tandem arrays. The problem

of inferring tandem duplication history is hard to solve (Tang et al., 2002; Bertrand

& Gascuel, 2005) and many attempts to solve this problem use coding sequence

information (e.g. Lajoie et al., 2010); hence the history inferred by these methods

might not reflect the ancestral history of the genes within the array.

Other possible considerations include the use of UPGMA hierarchical clustering

to identify successive DD events within syntenic clusters. UPGMA assumes a

molecular clock but rearrangement events do not happen at the same rates in the

different lineages. Therefore, approaches allowing various evolution rates on each

lineage, like the neighbor-joining algorithm, might be better suited for inferring
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Figure 3.2: Inferring DD and RD events using local synteny and hierarchical clus-
tering. This example shows how DD and RD events are inferred from a super-
family having nine members: two members per each species except for dog, from
the results of our clustering algorithms (right) to corresponding events (left). By
using two-stage clustering algorithm, two syntenic clusters are formed, shown as
hollow rounded rectangles. Loss of introns in one cluster suggests that the loss of
synteny was due to an RD event. UPGMA builds hierarchical clusters within each
syntenic cluster and speciation and DD events are inferred based on species sets.

DD events. Also instead of our deterministic algorithms, using a probabilistic

approach for defining duplication events might give us more information including

the reliability of event inference.
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Chapter 4

Application to Mammalian Gene

Families

In an attempt to understand gene family evolutionary history, many gene families

have been manually or semi-automatically curated. For example, mammalian β-

globin gene family has been updated with evidence revealed by more advanced

methods and new sequence data (Cooper et al., 2005; Patel et al., 2008; Wheeler

et al., 2004, 2001). Our goal in this work is to develop a comprehensive method

for inferring gene family evolutionary histories from genome sequence data.

In this chapter I use non-coding sequence information and pseudogene informa-

tion to infer the evolutionary histories of gene families in five mammalian genomes:

human, chimp, mouse, rat, and dog. After inferring these histories I compared the

rates of DNA- and RNA-mediated duplication events (4.2 and 4.3), and the preser-

vation and functionalization events (4.4 and 4.7) within each tree.

I also explored several hypotheses regarding the likely genetic events governing

the fate of newly duplicated genes. In order to test if the RNA-mediated copies

could coopt the existing regulatory elements I measured the distance to the nearest

1The results presented in this chapter are published in Jun et al. (2009b)
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functional genes (4.5). Similarly, for DNA-mediated copies, I measured the degree

of selective constraint on duplicates with disrupted or intact flanking sequences

(4.6). Finally, I examined functional biases within gene families generated by

RNA or DNA mediated duplication events (4.8 and 4.9).

4.1 Methods

4.1.1 Event detection, assignment and evidence of function

I applied the duplication event detection and assignment method, described in

Chapter 3, to five mammalian genomes: Homo sapiens (human), Pan troglodytes

(chimp), Mus musculus (mouse), Rattus norvegicus (rat), and Canis familiaris

(dog). Ensembl protein family annotations served as a starting point for our anal-

ysis, obtained from Ensembl (release 37) (Hubbard et al., 2005).

Functional events are defined by the clusters of putative protein coding genes

with average dN/dS ratio below 0.5 over all pairs of genes within the cluster. In

order to avoid the disruption by subsequent DD events, I computed average dN,

dS, and dN/dS measures for the descendants of a duplication event assigned to

branch b considering only the pairs of genes and pseudogenes coming from different

lineages rooted at b. Pairwise dN and dS measures were counted using the YN00

program of PAML (Yang, 1997) with correcting for multiple substitutions at the

same site (Yang & Nielsen, 2000).

4.1.2 Determining RD integration site relative to genes

and IPSs

For RD genes and processed pseudogenes located in intergenic regions, the dis-

tances from the RD copies to the nearest upstream/downstream Ensembl genes
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on the same/opposite strand were measured. The distance was defined by the

difference between the starting point of predicted coding sequence (intact or in-

terrupted) and the starting point of the coding sequence of neighboring Ensembl

genes.

Also, I compared the numbers of RD genes and processed pseudogenes located

on genes and on IPS (Indel Purified Sequence) data (Lunter et al., 2006).

4.1.3 Determining rate asymmetry

The normalized rate asymmetry between two genes was defined as: R = |(p1−p2)|
(p1+p2)

,

where p1 and p2 are the dS, dN, and dN/dS values associated with each of the

duplicates.

4.1.4 Detection of disrupted flanking regions

In order to locate genes with disrupted flanking regions, I examined the syntenic re-

lationship between duplicates and their outgroup gene. I define paralogs as having

direct synteny if the gene immediately adjacent to each paralog is orthologous to

the outgroup gene’s neighbor (using the same Blastp criteria as for local synteny).

If both genes share direct synteny with the outgroup gene, then conservation of

direct synteny is inferred. If one gene shares direct synteny and the other does

not, then a disruption is inferred. I excluded cases where neither gene has synteny

with the outgroup.

4.1.5 Gene ontology analysis

The correlation between the duplication mechanism and gene families was mea-

sured using the GOstat web tool (Beissbarth & Speed, 2004) with default param-

eters. I used the sets of genes from the 10 families most abundant in RD and
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DD events, and reported the overrepresented GO terms with a p-value below 0.1.

For families with one or two duplication events I selected mid-size families having

between 7 and 17 Ensembl annotated genes and RD-only or DD-only events (594

RD-only families and 250 DD-only families). I performed the GOstat analysis for

biological process terms on this list, using a minimal GO path length of 5.

4.2 Lineage distribution of duplication events

Over all five species, there were 17,341 Ensembl families comprising 113,543 genes.

Excluding families with members on unassembled contigs (no reliable synteny in-

formation) and families with more than 50 Ensembl genes (due to the excessive

computation time required to generate multiple alignments) resulted in 8,872 gene

families containing 53,733 genes. By using PseudoPipe (Zhang et al., 2006), 17,226

pseudogenes (14,189 processed pseudogenes and 3,037 non-processed pseudogenes)

were detected and augmented to the corresponding families.

By applying two-stage clustering algorithm (Figure 3.1), 3,018 clusters out of

27,869 clusters were ambiguous and were not considered as RD events. To detect

DD events, UPGMA clustering algorithm is used on the Pearson’s correlation

coefficient between the vectors of local synteny, as described in the previous chapter

(Figure 3.2). Remaining inner nodes are ambiguous between speciation and DD

events followed by gene loss and were disregarded. In total, 39,673 inner tree nodes

were classified as speciation events, 2,035 as DD events, and 1,642 were ambiguous.

Events giving rise to clusters of genes with no conservation of synteny relative

to “parental” genes and low inter-cluster intron conservation rates were classified

as RD events, while events giving rise to clusters of genes with high local synteny

to parental genes were classified as DD events. Events corresponding to gene

clusters with indeterminate intron conservation or local synteny to parental genes
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were classified as ambiguous. This analysis resulted in the classification of a total of

2,035 DD events, 12,507 RD events, and 2,742 ambiguous events. Using parsimony

to assign non-ambiguous events to branches of the species tree resulted in 52 DD

and 45 RD events on the branch leading to primates and rodents (the in-group), 161

DD and 1,782 RD events on the primate branch leading to humans and chimps,

and 88 DD and 522 RD events on the rodent branch leading to mice and rats

(Figure 4.1). Gene duplication events for the root and terminal branches of the

tree were also counted, but not used for further analysis due to the difficulty

in estimating the degree of purifying selection on very recent duplication on the

terminal branches, and the age of duplications at the root. A number of 386 DD

and 429 RD events could not be reliably assigned to specific branches of the tree

using parsimony and were also omitted from further analysis. Duplication event

counts on the three internal branches of the tree reveal an excess of RD events over

DD events along all but the deepest branches of the tree, suggesting an average rate

of RD copy formation 3–10 times higher than that of DD copy formation (Figure

4.1). Deviation from this ratio along the in-group branch may be the result of a

period of relative inactivity of retrotransposition compounded with the difficulty

of detecting the products of old RD events not under purifying selective pressure

(Marques et al., 2005).

4.3 Rates of duplication

Rates of retrotransposition vary significantly over time and bursts of retrotrans-

position have been reported in several mammalian lineages (Marques et al., 2005;

Zhang et al., 2004). The synonymous substitution rate (dS) profiles of the dupli-

cates identified in this study (Figure 4.2) are shaped by the rate of generation of

new duplicates, the mutation rates along each lineage, the age of the genes identi-
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Canis Familiaris

Rattus norvegicus

Mus musculus

Pan troglodytes

Homo sapiens

134

*

47 / 52
37 / 45

48 /   88
46 / 522

418
2,562

312
2,731

116
1,913

127
330

241
2,193

53 /    161
104 / 1,782

5 MYA419192

3 internal branches         Whole tree

DD functional / assigned events         148 /    301 = 49.17%            1,649

RD functional / assigned events         187 / 2,349 =   7.96%          12,078

* : 1,376 non-syntenic events on the root

Figure 4.1: Numbers of gene duplication events from DNA-mediated duplication
(blue numbers above the line) and RNA-mediated duplication (red numbers below
the line). Numbers represent the assigned DD or RD events on each branch.
Numbers typeset in bold on three internal branches are counts of functional events,
defined in this study as intact events that yield clusters with average dN/dS ratio
below 0.5 over pairs of homologous Ensembl genes. For three internal branches,
fractions of the functional events over the total assigned events are shown, e.g.,
53/161 for DD events on primate branch. Evolutionary ages are based on (Ureta-
Vidal et al., 2003).

fied in each interval, and our ability to identify genes uniformly along each lineage.

Pseudogenes, for instance, become increasingly difficult to identify as they get older

and diverge from their original sequence. RD events in all three internal branches

show clear peaks in dS (Figure 4.2A). For duplications occurring on the primate

branch this peak occurs around dS=0.1, while in rodents it occurs around dS=0.3

and in in-groups around dS=0.6∼0.8. This pattern is consistent with bursts of

retrotransposition in each of these lineages, a high mutation rate in the rodent

lineage, and the 36–Myr gap between the speciation events leading to rodent and

primate lineages. Duplications occurring prior to the rodent/primate split display
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a dS distribution significantly shifted toward higher dS values, consistent with the

greater age of these duplicates.

DD events show a similar distribution in dS but a more uniform distribution of

dS values than RD duplicates (Figure 4.2B and C), suggesting that DNA-mediated

duplication is a more uniform process that occurs at less variable rates than retro-

transposition. It is interesting to note that the inferred age distribution of DD

events is more uniform than that of the RD duplicates but is not perfectly flat,

suggesting that there may be some variation in the rate of DD events over evo-

lutionary time. It has been suggested and accepted that non-allelic homologous

recombination (NAHR) are mediated by pre-existing repeats, such as Alu elements

(Bailey et al., 2003; Kim et al., 2008).
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Figure 4.2: Histograms of average dS over pairs of Ensembl genes and pseudogenes.
(A) For clusters resulting from RD events on the primate, rodent, and the in-group
branch leading to primates and rodents. (B) For clusters resulting from DD events
and RD events on the primate lineages. (C) On the rodent lineages.
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4.4 Preservation rates of functional duplicate copies

The progressive influence of purifying selection over time is readily observed in dN

vs. dS plots of DD and RD events from the three internal lineages. In Figure

4.3, RD events on the primate branch are compressed near the origin, consistent

with a recent burst of retrotransposition in this lineage, while DD events display

a more even age distribution. Non-intact events are generally interspersed with

intact ones, except for the rodent lineage in which the effect of prolonged purifying

selection results in the separation of inactivated RD events from the intact RD

copies. In the in-group there are very few inactivated duplication events due to the

difficulty in finding very old pseudogenes. However, some inactivated events remain

interspersed among intact ones, suggesting that the gene duplicates resulting from

these events were under purifying selection and may have only recently suffered

interruption of their protein coding regions. Alternatively, these genes may encode

partial protein products that remain under purifying selection. It is probable

that young duplicate genes may escape inactivation for some time despite lacking

any apparent function. Since Ensembl gene predictions rely upon the presence

of an intact coding region rather than any evidence of selection pressure upon

the sequence, the gene clusters resulting from intact duplication events should be

comprised of both functional genes and duplicates that are not functional but have

escaped inactivation. Evidence of purifying selection is often used as evidence for

function, and the ratio of synonymous to non-synonymous changes (dN/dS) in the

protein-coding region of a gene is a convenient way of estimating this selective

pressure (Nekrutenko et al., 2002). For example, dN/dS ratio<0.5 has been used

as stringent functionality criteria between retrotransposed genes and their parental

genes (Emerson et al., 2004). Also Torrents et al. (2003) showed that there is a clear

discrimination between dN/dS ratios of pseudogenes and those of functional genes,
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supporting the use of dN/dS ratios as evidence of function. Here I compute dN/dS

ratios between all pairs of descendants from each duplication event. This pairwise

approach is computationally rapid, is independent of precise reconstruction of the

entire gene tree, and allows for the detection of functionalized descendant clusters

of a duplication event that are not constrained relative to the parental genes.

Analysis of the dN/dS ratios of clusters derived from duplication events is quite

revealing. Figure 4.4A compares clusters of RD duplication event descendants with

intact protein coding reading frames (intact) and clusters of RD duplicates with

inactivated reading frames (inactivated). Aggregate dN/dS values of a significant

portion of intact clusters overlap with the dN/dS values of inactivated clusters in

the region of the graph where dN/dS is greater than ∼0.5. Assuming that the

vast majority of inactivated clusters (clusters whose members have inactivating

mutations in their protein coding regions) are not under purifying selection for

protein coding function, those intact clusters that fall into this range are unlikely

to encode functional proteins, despite lacking any clearly inactivating mutation.

By inference, those clusters that display significantly lower aggregate dN/dS values

(<0.5) are likely to be under stabilizing selection for protein coding function.

Panels B–D of Figure 4.4 compare dN/dS values of duplicate clusters derived

from RD and DD events on each of the three internal branches of the mammalian

tree. In the oldest internal branch of the tree (ingroup) very few clusters generated

by either duplication mechanism can be detected that are not under some degree

of purifying selection pressure. This is probably due to the difficulty in identifying

very old non-functional sequences. Such sequences are expected to drift away from

their parental sequence making identification increasingly difficult with advanced

age. Clusters derived from duplication events along the rodent branch have a bi-

modal distribution of dN/dS ratio resulting from RD and DD events that gave rise

to putatively functional gene copies (aggregate dN/dS values<0.5), and clusters
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with no clear evidence of stabilizing selective pressure. Duplication events along

the primate branch gave rise to clusters with more uniformly distributed aggregate

dN/dS values spanning the entire range of measurements. This is likely to be a

reflection of the relatively short period of time these new genes have been under

purifying selection and is consistent with the relatively low dS values of duplicates

detected along this branch (Figure 4.2B).
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Figure 4.4: (A) Histograms of average dN/dS ratio over pairs of Ensembl genes
for clusters resulting from intact RD events and average dN/dS ratio over pairs
of genes and pseudogenes for clusters resulting from inactivated RD events on the
rodent lineage. Histograms of average dN/dS ratio over pairs of Ensembl genes for
clusters resulting from intact DD events and RD events on the in-group branch
leading to primates and rodents (B), rodent (C), and primate (D).
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4.5 Relative position of RD copies to the other

genes

In order to address the question of why some RD events are under the stabilizing

selective pressure (dN/dS ratio ≤ 0.5), I analyzed the location of RD copies. I

categorized RD copies as either genic (mostly intronic) or intergenic, and measured

the distance to the nearest Ensembl genes. Three classes of RD copies were defined:

intact RD genes with dN/dS ≤ 0.5 (SS-RD), intact RD genes with dN/dS>0.5 (NI-

RD) and processed pseudogenes (PP-RD).

Table 4.1 shows the number and percentage of RT copies on genic and intergenic

sequences and corresponding p-values (χ2 test by using the proportion of genic area

in the whole genome). Although all the three classes of RD copies were less likely

to be found inside other genes (all p-values<1e-06), processed pseudogenes (PP-

RD) were found inside other genes two or three times more often than intact RD

copies (SS-RD and NI-RD).

Numbers (%) SS-RD NI-RD PP-RD

Strand dependent Genic 23 (4.3%) 23 (4.5%) 432 (11.2%)
intergenic 510 (95.7%) 485 (95.5%) 3,411 (88.8%)
p-value∗ 5.90e-08 3.23e-07 2.58e-07

Strand independent Genic 70 (13.1%) 73 (14.4%) 996 (25.9%)
intergenic 463 (86.9%) 435 (85.6%) 2,847 (74.1%)
p-value∗ 1.14e-11 7.28e-10 8.55e-07

Table 4.1: Numbers of retrotransposed insertions on genic versus intergenic se-
quence by RD events on three internal branches: in-group, primates, and rodents.
Three classes of RD copies were used: intact RD genes with dN/dS ≤ 0.5 (SS-RD),
intact RD genes with dN/dS>0.5 (NI-RD) and processed pseudogenes (PP-RD).
∗: χ2 test p-value using the proportion of genic area in the whole genome.

For RD genes and processed pseudogenes located in intergenic regions, the dis-

tances from the RD copies to the nearest upstream/downstream Ensembl genes on
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the same/opposite strand were measured. For intergenic RD copies SS-RD were

consistently closer to neighboring genes than PP-RD regardless of strand or orien-

tation (up- or down-stream, all p-values<0.001, Wilcoxon/Kruskal-Wallis test and

Student’s t-test, Figure 4.5). This is consistent with retrotransposed duplicates

co-opting preexisting regulatory elements and the founding in Vinckenbosch et al.

(2006). Not surprisingly, distances to upstream neighboring genes on the oppo-

site strand (in a head-to-head configuration) have the shortest median distance

to intact RD copies (95.8KB for SS-RD and 138.7KB for NI-RD; Figure 4.5C).

This results are also somewhat consistent with previous works by Trinklein et al.

(2004), Michalak (2008) and others. They showed that coexpressed gene clusters

are formed through local sharing regulatory elements such as transcription factors,

promoters, and enhancers. For example, in the human genome, more than 10%

of genes form head-to-head pairs that may be subject to bidirectional expression

mediated by common promoter sequences.

4.6 Disruptions in flanking regions are associ-

ated with greater asymmetry in dN and re-

laxed selective constraint1

For this experiment, we use a different method to define the duplicate events and

the triples, two paralogs and ortholog as outgroup. See Jun et al. (2009c); Ryvkin

et al. (2008) for the details.

We test the hypothesis that disruptions in the intergenic DNA surrounding DD

duplicates would correspond to changes in the course of that duplicate’s protein

evolution. We define paralogs as having direct upstream or downstream synteny if

1The data presented here is obtained by separate methods published in Jun et al. (2009c);
Ryvkin et al. (2008)
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Figure 4.5: Relative location of RD events to Ensembl genes. Three classes of RD
copies were used: intact RD genes with dN/dS ≤ 0.5 (SS-RD), intact RD genes
with dN/dS>0.5 (NI-RD) and processed pseudogenes (PP-RD). (A) Distance to
the nearest upstream gene on the same strand. (B) Distance to the nearest down-
stream gene on the same strand. (C) Distance to the nearest upstream gene on the
opposite strand (head-to-head). (D) Distance to the nearest downstream gene on
the opposite strand (tail-to-tail). Boxes represent interquartile range with the hor-
izontal line being the median; diamonds span a 95% confidence interval around the
mean assuming normality. The vertical lines span the extents of 95% of a normal
distribution fit to the data. Three classes have significant different distance mea-
sures (p-value< 0.0001 for A,C,D; p-value<0.001 for B; Wilcoxon/Kruskal-Wallis
Test). SS-RD and PP-RD have significantly different mean (p-value<0.0001 for
A,D; p-value<0.001 for B,C, Student’s t-test).

the gene immediately adjacent to each paralog is orthologous. If both genes share

direct synteny with the outgroup gene, then conservation of synteny is inferred. If

one gene shares synteny and the other does not, then a disruption is inferred. If

neither gene has synteny with the outgroup, then there are two possible scenarios:

either both duplicates experienced rearrangement resulting in a disruption of syn-

teny, or the original gene experienced a disruption prior to the duplication event.

We do not attempt to distinguish between these two scenarios, and accordingly

we excluded the duplications where both genes lack any direct synteny with the

outgroup.

Table 4.2 shows that distant DNA duplicates are more likely to be evolving

asymmetrically at the protein and DNA levels when one of the genes has lost
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direct synteny with the outgroup. This association is significant regardless of

whether the disruption occurred upstream or downstream of the duplicate. How-

ever, the probability of observing asymmetric constraint (dN/dS), is only signifi-

cantly higher for duplicates that experience upstream disruptions (p-value=0.021

vs. p-value=0.113). This suggests that changes in the 5’ flanking DNA of a gene

may have a greater impact on that gene’s functional importance than changes in

the 3’ flanking DNA.

Frequency of asymmetry

Duplication type N dN dS dN/dS
Distant, 5’ syntenic 22 50% 50% 9%
Distant, 5’ disrupted 56 79%* 73%* 34%*
Distant, 3’ syntenic 21 47% 38% 14%
Distant, 3’ disrupted 65 78%** 80%*** 31%n

Tandem, 5’ syntenic 37 54% 43% 8%
Tandem, 5’ disrupted 71 65%n 49%n 11%n

Tandem, 3’ syntenic 35 54% 43% 9%
Tandem, 5’ disrupted 78 68%n 51%n 12%n

Table 4.2: Frequencies of asymmetry in non-synonymous and synonymous sub-
stitution rates (dN and dS) and selective constraint (dN/dS) on DD copies by
disruption of direct synteny. Significance was established via Fisher’s exact test:
*: p<0.05, **: p<0.01, ***: p<0.001; n, not significant.

4.7 Distribution of duplication events within the

mammalian tree

The total number of RD and DD duplication events detected in this study is

illustrated in Figure 4.1. Along each branch the number of events giving rise to

clusters with evidence of purifying selective pressure on their protein coding regions

is in bold typeset, while the total number of events detected is in denominators,

showing a fraction of the functional events over the total assigned events, e.g.,
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53/161 for DD events on primate branch. From these numbers, it is clear that

that I detect far more RD events than DD events, but that far fewer of these events

give rise to functional protein coding genes than their DD counterparts. Analysis of

the internal branches individually reveals small possible differences in the relative

probability of these events giving rise to functional genes in different lineages. In

the most basal branch shared by rodents and primates, there is a slight excess

of functional DD events over functional RD events, while the two mechanisms

appear to contribute equal numbers of functional events in the rodent lineage.

The primate and rodent branches show similar rates of assigned DD events, but

in primates fewer of these events give rise to functional descendants (Table 4.3).

A decreased rate of functionalization is also apparent in the RD events on the

primate lineage. Despite an RD event rate nearly twice that seen in rodents, the

number of functional RD events in primates is only ∼25% greater than that in

rodents.

DD events RD events

Assigned Intact Functional Assigned Intact Functional

Rodents 1.76 1.56 0.96 10.4 1.42 0.92
Primates 1.87 1.31 0.62 20.7 3.41 1.21

Table 4.3: Rates of duplication events (per million years) for rodent and primate
lineages

4.8 Distribution of functional events in gene fam-

ilies

Of 8,872 Ensembl families, 262 families have at least one functional duplication

event. The distribution of functional events within gene families of different sizes
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(Figure 4.6) reveals that there is an apparent lack of mixing of the two types of

duplication events within families.
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Figure 4.6: Distribution of functional events categorized by RD events in RD-
only families, DD events in DD-only families, and RD events and DD events in
the families including both events binned by the number of Ensembl genes within
family.

Of the 262 families containing at least one functional event, 151 (57.6%) families

have exclusively functional RD events and 101 (38.5%) have exclusively functional

DD events, suggesting that gene families primarily evolve either by DNA-mediated

duplication, or by RNA-mediated duplication (retrotransposition), but rarely by

both mechanisms. I tested this idea by looking more closely at the distribution

of functional RD and DD events in families with at most 4 functional events. I

counted families that contained only DD or only RD functional events and com-

pared these observations to the numbers of families expected based on a binomial

distribution of the of two types of events, where the probability of DD functional

events is p = 148/335 (total number of functional DD events/total number of

functional events) and the probability of RD functional events is q = 1− p (Table

4.4). Chi-squared tests reveal that the observed mutual exclusivity of these two

mechanisms is statistically highly significant.
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No. of events

2 3 4 >4

DD only families 14 4 3 1
RD only families 16 1 2 0

Total families 37 7 6 1
P-values <0.01 <0.001 <1e-6 N/A

Table 4.4: Observed numbers of families having only RD functional events and
only DD functional events and χ2 p-values.

4.9 DNA- and RNA-mediated duplications give

rise to different types of gene families

As the mechanisms that give rise to DNA- and RNA-mediated duplications have

very different consequences for the properties of the duplicate copy, it might be

reasonable to expect that each mechanism might be biased in the type of new

functional genes it creates. I examined the types of genes created by each dupli-

cation mechanism by identifying Gene Ontology terms that are overrepresented in

families derived from each mechanism. As it might be expected, the largest gene

families generated through RD duplications are dominated by ribosomal proteins

(Table 4.5. The very high levels of expression of these genes lead to a large number

of intact RD events and a correspondingly large number of new gene copies. In

contrast, the largest families of DD generated genes include a variety of functional

categories including immune function (lipocalins, chemokines, and defensins), and

large families of diverse molecules such as the olfactory receptors (Table 4.6).

Analysis of the types of genes born through each mechanism in the mid-size

families (7–17 members) show a similar trend. Overrepresented GO terms for RD

dominated families again include a number of RNA related categories. However,

when the contribution of RD genes is analyzed based on individual families, a much
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greater diversity of functions is revealed including members of the nuclear pore

complex, topoisomerase, DNA binding proteins, cell cycle regulation, apoptosis,

and energy metabolism. DD dominated mid-size families are involved in a variety

of processes requiring more complex regulation of gene expression including the

regulation of development, immune processes and odorant perception.

The RD/DD abundant families are from the long tail of the distribution, but

the majority of RD/DD events are in the mid sizes of families. I listed the over-

represented (p-value<0.1) biological process GO terms (Top Tens) from RD event

only families with sizes of [7–17] (594 families, 6,052 genes, 736 annotated Hs gene

names, 767 annotated Mm gene names), with minimal length of GO path as 5.

Most of the overrepresented GO terms are overlapped between human and mouse,

while all GO terms are ribosomal or RNA related ones (see Table 4.7). Over-

represented (p-value<0.1) biological process GO terms (Top 10s) from DD event

only families with sizes of [7–17] (250 families, 2,668 genes, 340 annotated Hs gene

names,379 annotated Mm gene names), with minimal length of GO path as 5, show

different results: there is no overlapping between two GO term lists from human

genes and mouse genes. The overrepresented GO terms from human genes are

mostly development related ones, while mouse genes are associated with sensory

ones (see Table 4.8).

4.10 Application to Ribosomal protein families

Since local synteny is more effective to distinguish RD events from DD events, I

applied the same method to the 79 ribosomal protein families where RD events

are absolutely abundant. Eight mammalian and one outgroup genomes are con-

sidered: human, chimp, macaque, mouse, rat, dog, cow, opossum, and chicken as

an outgroup. I found that one of riboprotein families (RPS28) does not include
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GO term p-value (Hs) p-value (Mm) GO name

GO:0016071 7.87e-41 4.4e-20 mRNA metabolic process

GO:0006397 8.57e-40 1.74e-21 mRNA processing

GO:0022613 7.24e-38 2.08e-11 Ribonucleoprotein complex
biogenesis and assembly

GO:0006396 1e-37 3.31e-19 RNA processing

GO:0006605 3.17e-21 Protein targeting

GO:0006139 3.82e-18 7.26e-14 Nucleobase, nucleoside, nucleotide,
and nucleic acid metabolic process

GO:0051246 6.12e-18 Regulation of protein metabolic process

GO:0043170 5.39e-16 3.37e-14 Macromolecule metabolic process

GO:0008380 7.37e-16 1.39e-23 RNA splicing

GO:0044249 1.05e-14 Cellular biosynthetic process

GO:0000377 2.91e-08 RNA splicing, via transesterification
reactions with bulged adenosine
as nucleophile

GO:0000398 2.91e-08 Nuclear mRNA splicing, via spliceosome

GO:0000375 2.91e-08 RNA splicing, via transesterification
reactions

Table 4.7: Top-10 GO terms from GOstat analysis on the human and mouse genes
from RD-only families with size between 7 and 17.

human member in Ensembl rel. 50, thus I used cross-species Pseudopipe to detect

it including other possible unitary pseudogenes similar method used in Zhang et al.

(2010).

To reconstruct gene family history we need to build a gene tree based on de-

tected duplication events. Since the duplication event detection method described

in Chapter 3 produces the DD event-induced gene trees separated by RD events,

we need to put these trees together into one tree. Considering possible multiple

DD events on the same branches, there might be combinatorial possibilities to

join these syntenic trees into one tree. Since local synteny or intron conservation

information are defaulted between these trees, i.e. no conservation between any

member across trees, I have to use the sequence similarity to deal with the problem.
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GO term p-value (Hs) p-value (Mm) GO name

GO:0006954 0.00042 Inflammatory response

GO:0048731 0.000424 System development

GO:0009611 0.000654 Response to wounding

GO:0048513 0.000772 Organ development

GO:0048518 0.00473 Positive regulation of biological process

GO:0016998 0.00473 Cell wall catabolic process

GO:0045682 0.0095 Regulation of epidermis development

GO:0000165 0.0104 MAPKKK cascade

GO:0008366 0.0128 Axon ensheathment

GO:0007272 0.0128 Ensheathment of neurons

GO:0009617 0.00204 Response to bacterium

GO:0050906 0.00204 Detection of stimulus during
sensory perception

GO:0001580 0.00209 Detection of chemical stimulus
during sensory perception
of bitter taste

GO:0050912 0.00209 Detection of chemical stimulus
during sensory perception of taste

GO:0050907 0.00244 Detection of chemical stimulus
during sensory perception

GO:0050913 0.00276 Sensory perception of bitter taste

GO:0042742 0.00276 Defense response to bacterium

GO:0000188 0.00378 Inactivation of MAPK activity

GO:0009593 0.00576 Detection of chemical stimulus

GO:0009435 0.0119 NAD biosynthetic process

Table 4.8: Top-10 GO terms from GOstat analysis on the human and mouse genes
from DD-only families with size between 7 and 17.

The best averaged similarity measure is used to place the root node of smaller tree

to a proper branch of a bigger tree. Blastp scores are used between intact genes,

and pseudogenes are assigned by their seed genes.

Figure 4.7 is gene family history of RPL 36A family generated by duplication

events detection and assignment methods. Interestingly, even RD events seem

uniformly distributed over the species and timeframe, the oldest RD event placed
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Figure 4.7: Evolution history of ribosomal protein L36A family including pseu-
dogenes and duplication mechanism. Local synteny infers that nine ENSEMBL
annotated ribosomal genes (one in each species) evolved from one ancestral intron-
bearing gene. This ancestral gene gave rise to multiple retrotransposition events
at various evolutionary time points as indicated by black lines with arrowheads.
Some of these retro-copies were subject to subsequent DD events (blue arrow on
primate lineage), while others were pseudogenized (grey deltas). A retrocopy gen-
erated from one of these events (at the base of the mammalian lineage on the
branch between the LCA with opossum and the other mammals, double red ar-
row) is conserved in all descendant species except for macaque (where a different
RD copy arising in the primate LCA, red arrow, is preserved). Recent, lineage-
specific retrocopies often retain intact ORFs simply because they are relative young
(open deltas.)

on the branch between opossum speciation and the other mammalian species is

only duplication event having extant copies in all species, except for some young

lineage-specific RD copies remaining intact probably due to the lack of time for

pseudogenization. A simple dosage model is not adequate for explaining why
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this old RD event can survive, because other RD copies formed by comparatively

newer RD events become pseudogenes. Dosage balance cases are mostly triggered

by WGD (DeLuna et al., 2008) but no WGD event reported near that branch.

The intronless copies from this RD event have been experimentally proven to have

narrower expression pattern than the original copies (Uechi, 2002), which discards

the neo- or sub-functionalization from the possible retention model. I expect this

dilemma is not unique to ribosomal protein families. There are only a handful of

well-suited examples for each duplicate retention model and the majority of gene

families are not explained well (Dharia et al., 2010). Thus a new retention model

for gene duplicates is required.

4.11 Conclusions

In this chapter, I compared the rates of new gene formation by DNA-mediated du-

plication and RNA-mediated duplication in five mammalian genomes. I found that

RNA-mediated duplication occurs at a much higher and more variable rate than

DNA-mediated duplication, and gives rise to many more duplicated sequences over

time (see 4.3). I showed that while the chance of RNA-mediated duplicates becom-

ing functional is much lower than that of their DNA-mediated counterparts, the

higher rate of retrotransposition leads to nearly equal contributions of new genes

by each mechanism (see 4.2). I also found that functional RNA-mediated dupli-

cates are closer to neighboring genes than non-functional RNA-mediated copies,

consistent with cooption of regulatory elements at the site of insertion (see 4.5).

Overall new genes derived from DNA and RNA-mediated duplication mechanisms

are under similar levels of purifying selective pressure (see 4.4), but have broadly

different functions (see 4.9). DNA-mediated duplicates are mainly affected by dis-

ruptions on flanking sequences (see 4.6) while the insertion sites of RD events have
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an impact on the fates of RNA-mediated copies (see 4.5). RNA-mediated dupli-

cation gives rise to a diversity of genes but is dominated by the highly expressed

genes of RNA metabolic pathways. DNA-mediated duplication can copy regula-

tory material along with the protein coding region of the gene and often gives rise

to classes of genes whose function are dependent on complex regulatory informa-

tion. This mechanistic difference may in part explain why I found that mammalian

protein families tend to evolve by either one mechanism or the other, but rarely

by both (see 4.8).

Although I have had success detecting gene duplication events in five mam-

malian genomes and building the gene family evolution history of riboprotein fam-

ilies, several challenges remain for future work. First, I have no conclusive way

to place RD events on specific branches in the phylogenetic tree. In the case of

riboprotein families (see 4.10) where the RD events are dominant, I used protein

sequence similarity to place retro duplication events on likely branches and left

the precise order of events unresolved. It is possible that we could improve this

imperfect solution using synonymous mutation rates and the assumption of the

molecular clock. For the pseudogenes from RD events, we can use the method

devised by (Chou et al., 2002). It assumes that non-synonymous mutations are

selected against until the gene is inactivated; thereafter, mutations at both syn-

onymous and non-synonymous sites accumulate at the neutral mutation rate.

Another complication in our analysis concerns the definition of intron orthol-

ogy. Intron orthology was defined by relative position on aligned protein sequences.

However, unreliable results from multiple sequence alignment methods can lead to

incorrect intron orthology determinations. For example, around the exon-intron

junction area, the multiple sequence alignment method was unable to exhibit ac-

curate alignment and thus needed a manual adjustment (Csurös et al., 2007, Fig.

1). To avoid this problem, I used a buffer length within which two intron posi-

70



tions are merged if the distance between two intron positions is smaller than the

given threshold (Jun et al., 2008). However, because of insufficient knowledge of

exon-intron junction evolution, determining this threshold is not trivial. Another

problem with positional intron orthology is the representative transcript issue. I

used either the longest transcript or the collapsed gene model as the representative

transcript. However, the longest one transcript model cannot deal with alternative

splice isoforms, and the collapsed one can have trouble when two genomes have

different levels of sequencing, assembly coverage, and gene annotations.

To improve intron orthology, we need to consider a flanking sequence based

intron orthology definition. The idea of this approach is that the short flanking

coding sequences of each intron are enough to find conserved regions and small

enough to avoid any circular effect of using coding sequences. This approach has

the advantages of no need of multiple alignments, and produces more reliable intron

orthology with alternative splice forms.

Finally, the gene family history reconstruction can be improved with possible

future works including a probabilistic approach like PrIME-GSR (Akerborg et al.,

2009). Although the current local synteny and gene structure information might

not be enough to predict a reliable evolutionary history simply because of insuf-

ficient characters, it might be applicable and useful if we combine it with coding

sequence information. Also since we know that different types of duplication mech-

anisms occur at different times with varying rates, we would be able to incorporate

this information into the reconstruction method. For instance, WGDs occur early

in the evolutionary time scale and very rarely, and it is extremely hard to capture

the lost genes after WGDs. Tandem duplicates are comparatively younger events

but it is very difficult to reconstruct the duplication history, so we might need

to apply other tandem array evolution models (Bertrand & Gascuel, 2005; Tang

et al., 2002) to detect the duplication/deletion events. Detection of non-tandem
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DD genes is very sensitive to the size of the duplication block, whereas sometime

ended up with gene fissions and gene fusions . Moreover, different duplicative

transposition mechanisms can help to improve detection power. Another extreme

case is retrotransposition, which is believed to be a burst of events on recent lin-

eages. As I have shown that some RD genes landed in an intronic region, it might

be interesting to check if any RD genes invoked gene fusions and to see if they can

be considered in a reconstruction method.
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Chapter 5

Conclusions

The duplication and divergence of single copy ancestral genes into large gene fam-

ilies has been an essential driving force in the evolution of organismal complexity.

Over the last decade the emergence of new sequencing technologies has enabled the

rapid and cost-effective sequencing of many mammalian genomes. A key challenge

in understanding the evolution of gene families in these species is the accurate re-

construction of the evolutionary history of each gene family including duplication

mechanism, and a destination of the fates of each newly born duplicates including

diversification, stabilization or loss. The goal of this thesis has been to develop

and evaluate new tools for the accurate reconstruction of gene family histories and

to apply these tools to understanding the evolution of gene families in mammalian

genomes.

In the first chapter I discuss the importance of determining ancestral orthology

between genes in distinct genomes and contrast the definition of ancestral orthol-

ogy with functional orthology. I also point out that methods utilizing the coding

sequence of the series of genes to determine orthology may be confounded by the

convergent evolution of those genes for common function and thereby highlight

the value of methods that seek to define orthology using non-coding characters of
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the genes in question. I also discuss the difficulty that gene loss events present for

the reconstruction of gene family histories and propose that incorporating pseudo-

genes into gene family history reconstruction algorithms can help to minimize the

impact of gene loss events on the reconstruction problem. Finally I suggest that a

more complete picture of gene family evolution may be garnered by methods that

incorporates duplication mechanism in the reconstruction scenario.

In the second chapter represents a new approach for the identification of ances-

tral Orthologs utilizing non-coding characters of the constituent genes. Specifically,

I use local synteny information and intron content to identify orthologous genes

in five mammalian genomes. I show that this approach is computationally simple

but powerful enough to provide accuracy comparable to widely utilized methods

exploiting coding sequence to determine orthology. In order to investigate the

strengths and weaknesses of this approach I enumerate and explore cases of con-

cordance and discordance between my orthology detection method and Inparanoid.

This analysis shows that local synteny can distinguish retrotransposed duplicates

from ancestral orthologs in cases where Inparanoid fails to do so. I also show

that my method can dissect ambiguous clusters of homologous genes into distinct

orthologous relationships.

In Chapter 3, I show how local synteny information can be used to determine

orthology, identify the duplication mechanism, and infer a gene family history.

Two clustering algorithms are presented in this chapter. The first is used to form

synthetic clusters and separate retro-duplication events from DNA-mediated du-

plication events. The second is used to break syntenic clusters into sub-clusters

defined by successive DNA duplication events. In this way I generate a map of

duplication events within the species tree in question. These events can then be

placed upon particular branches of the tree using parsimony.

In Chapter 4, I apply these methods to five mammalian genomes including:
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human, chimpanzee, mouse, rat and dog. The results of this analysis are striking

in that they indicate that roughly equal numbers of new genes are contributed to

mammalian genomes by RNA- and DNA-mediated duplication events. While I

find that the DNA-mediated duplications are far more likely to give rise to func-

tional genes, RNA-mediated duplications have been at a sufficiently higher rate

to bring their net contributions to similar levels. This analysis is the first anal-

ysis of mammalian gene family evolution utilizing strictly non-coding characters,

discriminating between duplication mechanisms, and incorporating pseudogenes

to generate more complete gene family histories. I also show in this chapter that

mammalian gene families tend to evolve through one duplication mechanism or the

other but rarely both. As might be expected families of genes that are expressed at

very high levels contain large numbers of retro-duplicates, while gene families that

rely upon complex regulatory information, or that exist in large tandem arrays,

tend to evolve through DNA-mediated duplication events. Finally I show that

the location of the newly duplicated gene plays a large role in determining the

fate of that duplicate. DNA-mediated duplicates with disrupted flanking regions

are more likely to diverge from their original state than are duplicates with intact

flanking regions. RNA-mediated duplicates are strongly affected by their inser-

tion sites. Intact retro-duplicates are found closer to other functional genes than

are retro-duplicated pseudogenes. This result suggests that a prominent load of

functionalization for retro-duplicates may include co-option of existing regulatory

elements. Taken together these findings reinforce the importance of duplication

mechanism to understanding the evolution of gene families.
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Bosak, S., Kellis, M., Volff, J.-N., Guigó, R., Zody, M. C., Mesirov, J., Lindblad-

Toh, K., Birren, B., Nusbaum, C., Kahn, D., Robinson-Rechavi, M., Laudet, V.,

Schachter, V., Quétier, F., Saurin, W., Scarpelli, C., Wincker, P., Lander, E. S.,

Weissenbach, J., & Roest Crollius, H. (2004). Genome duplication in the teleost

fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature,

431 (7011), 946–957.

Johnson, T. (2007). Reciprocal best hits are not a logically sufficient condition for

orthology. Quantitative biology , (pp. 1–8).

Jun, J., Mandoiu, I. I., & Nelson, C. E. (2009a). Identification of mammalian

orthologs using local synteny. BMC genomics , 10 (1), 630.

Jun, J., Ryvkin, P., Hemphill, E., Mandoiu, I., & Nelson, C. (2009b). The birth

of new genes by RNA- and DNA-mediated duplication during mammalian evo-

lution. Journal of computational biology , 16 (10), 1429–1444.

Jun, J., Ryvkin, P., Hemphill, E., Mndoiu, I., & Nelson, C. (2008). Estimating

the relative contributions of new genes from retrotransposition and segmental

duplication events during mammalian evolution. In 6th RECOMB Comparative

Genomics Satellite Workshop, (pp. 40–54).

Jun, J., Ryvkin, P., Hemphill, E., & Nelson, C. (2009c). Duplication mechanism

82



and disruptions in flanking regions determine the fate of Mammalian gene du-

plicates. Journal of computational biology , 16 (9), 1253–1266.

Kaessmann, H., Vinckenbosch, N., & Long, M. (2009). RNA-based gene duplica-

tion: mechanistic and evolutionary insights. Nature reviews. Genetics , 10 (1),

19–31.

Kellis, M., Birren, B. W., & Lander, E. S. (2004). Proof and evolutionary analysis

of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature,

428 (6983), 617–624.

Kijima, T. E., & Innan, H. (2010). On the estimation of the insertion time of LTR

retrotransposable elements. Molecular biology and evolution, 27 (4), 896–904.

Kim, P. M., Lam, H. Y. K., Urban, A. E., Korbel, J. O., Affourtit, J., Grubert, F.,

Chen, X., Weissman, S., Snyder, M., & Gerstein, M. B. (2008). Analysis of copy

number variants and segmental duplications in the human genome: Evidence

for a change in the process of formation in recent evolutionary history. Genome

research, 18 (12), 1865–1874.

Koonin, E. V. (2005). Orthologs, paralogs, and evolutionary genomics. Annual

review of genetics , 39 , 309–338.

Koonin, E. V., Mushegian, A. R., & Bork, P. (1996). Non-orthologous gene dis-

placement. Trends in genetics , 12 (9), 334–336.

Lajoie, M., Bertrand, D., & El-Mabrouk, N. (2010). Inferring the evolutionary

history of gene clusters from phylogenetic and gene order data. Molecular biology

and evolution, 27 (4), 761–772.

Lemoine, F., Labedan, B., & Lespinet, O. (2008). SynteBase/SynteView: a tool to

83



visualize gene order conservation in prokaryotic genomes. BMC bioinformatics ,

9 (1), 536.

Lemoine, F., Lespinet, O., & Labedan, B. (2007). Assessing the evolutionary

rate of positional orthologous genes in prokaryotes using synteny data. BMC

evolutionary biology , 7 (1), 237.

Li, H., Coghlan, A., Ruan, J., Coin, L. J., Hériché, J.-K., Osmotherly, L., Li, R.,
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