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Abstract

Design of DNA arrays for very large-scale immobilized polymer synthesis (VLSIPS) [10] seeks to minimize ef-

fects of unintended illumination during mask exposure steps. Hannenhalli et al. [11] formulate this requirement as the

Border Minimization Problem and give an algorithm for placement of probes at array sites under the assumption that

the array synthesis is synchronous, i.e., nucleotides are synthesized in a periodic sequence (ACGT)k and every probe

grows by exactly one nucleotide with every group of four masks. Drawing on the analogy with VLSI placement, in

this paper we describe and experimentally validate the engineering of several scalable, high-quality placement heuris-

tics for both synchronous and asynchronous DNA array design. We give empirical results on both randomly generated

and industry testcases confirming the scalability and improved solution quality enjoyed by our methods. In general,

our techniques improve on state-of-the-art industrial results by over 4%, and surpass academically published results

by up to 35%. Finally, we give lower bounds that offer insights into the amount of available further improvements.

1 Introduction

DNA probe arrays, or DNA chips, have emerged as a core genomic technology that enables cost-effective gene expres-

sion monitoring, mutation detection, single nucleotide polymorphism analysis, and other genomic analyses (see [20]

for a survey). DNA chips are manufactured through a highly scalable process, called Very Large-Scale Immobilized

Polymer Synthesis (VLSIPS), that combines photolithographic technologies adapted from the semiconductor industry

with combinatorial chemistry. Commercially available DNA chips contain more than half a million probes and are

expected to exceed one hundred million probes in the next generation [20]. The design of DNA arrays raises a number

of challenging combinatorial problems, such as probe selection [19, 22], deposition sequence design [18, 27, 23],

probe placement [11], manufacturing quality control [3, 15, 24], etc. In this paper, we study the Border Minimization

Problem that was recently introduced by Hannenhalli et al. [11].
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As described in [10], during VLSIPS the sites of a DNA probe array are selectively exposed to light in order to

activate oligonucleotides for further synthesis. The selective exposure is achieved by a sequence M1,M2, . . . ,MK of

masks, with each mask Mi inducing deposition of a particular nucleotide si ∈ {A,C,T,G}) at its clear array sites. The

nucleotide deposition sequence S = s1s2 . . . sK corresponding to the sequence of masks is therefore a supersequence of

all probe sequences in the array. Typically, S is assumed to be periodic, e.g., S = (ACGT )k, where (ACGT ) is a period

and k is the (uniform) length of all probes in the array.

Optical effects (diffraction, reflections, etc.) can cause unwanted illumination at masked sites that are adjacent to

the sites intentionally exposed to light, i.e., at the border sites of clear regions in the mask. This results in synthesis

of unforeseen sequences in masked sites and compromises interpretation of experimental data. To reduce such uncer-

tainty, one can exploit the freedom available in how the probes are assigned to array sites. The Border Minimization

Problem (BMP) [11] seeks a placement of probes that minimizes the sum of border lengths in all masks.

Observe that, in general, a given probe can be embedded within the nucleotide deposition sequence S in several

different ways.1 We may view the array design as a three-dimensional placement problem (see Figure 1): two dimen-

sions represent the sites of the array, and the third dimension represents the deposition sequence S. Each layer in the

third dimension corresponds to a mask inducing deposition of a particular nucleotide (A, C, G, or T ), and each column

within this three-dimensional placement representation corresponds to a probe embedded into the deposition sequence

S. The border length for a given mask is computed as the number of conflicts, i.e., pairs of adjacent transparent and

masked sites in the mask. Given two adjacent embedded probes p and p′, the conflict distance d(p, p′) is the number

of conflicts between the corresponding columns. The total border length of a three-dimensional placement is the sum

of conflict distances between adjacent probes.

We distinguish two types of DNA array synthesis. In synchronous synthesis, the ith period (ACGT ) of the peri-

odic nucleotide deposition sequence S synthesizes a single nucleotide (the ith) in each probe. This corresponds to a

unique (and trivially computed) embedding of each probe p in the sequence S; see Figure 2(a-b). On the other hand,

asynchronous array synthesis permits arbitrary embeddings, as shown in Figure 2(c-d).

Our contributions are as follows:

1. Improved assignment of probes to sites for synchronous array synthesis. Previous work on DNA array

synthesis has considered only the synchronous context, when the conflict distance between two probes is d(p, p′) =

2h(p, p′), with h(p, p′) denoting the Hamming distance between p and p′ (i.e., the number of positions in which p and

p′ differ). As recounted in [11], the first array design at Affymetrix used a traveling salesman problem (TSP) heuristic

to arrange all probes in a tour that heuristically minimized Hamming distance between neighboring probes in the tour.

The tour was then threaded into the two-dimensional array of sites. [11] enhanced this threading approach to achieve

up to 20% border length reduction for large chips. In Section 3, we suggest epitaxial placement heuristics that start

by placing a random probe in the center or corner of the array and then continue to insert probes in sites adjacent to

already-placed probes, so as to greedily minimize the number of induced conflicts.2 We also demonstrate the value

1An embedded probe q is defined as a sequence of length K = |S| over the alphabet {A,C,G,T,b} such that the j th letter of q is either b (for

blank) or s j , the jth letter of the nucleotide deposition sequence S.
2A similar heuristic has been recently explored by Abdueva and Skvortsov [1].

2



of simple ordering-based methods for initial placement and propose the use of a scalable sliding-window technique

having antecedents in large-scale integrated circuit placement [9, 13, 21, 25], as well as a local improvement operator

based on optimal reassignment of an independent set of probes. A recurring motif is the analogy between silicon chip

design and DNA chip design, pointing to the value of technology transfer between the 40-year old VLSI CAD field

and the newer realm of probe array design. Experimental results confirm the linear runtime scaling and improved

solution quality compared to previous methods.

2. Dynamic programming algorithms for optimal embedding of single probes and iterative algorithms for full

chip in-place optimization of probe embedding. Note that in the asynchronous context, the conflict distance between

two adjacent probes depends on their embedding. Section 4 proposes dynamic programming algorithms that optimally

embed a given probe with respect to fixed embeddings of the probe’s neighbors. This dynamic programming algorithm

is used as the key subroutine in methods for iterative in-place optimization of probe embeddings. We propose and

compare three such methods, referred to as Batched Greedy, Chessboard, and Sequential Alignment algorithms.

3. Lower bounds for synchronous and asynchronous array design problems. In Section 2 we give a priori

lower bounds on the total border length of the optimum synchronous solution based on Hamming distance, and of

the optimum asynchronous solution based on the length of the Longest Common Subsequence (LCS). These give an

estimate of the potential for future improvements in probe placement algorithms. In Section 4 a tighter LCS-distance

based lower bound is obtained for the in-place probe embedding problem, yielding bounds on possible improvement

from exploiting this degree of freedom alone.

4. Engineering of a scalable, high-quality flow for asynchronous DNA array design. In Section 5 we give de-

tails on how to handle practical extensions and constraints, such as distance- and position-dependent border conflict

weights, and the presence of polymorphic probes (SNPs) in the instance. Throughout the paper, we describe and ex-

perimentally validate numerous algorithmic and implementation choices. Finally, in Section 6 we give experimental

results on both randomly generated and industry testcases showing that our approaches are highly scalable and give

placements of higher quality compared to previous methods.

2 Array Design Problem Formulations and Lower Bounds

In this section we give graph-theoretical formulations for the synchronous and asynchronous variants of the array

design problem. For both variants, we give lower bounds on the cost of optimum solutions.

Following the development in [11], let G1(V1,E1,w1) and G2(V2,E2,w2) be two edge-weighted graphs with weight

functions w1 and w2. (In the following, any edge not explicitly defined is assumed to be present in the graph with

weight zero.) A bijective function φ : V2 →V1 is called a placement of G2 on G1. The cost of the placement is defined

as

cost(φ) = ∑
x,y∈V2

w2(x,y)w1(φ(x),φ(y)).

The optimal placement problem is to find a minimum cost placement of G2 on G1.
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The border minimization problem for synchronous array design can be cast as an optimal placement problem. In

this case we let G2 be a two-dimensional grid graph corresponding to the arrangement of sites in the DNA array,

i.e., V (G2) has N ×N vertices corresponding to array sites, and E(G2) has edge weights of 1 for every vertex pair

corresponding to adjacent sites, and edge weights of 0 otherwise. Also, let H be the Hamming graph defined by the

set of probes, i.e., the complete graph with probes as vertices and each edge weight equal to twice the Hamming

distance between corresponding probes. The border minimization problem for synchronous array design can then be

formulated as follows:

Synchronous Array Design Problem (SADP). Find a minimum-cost placement of the Hamming graph H on the

two-dimensional grid graph G2.

Let L be the directed graph over the set of probes obtained by including arcs from each probe to the 4 closest

probes with respect to Hamming distance, and then deleting the heaviest 4N arcs. Since the total weight of L cannot

exceed the conflict cost of any valid placement of H on the grid graph G2, we obtain the following:

Theorem 1 The total arc weight of L is a lower bound on the cost of the optimum SADP solution.

For asynchronous array design, formalizing BMP is more involved. Conceptually, asynchronous design consists of

two steps: (i) embedding each probe p into the nucleotide deposition sequence S, and (ii) placing the embedded probes

into the N ×N array of sites. Let H ′ be the complete graph with vertices corresponding to the embedded probes and

with edge weights equal to the Hamming distance between them.3 The border minimization problem for asynchronous

array design can then be formulated as follows:

Asynchronous Array Design Problem (AADP). Find embeddings into the nucleotide deposition sequence S for all

given probes and a placement of the corresponding graph H ′ on the two-dimensional grid graph G2 such that the cost

of the placement is minimized.

In order to obtain non-trivial lower-bounds on the cost of the optimum AADP solution, it is necessary to establish a

lower-bound on the conflict distance between two probes independent of their embedding into S. We get such a lower-

bound by observing that the number of nucleotides (mask steps) common to two embedded probes cannot exceed the

length of the longest common subsequence (LCS) of the two probes. Define the LCS distance between probes p and p′

by lcsd(p, p′) = k−|LCS(p, p′)|, where k = |p|= |p′|, and let L′ be the directed graph over the set of probes obtained

by including arcs from each probe to the 4 closest probes with respect to LCS distance, and then deleting the heaviest

4N arcs. Similar to Theorem 1 we get:

Theorem 2 The total arc weight of L′ is a lower bound on the cost of the optimum AADP solution.

3Recall that embedded probes are viewed as sequences of length K = |S| over the alphabet {A,C,G,T,b} such that the j th letter is either b or s j.

Thus, conflicts between two adjacent embedded probes occur only on positions where a nucleotide in one probe corresponds to a blank in the other.
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Example. We remark that the weight of L′ may be smaller than the optimum cost, since the embeddings needed to

achieve LCS distance between pairs of adjacent probes may not be compatible with each other. Figure 3 gives one

such example consisting of four dinucleotide probes, AC, GA, CT , and T G, which must be placed on a 2×2 grid. In

this case, the lower bound on the number of conflicts is 8 while the optimum number of conflicts is 10.

3 Scalable Algorithms for SADP

In this section, we describe the engineering of near linear-time, yet high-quality synchronous probe placement heuris-

tics. A recurring motif in our discussion is the value of technology transfer between the 40-year VLSI design literature

and the newer field of DNA chip design. We point out analogies that inspire useful heuristics, as well as distinctions

that hamper direct transfers. Two key design goals are (i) to enable scaling to 100 million or more placeable objects in

the near future (say, within the current or next generation of workstations), and (ii) to enable easy parallelism (imply-

ing near-linear speedup on workstation clusters) wherever possible. We first describe an epitaxial growth algorithm

inspired from the VLSI design literature and then describe a scalable version of it which we call row-epitaxial. Finally,

we give a highly scalable heuristic based on optimally re-placing an independent set of probes; again using placement

improvement ideas from VLSI design.

3.1 Epitaxial Growth SADP Algorithms

In this section, we describe the so-called epitaxial placement approach to SADP and discuss some efficient implemen-

tation details. Epitaxial, or seeded crystal growth, placement is a technique that has been well-explored in the VLSI

circuit placement literature [21, 25]. The technique essentially grows a two-dimensional placement around a single

starting seed.

The algorithm in [11] , which finds a TSP tour and then threads it into the array, optimizes directly only half of the

pairs of adjacent probes in the array (those corresponding to tour edges). Intuitively, the epitaxial algorithm (see Figure

4) attempts to make full use of the available information during placement. The algorithm places a random probe at

the center of the array, and then iteratively places probes in sites adjacent to already-placed probes so as to greedily

minimize the average number of conflicts induced between all newly created pairs of neighbors. We have found that

sites with more filled neighbors should have higher priority to be filled. In particular, we give highest priority to sites

with 4 known neighbors. In the remaining cases we apply scaling coefficients to prioritize candidate probe-site pairs.

In our implementation, if a probe is to be placed at a site with i < 4 placed neighbors, then the average number of

conflicts caused by this placement is multiplied by a coefficient 0 < ki ≤ 1. Based on our experiments, we set k1 = 1,

k2 = 0.8, and k3 = 0.6. In our implementation we avoid repeated distance computations by keeping with each border

site a list of probes sorted by normalized cost. For each site this list is computed at most four (and on the average two)

times, i.e., when one of the neighboring sites is being filled while the site is still empty.

While the epitaxial algorithm achieves better results compared to other two-dimensional placements, it becomes

impractical for DNA chips with dimensions of 300×300 or more. We note that:
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Observation 1: Any placement method can be trivially scaled by partitioning the set of probes and the probe array

into K subsets (“chunks”) each, then solving K independent placement problems. While runtime remains linear in the

number of probes, two types of losses are incurred: (i) from lack of freedom of a probe to move anywhere other than

its subset’s assigned chunk of array sites, and (ii) lack of optimization on borders between chunks.

Based on Observation 1, we have implemented trivial scaling for the epitaxial algorithm using chunk sizes up

to 50x50. However, the results are dominated by those obtained using the following scalable variant of the epitaxial

algorithm, which we call the row-epitaxial algorithm. There are three main distinguishing features of the row-epitaxial

variant:

(1) It re-shuffles an existing pre-optimized placement rather than starting with an empty placement;

(2) The sites are filled with crystallized probes in a predefined order, namely, row by row and within a row from left

to right;

(3) The probe filling each site is chosen as the best candidate not among all remaining ones, but among a bounded

number of them (among the not yet “crystallized” probes within the next k0 rows in our implementation, where

k0 is a parameter of the algorithm).

Feature (1) is critical for compensating the loss in solution quality due to the reduced search space imposed by

(2) and (3). Since the initial placement must be very fast to compute, we cannot afford using any two-dimensional

placement based on computing all pairwise distances between probes (such as TSP-based placement in [11]). Possible

initial placement algorithms can be based on space-filling curve (e.g., Gray code) ordering [5]; indeed such orderings

have had success in the VLSI context [4]. We found that excellent initial placements are obtained by simply ordering

the probes lexicographically (this can be done in linear time by radix sort) and then threading them as in [11]. Features

(2) and (3) speed-up the algorithm significantly, with the number k0 of look-ahead rows allowing a fine tradeoff

between solution quality and runtime.

3.2 Highly Scalable Algorithms for Synchronous Placement Improvement

In the early VLSI placement literature, iterative placement improvement methods relied on weak neighborhood opera-

tors such as pair-swap, leveraged by meta-heuristics such as simulated annealing. More recently, strong neighborhood

operators have been proposed which improve larger portions of the placement. For example, the DOMINO approach

[9] iteratively determines an optimal reassignment of all objects within a given window of the placement. The end-case

placer of [6] uses branch and bound to optimally reorder small sub-rows of a row-based placement. Extending such

improvement operators to full-chip scale, such that placeable objects can eventually migrate to good locations within

practical runtimes, is typically achieved by shifting a fixed-size sliding window [9] around the placement; cf. cycling

and overlapping [13], row-ironing [6], etc.

For DNA arrays, an initial placement (and embedding) of probes in array sites may be improved by changing the

placement and/or the embedding of individual probes. Guided by the VLSI experience and the intuition that randomly
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chosen pairs of optimally-embedded probes are extremely unlikely to be swappable with reduction in border cost, we

focus on strong operators. We make the following observation:

Observation 2: Simultaneous probe re-placement of an entire window is not practical even for very small windows,

but simultaneous probe re-placement of an independent set within a window is practical.

Observation 2 rules out direct analogs of the DOMINO [9] and end-case placer [6] VLSI placement approaches.

Instead, we propose the following novel method of improving the placement solution within a small region of the

array. While improvements are still possible, we choose a set of mutually non-adjacent (independent) array cells, then

re-place the probes in these cells according to a minimum-cost assignment, where the cost of assigning probe p to cell

c is given by the sum of Hamming distances to the four neighbors. For a set of t independent cells, computing the

minimum cost assignment requires O(t3) time. Full-chip application with practical runtime is achieved by iteratively

choosing the independent set from a sliding window that is moved around the array; this approach is a reminiscence

of early work on electronic circuit placement by [2, 26].

We have carefully studied a number of methods for choosing the independent set within a window: (i) random

maximal independent set, (ii) chessboard based independent set (white squares or black squares), (iii) best result from

among K different maximal independent sets, etc. We have found that using a single random maximal independent

set (K = 1) yields the best tradeoff between solution quality and runtime. Therefore, we have implemented the above

sliding window method as follows. (1) We first radix-sort all probes lexicographically and then perform 1-threading

as in [11]. (2) Then, for each sliding W0 ×W0 window we choose one random maximal independent set of sites

and determine the cost of (asynchronous) reassignment of each associated probe to each site, then reassign probes

according to the minimum weight perfect matching in the resulting weighted bipartite graph. (3) The window slides

in rows, beginning in the top-left corner of the array; at each step, it slides horizontally to the right as far as possible

while maintaining a prescribed amount of window overlap. After the right side of the array is reached, the window

returns to the left end of the next row while maintaining the prescribed overlap with the preceding row. When the

bottom side of the array is reached, the window returns to the top-left corner. (4) The window-sliding continues until

an entire pass through the array results in less than 0.1% reduction of border cost.4

Our experiments [17] have shown that an overlap equal to half the window size gives best results; we use this

setting for all results reported in this paper. Figure 5 illustrates the heuristic tuning with respect to varying window

sizes. We observe that larger window sizes lose out to smaller window sizes when CPU time is very limited. Unless

otherwise noted, experimental results below are obtained with window size = 6 (i.e., 6×6) and window overlap =

3 (for these values, the typical size of the random maximal independent set is around 13). Other experiments have

shown that more effort in each window (and fewer cycles) loses out to less effort in each window (and more cycles),

i.e., being greedier within a single window thwarts overall solution quality. Specifically, using multiple iterations of

independent-set matching within a given window, or choosing the best of several attempted independent-set matchings,

worsens our results. Last, we emphasize that the Sliding-Window Matching algorithm is easily parallelizable after the

4Faster variants can restrict the number of such passes to a small constant, e.g., 5. For arrays with up to half a million probes our implementation

makes around 20 passes.
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initial (linear-time) sorting and 1-threading step; the previous methods of [11] do not have this property.

3.3 Empirical Evaluation of Synchronous Placement Algorithms

Table 1 compares the cost (number of conflicts) and runtime for the new synchronous placement algorithms and

the TSP heuristic of [11]. Experiments were performed on arrays of 25-mer probes chosen uniformly at random.

TSP+1-Threading runtimes are for an SGI Origin 2000 with 16 195MHz MIPS R10000 processors (only one of which

is actually used by the sequential implementations included in our comparison) and 4 G-Bytes of internal memory,

running under IRIX 6.4 IP27. Row-epitaxial and SWM runtimes are for a dual-processor 1.4GHz Intel Xeon server

with 512MB RAM. For comparison, we include the synchronous placement lower-bound given by Theorem 1; the

columns labeled “%Gap” show by how much the respective heuristic exceeds the lower bound. The row-epitaxial

algorithm achieves an excellent tradeoff between solution quality and runtime (over 13% improvement with a 10×
speed-up over the TSP+1-Threading algorithm of [11] for 500× 500 arrays). The sliding-window matching has

slightly worse solution quality, but has much better scaling runtime than the other methods. Parallelized execution can

achieve further speedups and/or permit the use of stronger local improvement operators.

4 In-Place Optimization of Probe Embeddings

In our experience, we have found that separate optimization of probe placement and embedding yields better results

for AADP than simultaneous optimization. For example, the asynchronous version of the epitaxial algorithm [16] and

the asynchronous version of sliding-window matching [17] are both dominated by algorithms that work in two steps:

Step (i). Find a two-dimensional placement based on synchronous embedding for the probes (using, e.g., the row-

epitaxial and sliding-window matching algorithms discussed in the previous section, or the TSP+1-Threading

of [11]).

Step (ii). Iteratively optimize probe embeddings, without changing their location on the array.

In this section we consider the second step of the above flow. We begin with algorithms for optimally embedding

a single probe with respect to its neighbors. Then, we establish a lower-bound on the optimum border cost for in-place

probe embedding; this lower-bound improves over Theorem 2 by taking into account the constraint on the placement

of the probes. Finally, we propose and compare three methods for in-place optimization of probe embeddings, which

we call the Batched Greedy, the Chessboard algorithms, and the Sequential algorithm.

4.1 Optimum Embedding of a Single Probe

The basic operation used by in-place embedding optimization algorithms (Section 4.3) is to find the optimum embed-

ding of a probe when the adjacent sites contain already embedded probes. In other words, our goal is to simultaneously
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align the given probe s to its embedded neighboring probes, while making sure this alignment gives a feasible embed-

ding of s in the nucleotide deposition sequence S. In this section we give an efficient dynamic programming algorithm

for computing this optimum alignment.

The Single Probe Alignment algorithm (see Figure 6) essentially computes a shortest path in a specific directed

acyclic graph G = (V,E). Let p be the probe to be aligned, and let X be the set of already embedded probes adjacent to

p. Each embedded probe q ∈ X is a sequence of length K = |S| over the alphabet {A,C,G,T,b}, with the jth letter of q

being either a blank or s j, the jth letter of the nucleotide deposition sequence S. The graph G (see Figure 7) has vertex

set V = {0, . . . ,k}×{0, . . . ,K} (where k is the length of the probe p and K is the length of the deposition sequence S),

and edge set E = Ehoriz ∪Ediag where

Ehoriz = {(i, j−1)→ (i, j) | 0 ≤ i ≤ k,0 < j ≤ K}

and

Ediag = {(i−1, j−1)→ (i, j) | 0 < i ≤ k,0 < j ≤ K, pi = s j}.

The cost of a horizontal edge (i, j − 1) → (i, j) is defined as the number of embedded probes in X which have a

non-blank letter on jth position, while the cost of a diagonal edge (i− 1, j − 1) → (i, j) is equal to the number of

embedded probes of X with a blank on the jth position. The Single Probe Alignment algorithm computes the shortest

path from the source node (0,0) to the sink node (k,K) using a topological traversal of G (the graph G is not explicitly

constructed).

Theorem 3 The algorithm in Figure 6 returns, in O(kK) time, the minimum number of conflicts between an embedding

of s and the adjacent embedded probes X (along with a minimum-conflict embedding of s).

Proof. Each directed path from (0,0) to (k,K) in G consists of K edges, k of which must be diagonal. Each such path

P corresponds to an embedding of p into S as follows. If the jth arc of P is horizontal, the embedding has a blank in

jth position. Otherwise, the jth arc must be of the form (i−1, j−1) → (i, j) for some 1 ≤ i ≤ k, and the embedding

of p corresponding to P has pi = s j in the jth position. It is easy to verify that the edge costs defined above ensure

that the total cost of P gives the number of conflicts between the embedding of p corresponding to P and the set X of

embedded neighbors. ut
Remark. The above dynamic programming algorithm can be easily extended to find the optimal simultaneous

embedding of n > 1 probes. The corresponding directed acyclic graph G consist of knK nodes (i1, . . . , in, j), where

0 ≤ il ≤ k, 1 ≤ j ≤ K. All arcs into (i1, . . . , in, j) come from nodes (i′1, . . . , i
′
n, j−1), where i′l ∈ {il , il −1}. Therefore

the indegree of each node is at most 2n. The weight of each edge is defined as above such that each finite weight path

defines embeddings for all probes and the weight equals the number of conflicts. Finally, computing the shortest path

between (0, . . . ,0) and (k, . . . ,k,K) can be done in O(2nknK) time.
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4.2 Lower Bounds for In-Place Embedding Optimization

To get an estimate on the how much improvement is possible, let LG2 be a grid graph G2 with weights on edges equal

to the LCS distance between endpoint probes. The following lower bound is obvious.

Theorem 4 The total edge weight of the graph LG2 is a lower bound on the optimum AADP solution cost with a given

placement.

Note. A more accurate lower bound can be obtained by replacing LCS distance with embedded LCS distance,

elcsd(p, p′), which is the minimum number of conflicts over all possible pairs of embeddings of the probes p and p′.

The embedded LCS distance can be computed using an O(|p| · |p′| · |S|) dynamic programming algorithm. Unfortu-

nately, neither of these lower bounds is tight, as can be seen from the example in Figure 3.

4.3 Algorithms for Iterative In-Place Embedding Optimization

Batched Greedy Optimization. We have implemented a natural greedy algorithm (GA) for optimizing probe

embeddings. The GA finds a probe that offers largest cost gain from optimum re-embedding with respect to the (fixed)

embeddings of its neighbors; the algorithm then implements this re-embedding, updates gains, and repeats. A faster

batched version of GA (see Figure 8) partially sacrifices its greedy nature in favor of runtime, via the mechanism

of less-frequent gain updates. In other words, during a single batched phase we re-embed probes in greedy order

according to the cost gains from re-embedding, but we do not update any gain while there are still independent probes

with positive gain.

Chessboard Optimization. The main idea behind our so-called “Chessboard” algorithm is to maximize the number

of independent re-embeddings, where two probes are independent if changing the embedding of one does not affect

the optimum embedding of the other. It is easy to see that if we bicolor our grid as we would a chessboard, then

all white (resp. black) sites will be independent and can therefore be simultaneously, and optimally, re-embedded.

The Chessboard Algorithm (see Figure 9) alternates re-embeddings of black and white sites until no improvement is

obtained.

A 2× 1 version of the Chessboard algorithm partitions the array into iso-oriented 2× 1 tiles and bicolors them.

Then using the multi-probe alignment algorithm (see the remark in Section 4.1) with n = 2 it alternatively optimizes

the black and white 2×1 tiles.

Sequential Optimization. In this method, we perform optimal re-embedding of probes in a sequential row-by-

row fashion. A shortcoming of the Batched Greedy and Chessboard algorithms is that, by always re-embedding

independent sets of probes, it takes longer to propagate the effects of a new embedding. Performing the re-embedding

sequentially permits faster propagation and convergence to a better local optimum.

4.4 Empirical Evaluation of In-Place Embedding Optimization Algorithms

We have implemented the four in-place embedding optimization algorithms discussed in the previous section, namely

the Batched Greedy, Chessboard, 2× 1 Chessboard, and Sequential algorithms. To improve the runtime we stop all
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algorithms as soon as the improvement for an iteration drops below 0.1% of the total number of conflicts.5 Table 2

gives the results obtained by the four algorithms when applied to the two-dimensional placement constructed by the

TSP+1-Threading algorithm [11].6 For comparison, we include the lower-bound given by Theorem 4; the columns

labeled “%Gap” show by how much the respective heuristic exceeds the lower bound.

The results show that the Chessboard algorithm is better than Batched Greedy with comparable running time. 2×1

Chessboard improves solution quality by a further .8-1.2%, coming within 19-20% of the lower-bound for arrays of

size between 100×100 and 500×500. We found the Sequential algorithm to give the best tradeoff between solution

quality and runtime: its runtime is comparable to that of Batched Greedy and Chessboard, yet its solution quality

comes close and sometimes exceeds that of 2×1 Chessboard.

5 Practical Extensions

The following extensions to the border length minimization problem are important in practice, but have not been

addressed by previous works on the problem [11].

1. Distance-dependent border conflict weights. Back-reflection of light does not affect only adjacent array cells,

i.e., cells sharing an edge. To a lesser degree, it also affects cells that share a corner, and even cells that are as far

as 3 cells apart [14]. This implies that an accurate formulation of the problem should weight conflicts according

to the distance between cells.

2. Position-dependent border conflict weights. The weight of border conflicts depends on the position in the

probe since contamination errors are more harmful in the middle of the probe [14]. Suggested weights are given

by the square root of the distance to the closer endpoint (so, conflict weight varies from 1 to
√

12 in a 25-mer).

3. Polymorphic probes. Some of the synthesized DNA probes occur both unmodified and mutated in the middle

position (e.g., for detection of single nucleotide polymorphisms – SNPs – in the target DNA or for reliability of

the hybridization test). To minimize border length the SNPs are placed together, so the general BMP requires

placing and aligning a mixture of single probes, 2- and 4-ominoes.

Extending most of our methods to handle these extensions is straightforward; here we focus here on the extension

of the optimal alignment algorithm given in Section 4.1. Define a probe to be a set of 1, 2, or 4 k-mers (SNPs) which

differ only in the middle position. We will assume that the SNPs in a probe are always placed in adjacent cells forming

1×1, 2×1, or 2×2 rectangles, respectively. Furthermore, we assume that the SNPs in a probe are always aligned to

each other except for the single position where the mutation occurs. Although the optimum solution may not always

satisfy these constraints, imposing them should only lead to a very small loss in solution quality.

5In our experiments imposing the threshold of 0.1% leads to a total loss in solution quality of at most 1%. On the other hand, the number of

iterations and hence the runtime decreases by more than one order of magnitude.
6Experiments were performed on arrays of 25-mer probes chosen uniformly at random. Runtimes are for a dual-processor 1.4GHz Intel Xeon

server with 512MB RAM.
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We will first describe the algorithm for embedding a probe consisting of a single k-mer, and then generalize it to

the case of two or four SNPs per probe. We use the following notations:

• S = s1 . . .sK= nucleotide deposition sequence

• k= length of probes (typically k = 25)

• ||q|| j= number of non-blank letters among the first j positions of embedded probe q

• h(c,c′)= horizontal distance between cells c and c′

• v(c,c′)= vertical distance between cells c and c′

• w : N+×N+ → [0,1], finite support function7 giving the conflict weight between a masked cell and an unmasked

cell as a function of the horizontal and vertical distances between them

• ωi, i = 1, . . . ,k, non-negative conflict weight multipliers depending on the position of the erroneously inserted

nucleotide, e.g., ω(i) =
√

min{i,k− i}.

The embedding algorithm for a probe p = {p1 . . . pk} with no mutations (Figure 10) is essentially identical to the

the algorithm in Figure 6 except for the different costs assigned to the edges of the underlying directed acyclic graph

G. Let cp the array cell assigned to p, and, for every array cell c 6= cp, let qc be the embedded probe placed in c. In

other words, every qc is a sequence of length K = |S| over the alphabet {A,C,G,T,b}, with the jth letter of qc being

either b (blank) or s j . We define the cost of a horizontal edge (i, j−1) → (i, j) to be

xi j = ω(i) ∑
c6=cp, (qc) j 6=b

w(h(cp,c),v(cp,c)) (1)

and the cost of a diagonal edge (i−1, j−1)→ (i, j) to be

yi j = ∑
c6=cp, (qc) j=b

ω(||qc|| j)w(h(c,cp),v(c,cp)) (2)

It is easy to verify that the total cost of a path P from (0,0) to (k,K) equals the weighted number of conflicts between

the corresponding embedding of p and the surrounding embedded probes.

Theorem 5 The algorithm in Figure 10 returns the minimum conflict weight along with a minimum conflict embedding

of p in O(kK +KW) time, where W is the size of the finite support of w.

Proof. The correctness follows by observing that the algorithm implicitly computes a shortest path from the source

node (0,0) to the sink node (k,K) using a topological traversal of G1. Since steps 2–4 take O(kK) time, the runtime is

dominated by computing the O(kK) edge costs in Step 1. Since each xi j is the product of two values, one depending

only on i and the other only on j, calculating all values xi j can be done in O(kK + KW ) time. Similarly, yi j’s are

independent of i and can be computed in O(kK +KW ) time overall. ut
7The support of a function f is the subset of its domain where f has non-zero values.

12



We now consider a probe p consisting of two SNPs, namely, p1 . . . pm−1 pm pm+1 . . . pk and p1 . . .

pm−1 p′m pm+1 . . . pk. Let cp and c′p be two adjacent array cells in which the two SNPs must be placed. Besides

embedding the two SNPs into the nucleotide deposition sequence, embedding p also requires deciding which SNP

goes into cp and which one goes into c′p. Finding the optimum embedding of p can be cast as a shortest path problem

in a new directed acyclic graph G2 (see Figure 11) obtained from G1 by

1. Deleting vertices (m, j), j = 0, . . . ,K and the edges incident to them;

2. Changing the cost of each remaining horizontal edge (i, j−1) → (i, j) to

ω(i)∑
(

w(h(cp,c),v(cp,c))+w(h(c′p,c),v(c
′
p,c))

)

(3)

where the sum is taken over all c /∈ {cp,c′p} such that (qc) j 6= b

3. Changing the cost of each remaining diagonal edge (i−1, j−1)→ (i, j) to

ω(||qc|| j)∑
(

w(h(c,cp),v(c,cp))+w(h(c,c′p),v(c,c
′
p))

)

(4)

where the sum is taken over all c /∈ {cp,c′p} such that (qc) j = b.

4. Inserting 6(K +1) new vertices (α,β, j), where α,β ∈ {ε, pm, p′m}, α 6= β, and j = 0, . . . ,K;

5. Inserting, for every j = 1, . . . ,K, horizontal edges (α,β, j−1) → (α,β, j) with cost

ω(m−1+ |α|)∑w(h(cp,c),v(cp,c))

+ ω(m−1+ |β|)∑w(h(c′p,c),v(c
′
p,c)) (5)

where the sums are taken over all c /∈ {cp,c′p} such that (qc) j 6= b

6. Inserting diagonal edges

• (m−1, j−1) → (pm,ε, j), respectively (m−1, j−1) → (p′m,ε, j), for every j such that pm = s j , respec-

tively p′m = s j , each with cost

ω(m−1)w(h(c′p,cp),v(c
′
p,cp))

+ ω(||qc|| j)∑w(h(c,cp),v(c,cp)) (6)

where the sum is taken over all c /∈ {cp,c′p} such that (qc) j = b;

• (m−1, j−1) → (ε, pm, j), respectively (m−1, j−1) → (ε, p′m, j), for every j such that pm = s j , respec-

tively p′m = s j , each with cost

ω(m−1)w(h(cp,c
′
p),v(cp,c

′
p))

+ ω(||qc|| j)∑w(h(c,c′p),v(c,c
′
p)) (7)

where the sum is taken over all c /∈ {cp,c′p} such that (qc) j = b;
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• (ε, p′m, j−1) → (pm, p′m, j), respectively (ε, pm, j−1)→ (p′m, pm, j),for every j such that pm = s j, respec-

tively p′m = s j , each with cost

ω(m)w(h(c′p,cp),v(c
′
p,cp))

+ ω(||qc|| j)∑w(h(c,cp),v(c,cp)) (8)

where the sum is taken over all c /∈ {cp,c′p} such that (qc) j = b;

• (p′m,ε, j−1) → (p′m, pm), respectively (pm,ε, j −1) → (pm, p′m, j), for every j such that pm = s j , respec-

tively p′m = s j , each with cost

ω(m)w(h(cp,c
′
p),v(cp,c

′
p))

+ ω(||qc|| j)∑w(h(c,c′p),v(c,c
′
p)) (9)

where the sum is taken over all c /∈ {cp,c′p} such that (qc) j = b;

• (pm, p′m, j−1)→ (m+1, j) and (p′m, pm, j−1)→ (m+1, j), both with cost given by (4), for every j such

that pm+1 = s j.

The definition of G2 ensures that each directed path from (0,0) to (k,K) corresponds to an embedding of the two

SNPs of probe p. Since the costs of the O(kK) edges of G2 can still be computed in O(kK +KW ) time, it follows that

the minimum conflict embedding of a two SNP probe can be computed in O(kK +KW) by an algorithm similar to the

one in Figure 6.

The optimal embedding of a probe with four SNPs can be found by a shortest path computation in a graph that

similarly represents all possible assignments of the four SNPs to the four array cells, as well as the possible embeddings

of the SNPs into the nucleotide deposition sequence. The graph still contains O(kK) edges, and edge costs can still be

computed in O(kK +KW ) time. Therefore, we get:

Theorem 6 The minimum conflict embedding of a two or four SNP probe can be computed in O(kK +KW) time.

6 Empirical Evaluation of Overall AADP Flows

We conducted experiments on both random and industry datasets to compare our AADP flows. Table 3 gives results

for our flows performing optimization of probe placement followed by in-place optimization of probe embeddings.

As in previous sections, these experiments were run on arrays of 25-mer probes chosen uniformly at random. In

these experiments, array size was varied between 100×100 and 1000×1000. The results indicate that our methods

are highly scalable and yield high quality solutions for AADP. The best solution quality is achieved by Row-Epitaxial

followed by Sequential alignment: this flow improves by up to 35% over the synchronous placements computed

using the TSP+1Threading method of [11] and up to 10% over the method of [11] followed by Sequential align-

ment. The Sliding-Window Matching has the best scaling runtime, completing a million probe placement in tens of

minutes of CPU time on a 1.4GHz Intel Xeon server with 512MB RAM, while still beating in solution quality the

TSP+1Threading algorithm followed by Sequential alignment.
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For comparison, we included in Table 3 the lower-bound given by Theorem 4. While the gap to the lower-bound

tends to increase with chip size for all compared algorithms, we do notice some very positive trends for the border cost

normalized by the number of pairs of adjacent array sites, i.e., the average number of conflicts per pair of adjacent

sites. For probes of length 25 as those used in our experiments the maximum normalized cost is 50 (when there is

a complete mismatch between adjacent probes). For any array size, random placement of synchronously embedded

random probes leads to an expected normalized cost of 37.5, since one expects matches between two adjacent probes

for one quarter of the nucleotides. In contrast, for all the considered AADP algorithms the normalized cost decreases

with increasing chip size, which can be attributed to greater freedom of choice that the algorithms can exploit for the

larger chip sizes. The row-epitaxial based flow results in a normalized cost of 17.9 for arrays of size 1000×1000,

which represents an improvement of 52% over the expected normalized cost of a random placement.

We have also validated our methods on the set of probes for an Affymetrix Humane Genome chip. This 712×712

DNA chip is filled by pairs of SNP’s (each consisting of the original probe and a copy with the middle nucleotide

changed) and small amount of control probes (< 1%) each having a pre-determined placement. The (truncated)

periodic nucleotide deposition sequence used by Affymetrix (and in our experiments) has length 74: this sequence

is sufficiently long to accommodate all probes and cheaper than the universal 100-long nucleotide sequence by 26%.

The flow that gave the best results consists of the following steps: (1) Probe embedding using a SNP-aware version

of “earliest possible” embedding; (2) Lexicographical sorting of the embedded probes followed by 1-threading; (3)

Synchronous sliding window matching – we used 48×48 windows with overlap 24 – where synchronous here refers

to computing Hamming distances between embedded probes rather than un-embedded probes; (4) Row-epitaxial with

k0 = 80 rows of lookahead; and (5) A SNP-aware version of the Sequential alignment algorithm. The final number of

conflicts was reduced by 4.2% with respect to the Affymetrix optimized placement.8

7 Conclusions

In this paper we have studied DNA array design problems which seek to minimize the unintended illumination during

manufacturing. We have suggested highly scalable algorithms for synchronous probe placement and for in-place

probe embedding optimization. Combining these algorithms yields better and faster solutions to the DNA array design

problem compared to previous methods; our approach also compares favorably to industry placements.

We are currently optimizing our implementation for multiprocessing and more practical cost criteria. Here, other

meta-heuristic frameworks (e.g., large-step Markov chains) are of interest, as well as potential improvements that our

discussion has already noted. We also seek to integrate probe selection and array reliability aspects into our placement

and embedding problem formulation. Developing tighter lower bounds and other means of assessing sub-optimality

of array design algorithms is another important direction for further work.

8We understand [14] that Affymetrix uses placement techniques that are similar to row-epitaxial placement combined with earliest possible

alignment. This probably explains why our improvement is relatively small. Furthermore, we note that the reduction in number of masks from 100

to 74 also reduces somehow the freedom that can be exploited by our dynamic programming alignment algorithms.
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Figure 1: (a) Two-dimensional probe placement. (b) Three-dimensional probe embedding: the nucleotide deposition

sequence S = (ACT ) corresponds to the sequence of three masks M1,M2 and M3. In each mask the masked sites are

shaded and the borders between transparent and masked sites are thickened.
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Figure 2: (a) Periodic nucleotide deposition sequence S. (b) Synchronous embedding of probe CT G into S; the shaded

sites denote the masked sites in the corresponding masks. (c-d) Two different asynchronous embeddings of the same

probe.
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Input: Set P of N2 probes, scaling coefficients ki, i = 1, . . . ,3

Output: Assignment of the probes to the sites of an N×N grid

1. Mark all grid sites as empty

2. Assign a randomly chosen probe to the center site and mark this site as full

3. While there are empty sites, do

If there exists an empty site c with all 4 neighbors full, then

Find probe p(c) ∈ P with minimum sum of Hamming distances to the neighboring probes

Assign probe p(c) to site c and mark c as full

Else

For each empty site c with i > 0 adjacent full sites, find probe p(c) ∈ P with minimum sum S of Hamming

distances to the probes in full neighbors, and let norm cost(c) = kiS/i.

Let c∗ be the site with minimum norm cost

Assign probe p(c∗) to site c∗ and mark c∗ as full

Figure 4: The Epitaxial Algorithm
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Input: Nucleotide deposition sequence S = s1s2 . . .sK , si ∈ {A,C,G,T}; set X of probes already embedded into S; and

unembedded probe p = p1 p2 . . . pk, pi ∈ {A,C,G,T}
Output: The minimum number of conflicts between an embedding of p and probes in X , along with a minimum-conflict

embedding

1. For each j = 1, . . . ,K, let x j be the number of probes in X which have a non-blank letter in jth position.

2. cost(0,0) = 0; For i = 1, . . . ,k, cost(i,0) = ∞
3. For j = 1, . . . ,K do

cost(0, j) = cost(0, j−1)+ x j

For i = 1, . . . ,k do

If pi = s j then cost(i, j) = min{cost(i, j−1)+ x j , cost(i−1, j−1)+ |X |− x j}

Else cost(i, j) = cost(i, j−1)+ x j

4. Return cost(k,K) and the corresponding embedding of s

Figure 6: The Single Probe Alignment Algorithm
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Figure 7: Directed acyclic graph G1 representing possible embeddings of probe p = ACT into the nucleotide deposition

sequence S = ACTATACT .
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Input: Feasible AADP solution, i.e., placement in G2 of probes embedded in S

Output: A heuristic low-cost feasible AADP solution

While there exist probes which can be re-embedded with gain in cost do

Compute gain of the optimum re-embedding of each probe.

Unmark all probes

For each unmarked probe p, in descending order of gain, do

Re-embed p optimally with respect to its four neighbors

Mark p and all probes in adjacent sites

Figure 8: The Batched Greedy Algorithm
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Input: Feasible AADP solution, i.e., placement in G2 of probes embedded in S

Output: A heuristic low-cost feasible AADP solution

Repeat until there is no gain in cost

For each site (i, j), 1 ≤ i, j ≤ N with i+ j even, re-embed probe optimally with respect to its four neighbors

For each site (i, j), 1 ≤ i, j ≤ N with i+ j odd, re-embed probe optimally with respect to its four neighbors

Figure 9: The Chessboard Algorithm

26



Input: Nucleotide deposition sequence S = s1s2 . . .sK , si ∈ {A,C,G,T}; probe p = p1 p2 . . . pk, pi ∈ {A,C,G,T}, probe

location cp, and probe embeddings qc, c 6= cp

Output: Minimum conflict weight along with a minimum conflict embedding of p

1. Compute xi j and yi j for each i = 1, . . . ,k and j = 1, . . . ,K using (1) and (2)

2. cost(0,0) = 0; For i = 1, . . . ,k, cost(i,0) = ∞
3. For j = 1, . . . ,K do

cost(0, j) = cost(0, j−1)+ xi j

For i = 1, . . . ,k do

If pi = s j then cost(i, j) = min{cost(i, j−1)+ xi j , cost(i−1, j−1)+ yi j}

Else cost(i, j) = cost(i, j−1)+ xi j

4. Return cost(k,K) and the corresponding embedding of p

Figure 10: The embedding algorithm for a probe with no mutations
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Figure 11: Directed acyclic graph G2 representing possible embeddings of probe p = A{C|T}T into the nucleotide

deposition sequence S = ACTATACT .
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Chip Lower Bound TSP+1Thr Row-Epitaxial SWM

Size Cost Cost Gap(%) CPU Cost Gap(%) CPU Cost Gap(%) CPU

100 410019 554849 35.3 113 502314 22.5 108 605497 47.7 2

200 1512014 2140903 41.6 1901 1913796 26.6 1151 2360540 56.1 8

300 3233861 4667882 44.3 12028 4184018 29.4 3671 5192839 60.6 19

500 8459958 12702474 50.1 109648 11182346 32.2 10630 13748334 62.5 50

Table 1: Total border cost, gap from the lower-bound given by Theorem 1, and CPU seconds (averages over 10 ran-

dom instances) for the TSP heuristic of [11] (TSP+1Thr), the row-epitaxial (Row-Epitaxial), and the sliding-window

matching (SWM) heuristic. We use an upper bound of 20000 on the number of candidate probes in Row-Epitaxial

(i.e., we use k0 = 20000/chipsize look-ahead rows), and 6×6 windows with overlap 3 for SWM.

29



Chip Lower Bound Batched Greedy Chessboard 2x1 Chessboard Sequential

Size Cost Gap(%) CPU Gap(%) CPU Gap(%) CPU Gap(%) CPU

100 364953 25.7 40 20.5 54 19.4 480 19.9 64

200 1425784 26.3 154 20.9 221 19.7 1915 20.3 266

300 3130158 26.7 357 21.5 522 21.6 4349 20.6 577

500 8590793 27.1 943 21.4 1423 20.2 15990 20.9 1535

Table 2: Gap from the lower-bound given by Theorem 4 and CPU seconds (averages over 10 random instances) for

the four in-place embedding optimization algorithms.
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Chip Lower Bound TSP+1Threading [11] TSP+1Threading+Seq. Row-Epit.+Seq. SWM+Seq.

Size Cost Norm. Cost Norm. Cost Norm. CPU Cost Norm. CPU Cost Norm. CPU

100 220497 11.1 554849 28.0 439829 22.2 113 413158 20.9 118 433274 21.9 1

200 798708 10.0 2140903 26.9 1723352 21.6 1901 1593146 20.0 493 1693658 21.2 46

300 — — 4667882 26.0 3801765 21.2 12028 3503526 19.5 1562 3746722 20.9 112

500 — — 12702474 25.5 10426237 20.9 109648 9418042 18.9 8400 10049442 20.1 302

1000 — — — — — — — 35918568 17.9 41740 38898792 19.5 1307

Table 3: Total border cost, border cost normalized by the number of pairs of adjacent array cells, and CPU time of the

compared AADP heuristics (averages over 10 random instances). We used 6× 6 windows with overlap 3 for SWM,

and k0 = 20 look-ahead rows for Row-Epitaxial.
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