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Numerous high-throughput genomics assays require the amplification of a large number of genomic
loci of interest. Amplification is cost-effectively achieved using several short single-stranded DNA
sequences called primers and polymerase enzyme in a reaction called multiplex polymerase chain re-
action (MP-PCR). Amplification of each locus requires that two of the primers bind to the forward
and reverse DNA strands flanking the locus. Since the efficiency of PCR amplification falls off ex-
ponentially as the length of the amplification product increases, an important practical requirement is
that the distance between the binding sites of the two primers should not exceed a certain threshold.
In this paper we study MP-PCR primer set selection with amplification length constraints from both
theoretical and practical perspectives. Our contributions include an improved analysis of a simple yet
effective greedy algorithm for the problem, and a comprehensive experimental study comparing our
greedy algorithm with other published heuristics on both synthetic and genomic database test cases.

1. Introduction

Numerous high-throughput genomics assays require rapid and cost-effective amplification
of a large number of genomic loci. Most significantly, Single Nucleotide Polymorphism
(SNP) genotyping protocols require the amplification of up to thousands of SNP loci of
interest.12 Effective amplification can be achieved using the polymerase chain reaction 16

(PCR), which cleverly exploits the DNA replication machinery in a cyclic reaction that
creates an exponential number of copies of specific DNA fragments.

In its basic form, PCR requires a pair of short single-stranded DNA sequences called
primers for each amplification target. More precisely, the two primers must be (perfect or
near perfect) reversed Watson-Crick complements of the 3 ′ ends of the forward and reverse
strands of the double-stranded amplification target (see Figure 1). Typically there is signif-
icant freedom in selecting the exact ends of an amplification target, i.e., in selecting PCR
primers. Consequently, primer selection can be optimized with respect to various criteria
affecting reaction efficiency, such as primer length, melting temperature, secondary struc-
ture, etc. Since the efficiency of PCR amplification falls off exponentially as the length of
the amplification product increases, an important practical requirement is that the distance
between the binding sites of the two primers should not exceed a certain threshold.
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Multiplex PCR (MP-PCR) is a variant of PCR in which multiple DNA fragments
are amplified simultaneously. While MP-PCR is still making use of two oligonucleotide
primers to define the boundaries of each amplification fragment, a primer may now partic-
ipate in the amplification of multiple targets. A primer set is feasible as long as it contains
a pair of primers that amplify each target. Note that MP-PCR amplified targets may in-
clude unintended amplification products and are available only as a mixture. However, this
is not limiting the use of MP-PCR in applications such as SNP genotyping, since allelic
discrimination methods (typically hybridization based) are not significantly affected by the
presence of a small number of undesired amplification products, and can be applied directly
to mixtures of amplified SNP loci.12

Much of the previous work on PCR primer selection has focused on single primer
pair optimization with respect to the above biochemical criteria. This line of work has
resulted in the release of several robust software tools for primer pair selection, the best
known of which is the Primer3 package.19 In the context of multiplex PCR, an important
optimization objective is to minimize the total number of primers, 4,17 since reducing the
number of primers reduces assay cost, increases amplification efficiency by enabling higher
effective concentration of the primers, and minimizes unintended amplification. Pearson et
al.18 were the first to consider minimizing the number of primers in their optimal primer
cover problem formulation: given a set of n DNA sequences and an integer �, find the
minimum number of �-mers that cover all sequences. They proved that the primer cover
problem is as hard to approximate as set cover (i.e., not approximable within a factor better
than (1 − o(1))O(log n) unless NP ⊆ TIME(nO(log log n))5), and that the classical greedy
set cover algorithm achieves an approximation factor of O(log n).

The problem formulation in Pearson et al.18 decouples the selection of forward and
reverse primers, and, in particular, cannot explicitly enforce bounds on PCR amplification
length. Such bounds can be enforced only by conservatively defining the allowable primer
binding regions. For example, in order to guarantee a distance of L between the forward
and reverse primer binding sites around a SNP, one should confine the search to primers
binding within L/2 nucleotides on each side of the SNP locus. Since this approach reduces
the number of feasible candidate primer pairs by a factor of almost 2, a it may lead to
significant sub-optimality in the total number of primers needed to amplify all given SNP
loci.

Motivated by the requirement of unique PCR amplification in synthesis of spotted mi-
croarrays, Fernandes and Skiena6 introduced an elegant minimum multi-colored subgraph
formulation for the primer selection problem, in which each candidate primer is repre-
sented as a graph node and each two primers that feasibly amplify a desired locus define
an edge “colored” by the locus number. Minimizing the number of PCR primers reduces
to finding a minimum subset of the nodes inducing edges of all possible colors. Unfortu-
nately, approximating the minimum multi-colored subgraph appears to be difficult. 7 The
best approximation factor derived via this reduction is currently O(L log n), where n is the
number of amplification loci and L is the upperbound on the PCR amplification length. 11

aE.g., assuming that all DNA �-mers can be used as primers, out of the (L−�+1)(L−�+2)/2 pairs of forward
and reverse �-mers that can feasibly amplify a SNP locus, only (L − � + 1)2/4 have both �-mers within L/2
bases of this locus.
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Figure 1. Strings fi and ri consist of the L − x − � DNA bases immediately preceding in 3′ − 5′ order the
i-th amplification locus along the forward (respectively reverse) DNA genomic sequence, where L is the given
threshold on PCR amplification length, � is the primer length, and x is the length of an amplification locus (x = 1
for SNP genotyping). If forward and reverse PCR primers cover fi and ri at positions t and t′ respectively, then
PCR amplification product length is equal to [2(L− x− �) + x]− [(t − 1) + (t′ − 1)]. This is no larger than
L if an only t + t′ ≥ L′ + 1, where L′ = (L− x− �)− (�− 1).

Recently,11 we have introduced a new string-pair covering formulation for MP-PCR
primer set selection with amplification length constraints problem, proving that a modifi-
cation of the classical greedy algorithm for set cover achieves an approximation factor of
1 + ln(nL). In this paper we make two important contributions:

• Theoretically, we give an improved analysis of the greedy algorithm and show
that it guarantees an approximation factor of 1+ ln(∆), where ∆ is the maximum
“coverage gain” of a primer. The value of ∆ is never more than nL, and in practice
it is up to orders of magnitude smaller. The improved approximation is achieved
using a novel framework for formulating and analyzing greedy algorithms based
on monotonic potential functions. Our potential function technique generalizes
several results for the classical set cover problem and its variants,1,2,9,15,20 and is
of interest in its own right.

• On the practical side, we give the results of a comprehensive experimental study
comparing our greedy algorithm with other heuristics proposed in the literature.
Experiments on both synthetic and public genomic database test cases show that
our greedy algorithm obtains significant reductions in the number of primers with
highly scalable running time.

The rest of the paper is organized as follows. In next section we introduce notations
and give a formal problem definition. In Section 3 we describe the greedy algorithm, give
its performance analysis, and discuss practical implementation issues. Finally, we present
experimental results in Section 4 and conclude in Section 5.

2. Notations and Problem Formulation

Let Σ = {A, C, G, T } be the four nucleotide DNA alphabet. We denote by Σ∗ the set
of strings over Σ, and by |s| the length of string s ∈ Σ∗. For a string s and an integer
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(1) P ← ∅
(2) While Φ(P ) < n(L′ + 1) do

(a) Find a primer p �∈ P maximizing Φ(P ∪ {p}) −Φ(P )
(b) P ← P ∪ {p}

(3) Return P

Figure 2. The generic greedy algorithm.

1 ≤ t ≤ |s|, we denote by s[1..t] the prefix of length t of s. We use � to denote the
required primer length, L to denote the given threshold on PCR amplification length, and n
to denote the number of amplification loci. We say that primer p = p 1p2 . . . p� hybridizes
(or covers) string s = s1s2 . . . sm at position t ≤ m − � + 1 if stst+1 . . . st+�−1 is the
reversed Watson-Crick complement of p, i.e., if s t+j is the Watson-Crick complement of
p�−j for every 0 ≤ j ≤ � − 1.

For each i ∈ {1, . . . , n}, we denote by f i (respectively ri) the string preceding the
amplification locus in 3′ − 5′ order in the forward (respectively reverse) DNA genomic
sequence where potentially useful primer binding may occur. More precisely, if the length
of the amplification locus is denoted by x (x = 1 for SNP genotyping), then f i and ri

consist of the L − x − � DNA bases immediately preceding in 3 ′ − 5′ order the i-th am-
plification locus along the forward (respectively reverse) DNA genomic sequence. Note
that a primer can hybridize f i (respectively ri) only at positions t between 1 and L ′, where
L′ = (L− x− �)− (�− 1). Simple arithmetic shows that two primers that hybridize to f i

and ri at positions t and t′ lead to an amplification product of length at most L if and only
if t + t′ ≥ L′ + 1 (see Figure 1, and note that f i and ri, and hence hybridization positions,
are indexed in the respective 3 ′ − 5′ orders, i.e., they increase when moving towards the
amplification locus).

A set of primers P is said to be an L-restricted primer cover for the pairs of sequences
(f i, ri), i = 1, . . . , n, if, for every i = 1, . . . , k, there exist primers p, p ′ ∈ P (not neces-
sarily distinct) and integers t, t′ ∈ {1, . . . , L − � + 1}, such that the following conditions
are simultaneously satisfied

(1) p hybridizes at position t of f i

(2) p′ hybridizes at position t′ of ri

(3) t + t′ ≥ L′ + 1
The minimum primer set selection problem with amplification length constraints (MPSS-
L) is defined as follows: Given primer length �, amplification length upperbound L, and n
pairs of sequences (f i, ri), i = 1, . . . , n, find a minimum size L-restricted primer cover
consisting of primers of length �.

3. The Greedy Algorithm

It is useful to view MPSS-L as a generalization of the partial set cover problem, 20 in which
one must cover a certain fraction of the total number of elements of a ground set using
the the minimum number of given subsets. In MPSS-L the elements to be covered are
the 2nL′ non-empty prefixes in {f i[1..j], ri[1..j] | 1 ≤ i ≤ n, 1 ≤ j ≤ L′}. Each
primer p corresponds to the set of all prefixes f i[1..j] (ri[1..j]) for which p hybridizes to
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f i (respectively ri) at a position t ≥ j. The objective is to choose the minimum number of
primers that cover at least L′ + 1 of the 2L′ elements of each set {f i[1..j], ri[1..j] | 1 ≤
j ≤ L′}.

For a set of primers P , let Φi(P ) denote the minimum between L ′ + 1 and the number
of prefixes of {f i[1..j], ri[1..j] | 1 ≤ j ≤ L′} covered by at least one primer in P . Also,
let Φ(P ) =

∑n
i=1 Φi(P ). The following properties of the integer valued set function Φ are

immediate:

(A1) Φ(∅) = 0
(A2) Φ(P ) = n(L′ + 1) if and only if P is a feasible MPSS-L solution
(A3) Φ is a non-decreasing set function, i.e., Φ(P ) ≥ Φ(P ′) whenever P ⊇ P ′, and,
furthermore, for every P such that Φ(P ) < n(L ′ + 1), there exists p �∈ P such that
Φ(P ∪ {p}) > Φ(P )

Properties (A1)–(A3) suggest using Φ(·) as a measure of the progress towards feasibility,
and employing the generic greedy algorithm in Figure 2 to solve MPSS-L. The greedy
algorithm starts with an empty set of primers and then iteratively adds the primer that gives
the largest increase in Φ until reaching feasibility. By (A1)-(A3) this algorithm will end in
a finite number of steps and will return a feasible MPSS-L solution.

Let us denote by ∆(p, P ) the increase in Φ (also referred to as the “gain”) obtained
by adding primer p to set P , i.e., ∆(p, P ) = Φ(P ∪ {p}) − Φ(P ). By (A3), it follows
that the gain function ∆ is non-negative. It is easy to verify that ∆ is also monotonically
non-increasing in the second argument, i.e.,

(A4) ∆(p, P ) ≥ ∆(p, P ′) for every primer p and primer sets P ⊆ P ′

Theorem 3.1. Let ∆ = maxp,P ∆(p, P ). The greedy algorithm in Figure 2 returns an
L-restricted primer cover of size at most 1 + ln ∆ times larger than the optimum.

Proof. We begin with some additional notations. Let P ∗ = {p∗1, p∗2, . . . , p∗k} be an op-
timum MPSS-L solution and let P = {p1, p2, . . . , pg} be the solution returned by the
greedy algorithm, the latter one with primers indexed in the order in which they are se-
lected by the algorithm. Let Φj

i = Φ({p∗1, . . . , p∗i } ∪ {p1, . . . , pj}), ∆j
i = Φj

i −Φj−1
i , and

δj
i = Φj

i − Φj
i−1. Note that, by (A4) and (A2), ∆j

0 ≥ ∆j
1 ≥ . . . ≥ ∆j

k = 0 for every
0 ≤ j ≤ g, and δ0

i ≥ δ1
i ≥ . . . ≥ δg

i = 0 for every 0 ≤ i ≤ k. Furthermore, note that
∆j

0 ≥ δj−1
i for every 1 ≤ i ≤ k and 1 ≤ j ≤ g. Indeed, ∆j

0 is the gain achieved by the
greedy algorithm when selecting primer p j . This gain must be at least ∆(p∗

i , {p1, ..., pj−1})
since the greedy algorithm selects the primer with maximum gain in each iteration. Finally,
by (A4), ∆(p∗

i , {p1, ..., pj−1}) ≥ ∆(p∗i , {p1, ..., pj−1} ∪ {p∗1, . . . , p∗i−1}) = δj−1
i .

To analyze the size of the solution produced by the greedy algorithm, we use a charging
scheme in which a certain cost is assigned to each primer in the optimal solution for every
greedy primer. More precisely, the cost charged to p ∗

i by the greedy primer pj is

cj
i =




ln(δj−1
i ) − ln(δj

i ), if δj−1
i ≥ δj

i > 0
ln(δj−1

i ) + 1, if δj−1
i > δj

i = 0
0, if δj−1

i = δj
i = 0
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Notice that the total cost charged to optimal primer p∗
i ,

∑g
j=1 cj

i , is a telescopic sum equal
to 1 + ln(δ0

i ) ≤ 1 + ln ∆. Hence, the overall cost is at most k(1 + ln ∆). To prove the
approximation factor of 1 + ln ∆ it suffices to prove that we charge at least one unit of
cost for each greedy primer. Indeed, consider a fixed j ∈ {1, . . . , g}. Since ∆ j

0 ≥ δj−1
i , it

follows that

cj
i ≥ δj−1

i − δj
i

∆j
0

for every 1 ≤ i ≤ k (see Figure 3). Using that δ j−1
i − δj

i = ∆i−1
j − ∆i

j and ∆k
j = 0 gives

k∑
i=1

cj
i ≥

k∑
i=1

∆i−1
j − ∆i

j

∆j
0

= 1

which completes the proof.

We remark that the value of ∆ in Theorem 3.1 is much smaller than nL for practical
MPSS-L instances, and hence the approximation factor in Theorem 3.1 is tighter than the
one we have previously established11 for the greedy algorithm.

3.1. Implementation details

In this section we discuss the details of an efficient implementation of the generic greedy
algorithm in Figure 2. First, we note that although there are 4 � DNA sequences of length
�, no more than 2nL of these sequences (all substrings of length � of the input genomic
sequences S = {f i, ri | 1 ≤ i ≤ n}) can be used as primers. Our implementation starts
by creating a list with all feasible primers by removing substrings that do not meet user-
specified constraints on GC content and melting temperature Tm; masking of repetitive
elements and more stringent candidate filtering based, e.g., on the sophisticated statistical
scoring models developed by Yuryev et al.22 can also be easily incorporated in this pre-
processing step. For each remaining primer, we precompute all hybridization positions
within the strings of S. Using this, we can then compute the gain of any feasible primer p
in time O(np), where np is the number of hybridization positions for p. The primer with
maximum gain is then found in step 2(a) of the algorithm by sequentially computing the
gain of remaining primers.
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In order to speed up the implementation, we use two further optimizations. A feasible
primer is called unique if it hybridizes only one of the sequences in S. The first optimization
is to retain only the unique feasible primer closest to the amplification locus for each f i and
ri. The number of eliminated unique candidate primers greatly depends on primer length
�, but is usually a significant fraction of the number of feasible candidate primers. Clearly,
removing these primers does not worsen the quality of the returned solution.

The second optimization is to adopt a lazy strategy for recomputing primer gains in step
2(a). In first execution of step 2(a) we compute and store the gain for all feasible primers.
In subsequent iterations, the gain of a primer is only recomputed if the saved gain is higher
than the best gain seen in current iteration. Since gains are monotonically non-increasing,
this optimization is not affecting the set of primers returned by the algorithm.

4. Experimental Results

We performed experiments on test cases extracted from the human genome databases as
well as simulated test cases. The human genome test cases are regions surrounding 100
known SNPs collected from National Center for Biotechnology Information’s genomic
databases.3 Random test cases were generated from the uniform distribution induced by
assigning equal probabilities to each nucleotide.

For all experiments we used a bound L = 1000 on the PCR amplification length,
and a bound � between 8 and 12 on primer length. Although it has been suggested that
such short primers may not be specific enough since they are likely to hybridize to many
homologue sites,8 we note that hybridization outside the target region will not result in
significant amplification unless two primers hybridize sufficiently closely to each other,
a much less likely event.6 Indeed, the feasibility of using primers with only 8-12 target
specific nucleotides has been experimentally validated by Jordan et al. 10

We compared the following four algorithms:

• The greedy primer cover algorithm of Pearson et al. 18 (G-FIX). In this algorithm the
candidate primers are collected from the reverse and forward sequences within a dis-
tance of L/2 around the SNP. This ensures that the resulting set of primers meets the
product length constraints. The algorithm repeatedly selects the candidate primer that
covers the maximum number of not yet covered forward and reverse sequences.

• A naı̈ve modification of G-FIX, which we call G-VAR, in which the candidate primers
are initially collected from the reverse and forward sequences within a distance of L
around the SNP. The algorithm proceeds by greedily selecting primers like G-FIX,
except that when a primer p covers for the first time one of the forward or reverse
sequences corresponding to a SNP, say at position t, we appropriately truncate the op-
posite sequence to ensure that the final primer cover is L-restricted.

• The greedy approximation algorithm in Figure 2, called G-POT since it makes greedy
choices based on the potential function Φ. We implemented the algorithm as described
in Section 3.1. However, to facilitate comparison with the other algorithms, in these ex-
periments we did not impose any constraints on the GC content or melting temperature
of candidate probes.

• The iterative beam-search heuristic of Souvenir et al.21 We used the primer-threshold
version of this heuristic, MIPS-PT, with degeneracy bound set to 1 and the default
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Table 1. Results on NCBI test cases for � = 8, 10, 12 and L = 1000.

# � G-FIX G-VAR MIPS-PT G-POT
SNPs #Primers CPU sec. #Primers CPU sec. #Primers CPU sec. #Primers CPU sec.

50 8 13 0.13 15 0.30 21 48 10 0.32
50 10 23 0.22 24 0.36 30 150 18 0.33
50 12 31 0.14 32 0.30 41 246 29 0.28
100 8 17 0.49 20 0.89 32 226 14 0.58
100 10 37 0.37 37 0.72 50 844 31 0.75
100 12 53 0.59 48 0.84 75 2601 42 0.61

values for the remaining parameters (in particular, beam size was set to 100).

Table 1 gives the number of primers selected and the running time (in CPU seconds)
for the three greedy algorithms and for the iterative beam-search MIPS-PT heuristic on
instances extracted from the NCBI repository. G-POT has the best performance on all test
cases, reducing the number of primers by up to 24% compared to G-FIX and up to 30%
compared to G-VAR. G-VAR performance is neither dominated nor dominating that of G-
FIX. On the other hand, the much slower MIPS-PT heuristic has the poorest performance,
possibly because is fine-tuned to perform well with higher degeneracy primers.

To further characterize the performance of compared algorithms, in Figure 4(a-c) we
plot the average solution quality of the three greedy algorithms versus the number of target
SNPs (on a log scale) for randomly generated test cases. MIPS was not included in this
comparison due to its prohibitive running time. In order to facilitate comparisons across
instance sizes, the size of the primer cover is normalized by the double of the number
of SNPs, which is the size of the trivial cover obtained by using two distinct primers to
amplify each SNP. Although the improvement is highly dependent on primer length and
number of SNPs, G-POT is still consistently outperforming the G-FIX algorithm and, with
few exceptions, its G-VAR modification.

Figure 4(d) gives the log-log plot of the average CPU running time (in seconds) versus
the number of pairs of sequences for primers of size 10 and randomly generated pairs of
sequences. All experiments were run on a PowerEdge 2600 Linux server with 4 Gb of
RAM and dual 2.8 GHz Intel Xeon CPUs – only one of which is used by our sequential al-
gorithms – using the same compiler optimization options. The runtime of all three greedy
algorithms grows linearly with the number of SNPs, with G-VAR and G-POT incurring
only a small factor penalty in runtime compared to G-FIX. This suggests that a robust prac-
tical meta-heuristic is to run all three algorithms and return the best of the three solutions
found.

5. Conclusions

In this paper we have presented an improved analysis of a simple greedy algorithm for
MP-PCR primer set selection with amplification length constraints and experimental re-
sults showing that our algorithm obtains significant reductions in the number of primers
compared to previous algorithms. A promising approach to further increasing MP-PCR
efficiency is the use of degenerate PCR primers.13,14,21 A degenerate primer is essentially
a mixture consisting of multiple non-degenerate primers sharing a common pattern. Re-
markably, degenerate primer cost is nearly identical to that of a non-degenerate primer,
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Figure 4. (a)–(c) Performance of the compared algorithms, measured as relative improvement over the trivial
solution of using two primers per SNP, for � = 8, 10, 12, L = 1000, and up to 5000 SNPs. (d) Runtime of the
compared algorithms for � = 10, L = 1000, and up to 5000 SNPs. Each number represents the average over 10
test cases of the respective size.

since the synthesis requires the same number of steps (the only difference is that one must
add multiple nucleotides in some of the synthesis steps). Since degenerate primers may
lead to excessive unintended amplification, a bound on the degeneracy of a primer (i.e., the
number of distinct non-degenerate primers in the mixture) is typically imposed. 14,21

Our greedy algorithm extends directly to the problem of selecting, for a given set of
genomic loci, a minimum size L-restricted primer cover consisting of degenerate primers
with bounded degeneracy. However, even for moderate degeneracy constraints, it becomes
impractical to explicitly evaluate the gain function for all candidate primers. Indeed, as
remarked by Linhart and Shamir,14 the number of candidate degenerate primers may be
as large as 2nL

(
k
δ

)
15δ, where n is the number of loci, L is the PCR amplification length

upperbound, and δ is the number of “degenerate nucleotides” allowed in a primer. To
maintain a practical runtime, one may sacrifice optimality of the greedy choice in step
2(a) of the greedy algorithm, using instead approximation algorithms similar to those of
Linhart and Shamir14 for finding degenerate primers guaranteed to have near optimal gain.
The analysis in Section 3 can be easily modified to prove the following approximation
guarantee for this modification of the greedy algorithm.

Theorem 5.1. Assume that the greedy algorithm in Figure 2 is modified to select in step
2(a) a primer whose gain is within a factor of α of the maximum possible gain, for some
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fixed 0 < α ≤ 1. Then, the modified algorithm returns an L-restricted primer cover of size
at most (1 + ln ∆)α times larger than the optimum, where ∆ = maxp,P ∆(p, P ).
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