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Abstract

There are currently only a few software packages, mostly in
R, available for single cell RNA-Seq (scRNA-seq) data
analysis. Most of them require considerable programming
knowledge and are not easy to use by biologists. Here, we
present a web-based interactive scRNA-seq analysis pipeline
publicly accessible at https://scl.engr.uconn.edu.

The SC1 workflow is implemented in the R programming
language, with an interactive web-based front-end built
using the Shiny framework. To facilitate interactive data
exploration, time consuming computations such as
computing PCA and t-SNE projections of the data following
basic QC are performed in a preprocessing step.
Preprocessed data is saved in the tool’s .scDat file format
that can be uploaded for interactive analysis. The SC1 tool
incorporates commonly used quality control (QC) options,
including filtering cells based on number of detected genes,
fraction of reads mapping to mitochondrial genes, ribosomal
protein genes, or synthetic spike-ins. The analysis workflow
also employs a novel method for gene selection based on
Term-Frequency Inverse-Document-Frequency  (TF-IDF)
scores [1], and provides a broad range of methods for cell
clustering, differential expression analysis, gene enrichment,
visualization, and cell cycle analysis [3].
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Term Frequency-Inverse Document Frequency (TF-IDF) for scRNA-Seq data is defined as __45;4555@_5,%} _—
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where X;; IS the UMI count of gene i in cell j, n; is the number of cells expressing gene |, | otpmaseen

and N is the total number of cells. The above figure shows the TF-IDF based gene | Bl ma S_Prase (30)
selection for the PBMCs from [6]. Genes that are highly expressed (high TF) and Cczhggg
expressed in a small subset of cells (high IDF) contribute most to the segregation of the i e, e i)
clusters. The genes with highest average TF-IDF score provide pre-clustering

heterogeneity insights with as few as 50 top genes.
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Lo for the clusters inferred by
Clustering algorithms include Hierarchical Agglomerative Clustering using Cosine SC1CC on the aCTLA-4 dataset

distance applied to log2(x + 1) expression levels of most informative genes selected [5] (right). The ~200 cells in
using top average TF-IDF scores. SC1 also provides Spherical K-means clustering using cluster 7 are  further
the top average TF-IDF genes as features and graph-based clustering using binarized TF- partitioned by SC1CC into 3
IDF data as described in [1]. The number of clusters can be specified by the user or sub-clusters (c), all of which
automatically selected using gap statistics. In the above plot, Ward's Hierarchical are marked as actively dividing
Agglomerative Clustering using the top average TF-IDF based on GSS scores (d).

genes was applied to the HPV data set from [4].

Preprocessing and Imputation

Dimensional reduction techniques include principal
component analysis (PCA), a faster PCA version using
randomized singular value decomposition, t-distributed
Stochastic Neighborhood Embedding (t-SNE); and Uniform
Manifold Approximation and Projection (UMAP).
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Differential Expression

Differential expression (DE) analysis in SC1.: | GC Phases
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SC1 supports optional imputation using Locality Sensitive
Imputation (LSImpute) [2], a novel imputation algorithm
that iteratively selects cells with highest similarity level using
locality sensitive hashing. The figures below show the Gene
Detection Fraction (GDF) of an ultra-deep scRNA-Seq data of
209 somatosensory neurons from the mouse dorsal root
ganglion [8] (=31.5M mapped reads ;=10,950 +/-1,218
genes per cell) vs. a down-sampled version simulating drop-
out effect at 200 K reads per cell.
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SC1 visualizations include:
* Interactive 2D/3D visualizations of cell clusters,
libraries, gene sets, and/or pairs of genes
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QC metrics include total UMI count, number of detected * Violin plots showing probability density of gene E LR,
expression values per cluster/library .

genes, ratio between the number of detected genes and
total UMI count per cell, fraction of reads mapping to
mitochondrial genes, and number of ribosomal protein
genes detected.

e Heatmaps of log-transformed gene expression:
 Hierarchal clustering heatmaps =
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