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Abstract. Single cell RNA-seq (scRNA-Seq) is critical for studying cel-
lular function and phenotypic heterogeneity as well as the development of
tissues and tumors. Here, we present a web-based interactive scRNA-Seq
data analysis tool publicly accessible at https://scl.engr.uconn.edu.
The tool implements a novel method of selecting informative genes based
on Term-Frequency Inverse-Document-Frequency (TF-IDF) scores and
provides a broad range of methods for cell clustering, differential expres-
sion, gene enrichment, interactive visualization, and cell cycle analysis. In
just a few steps, researchers can generate a comprehensive initial analysis
and gain powerful insights from their single cell RNA-seq data.

1 Introduction

Currently there are only few packages for comprehensive scRNA-Seq data anal-
ysis. Most of them are implemented using the R programming language, require
considerable programming knowledge, and are not easy to use by researchers in
life sciences.

In this work, we present a web-based, highly interactive scRNA-Seq data
analysis tool publicly accessible at https://scl.engr.uconn.edu. The tool in-
cludes several data quality control (QC) options, a novel method for gene se-
lection based on Term-Frequency Inverse-Document-Frequency (TF-IDF) scores
[9], followed by cell clustering and visualization tools as well as Differential Ex-
pression (DE) analysis and gene enrichment steps. Additional analyses include
various 3D interactive visualizations based on t-SNE and UMAP dimensionality
reduction algorithms as well as a novel approach to clustering and ordering cells
according to their cell cycle phase [7]. With robust default parameter values
SC1 empowers researchers to generate a comprehensive initial analysis of their
scRNA-Seq data in just a few steps, while also allowing them to conduct in depth
interactive data exploration and parameter tuning.

2 SC1 Workflow

The SC1 workflow is implemented in the R programming language, with an inter-
active web-based front-end built using the Shiny framework [1]. In the following
we present details of the main analysis steps of the workflow.



Min Number of Genes per Cell:
Total UMIs/Counts vs. # Genes s @ 0
wm——

Total UMIs/Counts Per Cell

Max Total UMIs/Counts per Cell:

Number of Ganes Par Call

Frocuency
20
raquen

O
-]

0 M 4 @ o 10 120 10

Max ERCC% per Cell:

Max Mitochondrial % per Cell;
ERCC % Per Cell MT.Genes % Per Cell -

Min Ribosomal % per Cell:

Max Ribosomal % per Cell:

Frequency
Frequency

o 10 oo w0 w0 S0

Apply further QC

Fig. 1. SC1 QC dashboard.

Data Pre-Processing. Before a detailed analysis of scRNA-Seq datasets (in 10X
Genomics or csv format) can be performed, several pre-processing steps are car-
ried out, starting with an initial quality control step in which cells with less
than 500 detected genes and genes detected in less that 10 cells are excluded.
Imputation is provided as an optional pre-processing step. Empirical experi-
ments in [6] show that over-imputation is a concern for most existing meth-
ods. In SC1 we implemented the Locality Sensitive Imputation method (LSIm-
pute) from [8], which was shown in [6] to yield high accuracy with minimum
over-imputation. SC1 pre-processing also includes performing dimensionality re-
duction using three commonly used algorithms: Principal Component Analysis
(PCA) [2], t-distributed Stochastic Neighborhood Embedding (t-SNE) projec-
tions [11], and Uniform Manifold Approximation and Projection (UMAP) [5].

scDat Upload. Pre-processed data is saved in SC1’s “.scDat” file format that
can then be uploaded for interactive analysis. Several publicly available datasets
from [4], [12] and [3] spanning different scRNA-Seq technologies are provided in
SC1 as example datasets. Initial data exploration includes detecting the species
(mouse or human), generating basic summary statistics including the number of
expressed genes and the number of cells per library, and the ability to relabel
the libraries. 'At-a-glance’ two dimensional views of the data are also generated
based on PCA, tSNE, and UMAP.

Quality Control Dashboard. Before further analyses, SC1 allows users to perform
additional Quality Control (QC) checks as shown in Figure 1, whereby poor
quality cells and outlier cells and genes can be excluded from subsequent analysis.
The tool implements widely used criteria for cell filtering: library size, number of
detected genes, as well as the fraction of reads mapping to mitochondrial genes,
ribosomal protein genes, or synthetic spike-ins. SC1 also allows outlier removal
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Fig. 2. Heat map of genes with top average TF-IDF scores for cells of the 7-class
PBMC mixture from [9].

based on the ratio between the number of detected genes to total read/UMI
count per cell.

Gene Selection. SC1 implements a novel method of selecting informative genes
based on the average TF-IDF (Term Frequency times Inverse Document Fre-
quency) scores, as detailed in [9]. TF-IDF scores are applied to scRNA-Seq data
by considering the cells to be analogous to documents; in this analogy, genes cor-
respond to words and UMI counts replace word counts. The TF-IDF scores can
then be computed from UMI counts (or expression values). Similar to document
analysis, the genes with highest TF-IDF scores in a cell are expected to provide
most information about the cell type. Genes with highest average TF-IDF scores
differentiate best between heterogeneous cell populations; visually this leads to
a clear “chess-board” effect in the heat map constructed using the top average
TF-IDF genes as shown in Fig. 2.

Clustering. By default, SC1 automatically infers the number of clusters using
the Gap Statistics method as described in [9]. However, users can also manually
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Fig. 3. SC1 clustering.

specify the number of clusters based on prior knowledge of the expected sample
heterogeneity. Valuable insight into sample heterogeneity is also provided by
inspecting the heat map generated using the top TF-IDF genes (Fig. 2) before
clustering. Clustering can be performed using Ward’s Hierarchical Agglomerative
Clustering or Spherical K-means (both using the top average TF-IDF genes
as features) or using Graph-based Clustering using binarized TF-IDF data as
described in [9]. Several visualizations describe clustering details (see Fig. 3).

Differential Expression Analysis. Differential expression (DE) analysis is done by
performing “One vs. the Rest” t-tests for each of the identified clusters. Results
of the Log2 Fold Change and the p-value from the analysis are provided as a
downloadable numeric matrix. A custom test of two selected groups of clusters or
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Fig. 4. SC1 differential expression analysis.

libraries is also provided, with results provided both as a downloadable numeric
table and as a Volcano plot visualizing the Log2 Fold Change and p-values for
the tested groups (Fig. 4).

Enrichment Analysis DE analysis is followed by cluster-based gene functional
enrichment analysis performed using the ’gProfileR’ R package [10] with results
visualized as word clouds (Fig. 5) and provided as downloadable term significance
values to help with cluster annotation. Labels assigned to the clusters at this
step update throughout SC1 tool output and visualization plots.

Interactive Data Visualization. Many SC1 analysis steps generate visualizations
of the results, including for instance the violin plots showing the probability den-
sity of gene expression values for each selected cluster/library and the bar-plots
showing percentage of cells expressing selected genes by cluster or by library.
Additional visualizations include:

— Clustering and gene co-expression visualization. SC1 includes multiple inter-
active visualization options; the interactive 3D t-SNE or UMAP visualization
tabs include the ability to select genes individually, in pairs, or in groups as
predefined gene sets. Cells are identified where all (AND) or any (OR) of
the selected genes are detected. Identified cell populations can be selected
or excluded to form a subset that can be downloaded and used to form a
new sub-population for further analysis in SC1 (Fig. 6). Identifying various
cell populations in SC1 and downloading relevant cells’ expression profiles
can be achieved in various ways in SC1: by selecting pre-defined libraries or
conditions or selecting cell populations based on gene selection, also selecting
specific cell types from clustering analysis results. Gene pair co-expression
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Fig. 5. SC1 cluster-based gene enrichment analysis.

can also be visualized using interactive 3D plots as well as scatter plots
Fig. 7)

Detailed and summary heatmaps. SC1 provides several ways to select genes
and cells visualized in configurable heat maps. Automatic identification of
informative genes based on average TF-IDF allows the generation of ex-
ploratory heat maps to investigate the heterogeneity of the data. Also, a
list of highly expressed/abundant genes can be downloaded from SC1 and
used to construct a heat map. SC1 also supports custom gene selection by
manually selecting or uploading a list of genes of interest to use for heat
map construction. After the DE analysis step is concluded, the list of differ-
entially expressed genes can also be visualized as a heat map. The expres-
sion/count values are by default log transformed in SC1 heat maps using
the log2(x 4+ 1) transformation. The summary heat map view in SC1 pro-
vides a “pseudo-bulk” view of the data, showing average expression profiles
for selected genes by cluster or library (Fig. 8). The gene expression levels



Fig. 6. SC1 3D visualization of clustering results and selected genes on data from [4].

in summary heat maps are row-normalized, i.e., gene means expressions in
libraries and clusters are normalized by dividing by the max mean expression
of each gene over all libraries and clusters. This assigns a maximum value
of 1 (red) to the groups for which the mean expression of the gene is the
highest.

Cell Cycle Analysis. The variation in the gene expression profiles of single cells in
different phases of the cell cycle can present a leading source of variance between
cells and can interfere with cell type identification and functional analysis of
scRNA-Seq data. In SCI1, an orthogonal analysis of cell cycle effects can be
performed at any stage of the analysis by clustering and ordering cells according
to the expression levels of cell cycle genes, as described in [7].

3 Conclusion

SC1 provides a powerful tool for interactive web-based analysis of scRNA-Seq
data. The SC1 workflow is implemented in the R programming language, with an
interactive web-based front-end built using the Shiny framework [1]. SC1 employs
a novel method for gene selection based on Term-Frequency Inverse-Document-
Frequency (TF-IDF) scores [9], and provides a broad range of methods for cell
clustering, differential expression analysis, gene enrichment, visualization, and
cell cycle analysis. Future work includes integrating additional clustering meth-
ods, as well as other differential expression analysis methods and integrating
methods for cell differentiation analysis. As the amount of scRNA-Seq data con-
tinues to grow at an accelerated pace, we hope that SC1 will help researchers to
fully leverage the power of this technology to gain novel biological insights.
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Fig. 7. SC1 gene co-expression visualization.
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