
1

A New Heuristic for

Rectilinear Steiner Trees

Ion I. M�andoiu, Vijay V. Vazirani, and Joseph L. Ganley

Abstract

The minimum rectilinear Steiner tree (RST) problem is one of the fundamental problems in the

�eld of electronic design automation. The problem is NP-hard, and much work has been devoted to

designing good heuristics and approximation algorithms; to date, the champion in solution quality

among RST heuristics is the Batched Iterated 1-Steiner (BI1S) heuristic of Kahng and Robins. In

a recent development, exact RST algorithms have witnessed spectacular progress: The new release

of the GeoSteiner code of Warme, Winter, and Zachariasen has average running time comparable

to that of the fastest available BI1S implementation, due to Robins. We are thus faced with the

paradoxical situation that an exact algorithm for an NP-hard problem is competitive in speed with

a state-of-the-art heuristic for the problem.

The main contribution of this paper is a new RST heuristic, which has at its core a recent 3/2

approximation algorithm of Rajagopalan and Vazirani for the metric Steiner tree problem on quasi-

bipartite graphs|these are graphs that do not contain edges connecting pairs of Steiner vertices.

The RV algorithm is built around the linear programming relaxation of a sophisticated integer

program formulation, called the bidirected cut relaxation. Our heuristic achieves a good running

time by combining an e�cient implementation of the RV algorithm with simple, but powerful

geometric reductions.

Experiments conducted on both random and real VLSI instances show that the new RST

heuristic runs signi�cantly faster than Robins' implementation of BI1S and than the GeoSteiner

code. Moreover, the new heuristic typically gives higher-quality solutions than BI1S.

Keywords

Routing, interconnect synthesis, Steiner tree, optimization.

The work of the �rst two authors was supported by NSF Grant CCR 9627308.

I. I. M�andoiu and V. V. Vazirani are with College of Computing, Georgia Institute of Technology, Atlanta, GA

30332, USA. E-mail: fmandoiu,vaziranig@cc.gatech.edu.

J. L. Ganley is with Simplex Solutions, Inc., 521 Almanor Avenue, Sunnyvale, CA 94086, USA. E-mail:

joe@simplex.com.

2
I. Introduction

The Steiner tree problem is that of �nding a minimum-length interconnection of a set of

terminals, and has long been one of the fundamental problems in the �eld of electronic

design automation. Although recent advances of integrated circuit technology into the

deep-submicron realm have introduced additional routing objective functions, the Steiner

tree problem retains its importance: For non-critical nets, or in physically small instances,

minimum length is still frequently a good objective function, since a minimum-length in-

terconnection has minimum overall capacitance and occupies a minimum amount of area.

Furthermore, the development of good algorithms for the Steiner tree problem often lays a

foundation for expanding these algorithms to accommodate objective functions other than

purely minimizing length.

The rectilinear Steiner tree (RST) problem|in which the terminals are points in the plane

and distances between them are measured in the L1 metric|has been the most-examined

variant in electronic design automation, since IC fabrication technology typically mandates

the use of only horizontal and vertical interconnect. The RST problem is NP-hard [10], and

much e�ort has been devoted to designing heuristic and approximation algorithms [1], [2],

[3], [6], [11], [14], [16], [18], [19], [20], [30], [31], [32]. In an extensive survey of RST heuristics

up to 1992 [17], the Batched Iterated 1-Steiner (BI1S) heuristic of Kahng and Robins [18]

emerged as the clear winner with an average improvement over the MST on terminals of

almost 11%. Subsequently, two other heuristics [3], [19] have been reported to match the

same performance.

After a steady, but relatively slow progress [5], [8], [25], exact RST algorithms have recently

witnessed spectacular progress [28] (see also [7]). The new release [29] of the GeoSteiner code

by Warme, Winter, and Zachariasen has average running time comparable to the fast BI1S

implementation of Robins [22] on random instances. We are thus faced with the paradoxical

situation that an exact algorithm for an NP-hard problem has the same average running

time as a state-of-the-art heuristic for the problem. It appears that, for the RST problem,

progress on heuristics has lagged behind that on exact algorithms.

We try to remedy this situation by proposing a new RST heuristic. Our experiments show

that the new heuristic has better average running time than both Robins' implementation

of BI1S and the GeoSteiner code. Moreover, the new heuristic gives higher-quality solutions

3than BI1S on the average; of course, it cannot beat GeoSteiner in solution quality.

Our results are obtained by exploiting a number of recent algorithmic and implementation

ideas. On the algorithmic side, we build on the recent 3=2 approximation algorithm of Ra-

jagopalan and Vazirani [21] for the metric Steiner tree problem on quasi-bipartite graphs;

these are graphs that do not contain edges connecting pairs of Steiner vertices. This algo-

rithm is based on the linear programming relaxation of a sophisticated integer formulation of

the metric Steiner tree problem, called the bidirected cut formulation. It is well known that

the RST problem can be reduced to the metric Steiner tree problem on graphs [13], however,

the graphs obtained from the reduction are not quasi-bipartite. We give an RV-based heuris-

tic for �nding Steiner trees in arbitrary (non quasi-bipartite) metric graphs. The heuristic,

called Iterated RV (IRV), computes a Steiner tree of a quasi-bipartite subgraph of the original

graph using the RV algorithm, in order to select a set of candidate Steiner vertices. The

process is repeated with the selected Steiner vertices treated as terminals|thereby allowing

the algorithm to pick larger quasi-bipartite subgraphs, and seek additional Steiner vertices

for inclusion in the tree|until no further improvement is possible.

The e�cient implementation of the IRV heuristic depends critically on the size of the

quasi-bipartite subgraphs considered in each iteration. We decrease the size of the graphs

that correspond to RST instances by applying reductions, which are deletions of edges and

vertices that do not a�ect the quality of the result. Our key edge reduction is based on

Robins and Salowe's result that bounds the maximum degree of a rectilinear MST [23],

and allows us to retain in the graph at most 4 edges incident to each vertex. Notably, the

same reduction is the basis of a signi�cant speed-up in the running time of BI1S [12], and is

currently incorporated in Robins' implementation [22]. Our vertex reduction is based on a

simple empty rectangle test that has its roots in the work of Berman and Ramaiyer [2] (see

also [6], [31]).

We ran experiments to compare our implementation of IRV against Robins' implementa-

tion of BI1S [22] and against the GeoSteiner code of Warme, Winter, and Zachariasen [29].

The results reported in Section IV show that, on both random and real VLSI instances,

our new heuristic produces on the average higher-quality solutions than BI1S. The quality

improvement is not spectacular, around 0.03% from the cost of the MST, but we should

note that solutions produced by BI1S are already less than 0.5% away from optimum on the

4average.

More importantly, IRV's improvement in solution quality is achieved with an excellent

running time. On random instances with up to 250 terminals, our IRV code runs 4{10

times faster than the lp solve based version of GeoSteiner used in our experiments, and

2{10 times faster than Robins' implementation of BI1S|the speed-up increases with the

number of terminals. After noticing that BI1S can also bene�t from vertex reductions, we

incorporated the empty rectangle test into Robins' BI1S code. The enhanced BI1S code

becomes about 30% faster than our IRV code on large random instances. However, this

does not necessarily mean that BI1S is the best heuristic in practice. Results on real VLSI

instances indicate a di�erent hierarchy: On these instances both IRV and GeoSteiner are

faster than the enhanced BI1S.

It is interesting to note that, due to poor performance and prohibitive running times, none

of the previous algorithms with proven guarantees for the Steiner tree problem in graphs [1],

[2], [11], [20], [32] was found suitable as the core algorithmic idea around which heuristics can

be built for use in the industry. Our adaptation of the RV algorithm �lls this void for the �rst

time, and points to the importance of drawing on the powerful new ideas developed recently

in the emerging area of approximation algorithms for NP-hard optimization problems [26].

The remainder of this paper is structured as follows. Section II describes the RV algorithm

and its extension to non quasi-bipartite graphs. Section III describes how this extension,

IRV, is used to solve RST instances, and Section IV presents experimental results comparing

IRV with BI1S and GeoSteiner on test cases both randomly generated and extracted from

real circuit designs.

II. Steiner trees in graphs

The metric Steiner tree in graphs (GST) problem is: Given a connected graph G = (V;E)

whose vertices are partitioned in two sets, T and S, the terminal and Steiner vertices respec-

tively, and non-negative edge costs satisfying the triangle inequality, �nd a minimum cost

tree spanning all terminals and any subset of the Steiner vertices. Recently, Rajagopalan and

Vazirani [21] presented a 3/2 approximation algorithm (henceforth called the RV algorithm)

for the GST problem when restricted to quasi-bipartite graphs, i.e., graphs that have no edge

connecting a pair of Steiner vertices. In this section we review the RV algorithm, discuss

5its implementation, and present an RV-based heuristic for the GST problem on arbitrary

graphs.

A. The bidirected cut relaxation

The RV algorithm is based on a sophisticated integer programming (IP) formulation of

the GST problem. A related, but simpler formulation is given by the following observation:

A set of edges E0 � E connects terminals in T if and only if every cut of G separating two

terminals crosses at least one edge of E0. The IP formulation resulting from this observation

is called the undirected cut formulation. The IP formulation on which the RV algorithm is

based, called the bidirected cut formulation, is obtained by considering a directed version of

the above cut condition.

Let ~E be the set of arcs obtained by replacing each undirected edge (u; v) 2 E by two

directed arcs u ! v and v ! u. For a set C of vertices, let �(C) be the set of arcs u ! v

with u 2 C and v 2 V nC. Finally, if to is a �xed terminal, let C contain all sets C � V that

contain at least one terminal but do not contain to. The bidirected cut formulation attempts

to pick a minimum cost collection of arcs from ~E in such a way that each set in C has at

least one outgoing arc:

minimize
X

e2~
E

cost(e)xe (1)

subject to
X

e: e2�(C)

xe � 1; C 2 C

xe 2 f0; 1g; e 2 ~E

By allowing xe's to assume non-negative fractional values we obtain a linear program (LP)

called the bidirected cut relaxation of the GST problem:

minimize
X

e2~
E

cost(e)xe (2)

subject to
X

e: e2�(C)

xe � 1; C 2 C

xe � 0; e 2 ~E

The dual of the covering LP (2) is the packing LP:

6

maximize
X

C2C

yC (3)

subject to
X

C: e2�(C)

yC � cost(e); e 2 ~E

yC � 0; C 2 C

From LP-duality theory, the cost of any feasible solution to (3) is less than or equal to the

cost of the optimum solution to (2), and hence, less than or equal to the cost of any feasible

solution to (1). The RV algorithm uses this observation to guarantee the quality of the

solution produced: The algorithm constructs feasible solutions to both IP (1) and LP (3),

in such a way that the costs of the two solutions di�er by at most a factor of 3/2.

B. The RV algorithm

The RV algorithm works on quasi-bipartite graphs G. At a coarse level, the RV algorithm

is similar to the Batched Iterated 1-Steiner algorithm of Kahng and Robins [18]: Both

algorithms work in phases, and in each phase some Steiner vertices are iteratively added to

the set of terminals. While BI1S adds Steiner vertices to T greedily|based on the decrease

in the cost of the MST|the RV algorithm uses the bidirected cut relaxation to guide the

addition.

In each phase, the RV algorithm constructs feasible solutions to both IP (1) and LP

(3). The bidirected cut formulation and its relaxation are inherently asymmetric, since

they require a terminal to to be singled out. However, the RV-Phase algorithm works in a

symmetric manner: The information it computes can be used to derive feasible solutions for

any choice of to.

A set C � V is called proper if both C and V n C contain terminals; with respect to

the original set of terminals only sets in C and their complements are proper. During its

execution, the RV-Phase algorithm tentatively converts some Steiner vertices into terminals;

note that the only proper sets created by these conversions are singleton sets containing

new terminals, and their complements. The algorithm maintains a variable yC , called dual ,

for every proper set, including the newly created ones. The amount of dual felt by arc e

is
P

C : e2�(C) yC ; we say that e is tight when
P

C : e2�(C) yC = cost(e). A set C of vertices is

unsatis�ed if it is proper and �(C) does not contain any tight arc.

7

Input: Quasi-bipartite graph G and set T of terminals.

Output: Augmented set T .

1. ~L ;; For each proper set C, yC 0.

2. If all proper sets are satis�ed then return T and exit.

3. Uniformly rise the y values of minimally unsatis�ed sets until an arc u! v goes tight.

4. If u =2 T , then T T [fug; repeat from Step 1.

5. Else, ~L ~L [fu! vg; repeat from Step 2.

Fig. 1. The RV-Phase algorithm.

The RV-Phase algorithm (Figure 1) starts with yC set to 0 for every proper set C, and an

empty list ~L of tight arcs. It then proceeds in a primal-dual manner, by alternatively raising

dual variables as long as this does not violate the packing constraints of (3), and picking

tight edges into ~L, thus satisfying more and more proper sets. When the algorithm stops,

all proper sets are satis�ed by tight arcs in ~L.

Theorem 1: [21] (a) If arc u! v, u =2 T , goes tight then cost(MST(T[fug)) < cost(MST(T)).

(b) At the end of the RV-Phase algorithm, cost(MST(T [fug)) � cost(MST(T)) for every

u =2 T .

The RV algorithm (whose pseudo-code we omit) repeats the RV-Phase algorithm followed

by removal of unnecessary Steiner vertices, until no further improvement is made in the cost

of MST(T). At the end of the algorithm, the duals raised around proper sets are converted

into a solution to (1) by picking to and discarding yS's with S =2 C. The 3/2 approximation

guarantee follows by relating the cost of this solution to the cost of MST(T).1

C. E�cient implementation of the RV-Phase algorithm

Since our heuristic on general graphs uses RV-Phase as a subroutine, we describe here an

e�cient implementation of it. Several implementation ideas are derived from the following

key property maintained throughout the RV-Phase algorithm:

Lemma 2: [21] Let u and v be two terminals. If all arcs along some path u! x1 ! � � � !

x
k
! v are tight, then so are the arcs on the reverse path, v! x

k
! � � � ! x1! u.

1Recently, using a di�erent argument, Robins and Zelikovsky [24] proved that any Steiner tree satisfying condition

(b) of Theorem 1 is within a factor of 3/2 of optimum.

8 For implementation purposes we do not need to keep track of the duals raised; all that

matters is the order in which arcs get tight. The tightening time of an arc can be determined

by monitoring the number of minimally unsatis�ed sets (henceforth called active sets) that

are felt by that arc. It is easy to see that the set of vertices reachable via tight arcs from a

terminal u always form an active set; Lemma 2 implies that no other active set can contain

u. Thus, we get:

Corollary 3: For any terminal u, there is exactly one active set containing u at any time

during the algorithm. Hence, the tightening time of any arc u ! v, u 2 T , is exactly

cost(u; v).

Unlike terminals, Steiner vertices may be contained in multiple active sets. Hence, arcs

out of Steiner vertices will feel dual at varying rates during the algorithm.

Lemma 4: Let u be a Steiner vertex. If arc u ! v goes tight in the RV-Phase algorithm,

then arc v! u goes tight at the same time or before u! v does. Moreover, each arc u! w

for which w! u is already tight will go tight together with u! v.

Proof: In order to get tight, u ! v must feel some active set, i.e., there must exist a

tight path from a terminal v0 6= v to u. After u ! v gets tight, there is a tight path from

v0 to v, and, by Lemma 2, the reverse path (hence the arc v ! u) must also be tight. The

second claim follows similarly.

Since several arcs out of a Steiner vertex get tight simultaneously, we say that the vertex

crystallizes when this happens. Note that crystallization is precisely the moment when the

vertex is added to T , i.e., when it begins to be treated as terminal. Lemma 4 implies that, in

order to detect when a Steiner vertex crystallizes, it su�ces to monitor the amount of dual

felt by the shortest arc out of that Steiner vertex, which we will call critical arc.

Our implementation of RV-Phase (Figure 2) maintains for each terminal u its active set,

as(u), i.e., the set of vertices reachable from u by tight arcs. We also maintain for each

Steiner vertex s the amount of dual felt by the critical arc out of s, cd(s). This, together

with the cost cc(s) of the critical arc and the number na(s) of active sets containing s, easily

allows us to estimate the time when s will crystallize. The rest of the algorithm resembles

the well known Kruskal algorithm for computing the MST (see, e.g., [4]). All arcs out of

terminals are sorted in non-decreasing order, then marked as tightened one by one. As

new arcs are tightened, we update active sets and the amount of dual felt by critical arcs,

9

1. Let a1; a2; : : : ; am be the arcs in f(u; v) 2 ~E j u 2 Tg, sorted non-decreasingly by cost.

2. time 0, i 1

For each t 2 T , as(t) ftg

For each s 2 S,

cc(s) minfcost(s; u) j (s; u) 2 ~Eg

cd(s) 0; ct(s) time; na(s) 0

3. (u; v) ai; time cost(u; v)

s0 argminfct(s) + [cc(s)� cd(s)]=na(s) j s 2 Sg

4. If cost(u; v) > ct(s0) + [cc(s0)� cd(s0)]=na(s0) then

T T [fs0g; S S n fs0g /* s0 crystallizes */

Repeat from step 2

5. If v 2 S and v =2 as(u) then

cd(v) cd(v) + na(v)(time� ct(v)); ct(v) time

na(v) na(v) + 1; as(u) as(u) [fvg

6. Else, if v 2 T and v =2 as(u) then

For each s 2 as(u) \ as(v) do

cd(s) cd(s) + na(s)(time� ct(s))

ct(s) time; na(s) na(s)� 1

as(u) as(v) as(u) [as(v)

7. If T � as(u), return T and exit.

8. Else, i i+ 1; repeat from Step 3.

Fig. 2. Implementation of the RV-Phase algorithm.

crystallizing Steiner vertices if necessary. Maintaining active sets in an augmented disjoint-

set datastructure leads to a worst case running time of O(k � jT j � jSj), where k is the number

of crystallized Steiner vertices|all other operations are performed in O(k � jEj � log jV j).

D. The heuristic for general graphs

A simple way of dealing with non-quasi-bipartite graphs is to remove all Steiner-Steiner

edges and then run the RV algorithm. To allow Steiner-Steiner edges to come into play, we

iterate this process. If a Steiner vertex is added to T during some run of the RV algorithm,

10

Input: Arbitrary graph G and set T of terminals.

Output: Steiner tree on terminals.

1. Tbest Tin T

2. Remove from G all edges (u; v) with u =2 T , v =2 T , and run the RV-Phase algorithm on the

resulting graph; this will add some Steiner vertices to T .

3. Construct an MST on T , then prune from T n Tin all vertices with tree degree � 2.

4. If cost(MST(T)) < cost(MST(Tbest)), then let Tbest T and repeat from Step 2.

5. Return MST(Tbest).

Fig. 3. The IRV algorithm.

for subsequent runs we extend the graph by adding all edges incident to it, not just those

leading to terminals.

Preliminary experiments have shown that it is better|in both running time and solution

quality|to extend the graph after running just one RV-Phase, not the full RV algorithm, on

the quasi-bipartite graph. This gives the algorithm in Figure 3.

III. Rectilinear Steiner trees

The rectilinear Steiner tree (RST) problem is de�ned as follows: Given a set T of terminals

in the plane, �nd a shortest interconnection of the terminals using only horizontal and vertical

lines. Lines are allowed to meet at points other than the terminals; as usual, non-terminal

meeting points are called Steiner points.

By a classical result of Hanan [13], there exists an optimal rectilinear Steiner tree that uses

only Steiner points located at intersections of vertical and horizontal lines passing through

terminals. Thus, �nding a minimum rectilinear Steiner tree on a set of terminals reduces

to �nding a minimum Steiner tree in the graph induced by the Hanan grid, with edge costs

given by the L1 (or Manhattan) metric, d(u; v) = jxu � xvj+ jyu � yvj.

The IRV algorithm yields good results when applied to a graph for which the cost and

structure of the minimum Steiner tree does not change much after the removal of Steiner-

Steiner edges. For the RST problem, the best choice w.r.t. solution quality is to run IRV

on the complete graph induced by the Hanan grid. We obtain a practical running time by

11applying a few simple, yet very e�ective, reductions to this graph.

A. Edge reductions

By a result of Robins and Salowe [23], for any set of points there exists a rectilinear MST

in which each point p has at most one neighbor in each of the four diagonal quadrants,

�x � y < x, �y < x � y, x < y � �x, and y � x < �y, translated at p. Hence,

the optimum Steiner tree in the quasi-bipartite graph is not a�ected if we remove all edges

incident to a Steiner vertex except those connecting it to the closest terminals from each

quadrant. We can also discard all edges connecting pairs of terminals except for the jT j � 1

edges in MST(T)|this merely amounts to a particular choice of breaking ties between

terminal-terminal edges during RV-Phase. Combined, these two edge reductions leave a

quasi-bipartite graph with O(jT j+ jSj) edges, as opposed to O(jT j � (jT j+ jSj)) without edge

reductions.

B. Vertex reductions

Zachariasen [31] noted that reductions based on structural properties of full Steiner com-

ponents, which play a crucial role for exact algorithms such as [5], [28], can also be used to

remove from the Hanan grid a large number of Steiner vertices without a�ecting the opti-

mum Steiner tree. Simpler versions of these reductions su�ce in our case, since we only want

to leave una�ected the optimum Steiner tree in the graph that results after the removal of

Steiner-Steiner edges.

We incorporated in our code a version of the empty rectangle test [31], originally due

to Berman and Ramaiyer [2]. Consider a grid point found, say, at the intersection of the

vertical line through a terminal u and the horizontal line through a terminal v (see Figure 4).

The empty rectangle test says that the point must be retained in the graph only if (1) the

rectangle determined by terminals u and v is empty, i.e., contains no terminals in its interior,

and (2) the shaded quadrant contains at least one terminal. We used a simple O(jT j2)

implementation of this test; an O(jT j log jT j+ k) implementation, where k is the number of

empty rectangles, is also possible [9].

As noted in [6], [31], a stronger version of the empty rectangle test is guaranteed to remove

all but a set of O(jT j) Steiner points, still with no increase in the cost of the optimum RST

with no Steiner-Steiner edges. By using this stronger test the overall running time of IRV as

12

(x ,y)

v

u

u v

Fig. 4. The empty rectangle test.

applied to RST reduces to O(k � jT j2), where k is the number of crystallized Steiner vertices

(usually a small fraction of jT j).

IV. Experimental results

We compared our algorithm against Robins' implementation [22] of BI1S [18], [12], and

against the recent release [29] of the exact GeoSteiner algorithm of Warme, Winter, and

Zachariasen [28].

A. Experimental setup

All experiments were conducted on a SGI Origin 2000 with 16 195MHz MIPS R10000

processors|only one of which is actually used by the sequential implementations included in

our comparison|and 4 G-Bytes of internal memory, running under IRIX 6.4 IP27. Timing

was performed using low-level Unix interval timers, under similar load conditions for all

experiments.

We coded our heuristic in C; Robins' BI1S implementation and GeoSteiner are coded in

C as well. The three programs were compiled using the same compiler (gcc version egcs-

2.90.27) and optimization options (-O4). Whenever we had a choice in the con�guration

of BI1S or GeoSteiner, we optimized for speed. The only exception to this rule was the

choice of LP{solver in GeoSteiner: since CPLEX was not available on our test machine,

we con�gured GeoSteiner to use Warme's heavily customized version of the public-domain

package lp solve. In order to assess the loss in speed induced by this choice, we ran

both versions of GeoSteiner on a di�erent machine that had a licensed copy of CPLEX

6.5.1. Although CPLEX is generally considered to be signi�cantly faster than lp solve, the

CPLEX version of GeoSteiner was only 30% faster than the lp solve version on experiments

13involving 1000 random instances. We attribute the very competitive running time of the

lp solve version of GeoSteiner to code optimizations|made possible by intimate access to

the internals of lp solve|that are not included in the CPLEX version [27].

The test bed for our experiments consisted of two categories of instances:

� Random instances: For each instance size between 10 and 250, in increments of 10, we

generated uniformly at random 1,000 instances2 consisting of points in general position3

drawn from a 10000 � 10000 grid.

� Real VLSI instances: To further validate our results, we ran the three competing algo-

rithms on a set of 9 large instances extracted from two di�erent VLSI designs.

B. Solution quality

Following the standard practice [17], we use the percent improvement over the MST on

terminals,

cost(MST)� cost(Algo. RST)

cost(MST)
� 100;

to compare the quality of the RSTs produced by the three algorithms.

Figure 5 shows the average percent improvement over MST for BI1S, IRV, and GeoSteiner

on random instances. Both IRV and GeoSteiner come on the average within 0.5% of the

optimum solution found by GeoSteiner. Moreover, IRV has a very small advantage over

BI1S for almost all instance sizes. Although this advantage is small|less than 0.05% on the

average|it is statistically very signi�cant, i.e., likely to be observed with high probability on

any set of instances. Figure 6 shows the 95% con�dence intervals for the expected di�erence

between the percent improvement over MST of IRV and the percent improvement over MST

of BI1S. For all but three instance sizes the con�dence interval does not contain the origin.

Wilcoxon's signed-rank sum test [15] also con�rms|with a one-sided p-value lower than

0.001 for instances of size 100 or more|the small advantage that IRV has over BI1S.

2Of the total of 25,000 random instances, the lp solve based GeoSteiner exhibited numerical instability on 18. These

instances could only be solved by turning on a perturbation scheme that has the e�ect of slowing down GeoSteiner.

In the solution quality results reported below for GeoSteiner we use all 25,000 instances, since all of them could be

solved to optimality in one way or another. However, in the running time results we omit these 18 instances to avoid

penalizing GeoSteiner for the increased running time caused by turning on perturbations.

3A set of points is in general position if no two points share a common x- or y-coordinate.

14

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

0 50 100 150 200 250

Im
pr

ov
em

en
t o

ve
r

M
S

T
 (

%
)

No. terminals

GeoStnr
BI1S
IRV

Fig. 5. Average improvement over MST.

For a more detailed comparison, Figure 7 gives a scatter plot of the percent improvement

over MST of IRV versus that of BI1S for the 1000 random instances with 250 terminals. On

61% of these instances IRV �nds a better solution than BI1S. The quality of the solutions

produced by IRV is further illustrated by the scatter plot in Figure 8, which shows the percent

improvement over MST of IRV versus the maximum possible improvement. On the same

1000 random instances, IRV is rarely more than 1% away from optimum, and on the average

is less than 0.5% away.

Solution quality results on VLSI instances are presented in Table I. These results are

consistent with the �ndings on random instances: IRV gives solutions of same quality as

BI1S on 3 instances, of better quality on 5 instances, and of worse quality on 1 instance.

Both heuristics come very close to optimum; in fact, BI1S �nds an optimum solution on one

instance and IRV �nds optimum solutions twice.

C. Running time

We noted in Section III that our IRV implementation uses edge and vertex reductions in

order to speed-up the computation. Figure 9 shows the speed-up obtained by using the

15

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 50 100 150 200 250

(I
R

V
 %

 im
pr

ov
.)

 -
 (

B
I1

S
 %

 im
pr

ov
.)

No. terminals

Avg.

Fig. 6. 95% con�dence intervals for the di�erence between the percent improvement over MST of IRV and

the percent improvement over MST of BI1S.

8

9

10

11

12

13

8 9 10 11 12 13

IR
V

 im
pr

ov
em

en
t o

ve
r

M
S

T
 (

%
)

BI1S improvement over MST (%)

Fig. 7. IRV vs. BI1S

16

8

9

10

11

12

13

8 9 10 11 12 13

IR
V

 im
pr

ov
em

en
t o

ve
r

M
S

T
 (

%
)

GeoSteiner improvement over MST (%)

Fig. 8. IRV vs. GeoSteiner

TABLE I

Average percent improvement over MST on VLSI instances.

Design.Net No. term. BI1S IRV GeoStnr

16BSHREG.CLK 185 1.757 1.757 1.757

16BSHREG.RESET 406 3.666 3.666 3.810

16BSHREG.VDD 573 8.079 8.079 8.118

16BSHREG.VSS 556 7.854 8.131 8.192

MAR.BRANCH 188 9.007 9.158 9.221

MAR.CLK 264 7.637 7.748 7.957

MAR.GND 245 6.300 6.321 6.476

MAR.RESET 109 11.206 11.246 11.246

MAR.VDD 340 6.038 6.003 6.181

17

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250

S
pe

ed
-u

p
fa

ct
or

No. terminals

Steiner pt. reduction
BI1S speed-up
IRV speed-up

Fig. 9. Speed-up achieved by using the empty rectangle test.

empty rectangle test described in section III-B; edge reductions described in Section III-

A lead to an even more signi�cant speed-up, similar to the one reported in [12] for BI1S.

Despite its simplicity, the empty rectangle test reduces the number of Steiner points by a

factor of over 15 for 250 terminal instances. This speeds up the IRV algorithm by essentially

the same factor. Due to the direct correspondence between the reduction in Steiner vertices

and the speed-up of the algorithm, it seems worthwhile to explore further reduction ideas,

in particular those suggested in [6], [31].

After noticing that BI1S can also bene�t from vertex reductions, we incorporated the

empty rectangle test into Robins' code. As shown in Figure 9, we obtained again a speed-up

roughly equal to the decrease in the number of Steiner vertices. All running times reported

below for BI1S refer to this sped-up version of Robins' code.

Figure 10 compares the average running time of BI1S, IRV, and GeoSteiner on random

instances. On these instances IRV is 4{10 times faster than GeoSteiner and BI1S is 30% faster

than IRV. Surprisingly, the results on VLSI instances presented in Table II indicate di�erent

trends than results on random instances. On these instances, both IRV and GeoSteiner run

18

0

5

10

15

20

25

0 50 100 150 200 250

A
vg

. C
P

U
 ti

m
e

(s
ec

.)

No. terminals

GeoStnr
BI1S
IRV

Fig. 10. Average CPU time.

signi�cantly faster than predicted by experiments on random instances. In particular, IRV

is always faster than BI1S, sometimes by as much as a factor of 10. Although IRV is still

faster than GeoSteiner, the di�erence in speed is not as impressive on these instances as it is

on random instances.

D. Convergence rate

Figures 11 and 12 display the rate of convergence to the �nal solution for BI1S, IRV, and

GeoSteiner, when run on 16BSHREG.RESET and on a random instance of the same size,

respectively. Each point on the IRV and BI1S curves corresponds to the addition/deletion of a

single Steiner point to/from the solution; the points de�ning the GeoSteiner curve represent

moments when better feasible solutions are found during the branch-and-cut search. A

logarithmic time-scale is used in both �gures to better put in perspective the early results

of each algorithm.

Although Figures 11 and 12 don't give much insight on GeoSteiner, they do capture many of

the fundamental features of BI1S and IRV. For example, it is immediately apparent that BI1S

uses a greedy strategy, selecting in each step the point whose addition to the solution gives

19

0

2

4

6

8

10

0.25 0.5 1 2 4 8 16

%
 a

w
ay

 fr
om

 O
P

T

CPU seconds

GeoStnr
BI1S
IRV

Fig. 11. Convergence to the �nal solution on instance 16BSHREG.RESET.

0

2

4

6

8

10

12

14

0.25 0.5 1 2 4 8 16 32 64

%
 a

w
ay

 fr
om

 O
P

T

CPU seconds

GeoStnr
BI1S
IRV

Fig. 12. Convergence to the �nal solution on a random 406{terminal instance.

20
TABLE II

Running time on VLSI instances.

Design.Net No. term. No. Stnr. BI1S IRV GeoStnr

16BSHREG.CLK 185 1375 1.31 0.25 2.80

16BSHREG.RESET 406 4730 10.07 1.65 4.37

16BSHREG.VDD 573 5089 30.29 2.94 1.73

16BSHREG.VSS 556 6058 36.71 3.29 7.90

MAR.BRANCH 188 2034 1.26 0.62 5.21

MAR.CLK 264 3355 2.34 1.57 13.16

MAR.GND 245 3264 1.96 1.26 1.03

MAR.RESET 109 1021 0.24 0.16 0.65

MAR.VDD 340 3681 7.69 1.59 8.19

the largest immediate gain. By contrast, due to the di�erent nature of its selection rules, IRV

may select some points with very large gain only late in the process. IRV di�ers from BI1S

not only with respect to the order in which Steiner points are selected, the two algorithms

end up making di�erent selections as well. For example, although the two algorithms obtain

solutions of the same cost on 16BSHREG.RESET, the two solutions are not identical. Out

of 68 Steiner points selected by IRV and 67 selected by BI1S, only 51 are shared|42 of which

are also selected by GeoSteiner.

The phase structure of IRV and BI1S is also clearly visible in Figures 11 and 12. Both

algorithms need 3 phases on 16BSHREG.RESET, and 5 on the random instance. The

�rst phase adds most Steiner vertices to the solution, also giving the bulk of the overall

improvement in solution quality. The following phases add fewer and fewer points, with the

last phase merely verifying that a local optimum has been reached.

Although Steiner point selection is slower in IRV than in BI1S (compare the slopes), IRV

appears to have a smaller phase{setup cost compared to BI1S. Indeed, IRV's phase initial-

ization consists of sorting the edges in the quasi-bipartite graph, while BI1S needs to start a

phase by computing the gain corresponding to each Steiner point|this is done by an MST

computation for each Steiner point. Surprisingly, Robins' MST algorithm seems to work

better on random sets of points: the phase{setup time in Figure 12 is less than a third of the

phase-setup time in Figure 11, despite the fact that the random instance has more Steiner

21points (7366 versus 4730 in 16BSHREG.RESET). This explains why BI1S is faster than IRV

on random instances but not on VLSI instances.

E. Running time predictability

Figure 13 gives histograms for the running times of GeoSteiner, BI1S, and IRV on 1000

instances of size 250. Most striking is the heavy{tailed distribution for the running time

of GeoSteiner. The running time of BI1S has a multi-spike distribution, determined by the

number of phases|typically between 2 and 4. The running time of the IRV algorithm

depends in a much smoother way on the number of phases (again between 2 and 4, most of

the time) due to its reduced phase{setup cost.

V. Conclusions

The experimental data presented in Section IV shows that IRV produces high-quality

rectilinear Steiner trees, typically better than those produced by the Batched Iterated 1-

Steiner heuristic. The same data shows that BI1S is signi�cantly sped up by the addition of

the empty rectangle test. With this enhancement, BI1S runs 30% faster than IRV on random

instances, but not on large VLSI instances as those considered in our experiments. It should

be interesting to perform extensive tests on full VLSI designs to see how the running times

of the two heuristics compare when applied to a mix of both small and large nets.

Our experimental data also con�rms the excellent running time of the exact GeoSteiner

algorithm of Warme, Winter, and Zachariasen [28]. When exact algorithms achieve practical

running times, one is immediately prompted to ask if any interest remains in sub-optimal

heuristics. We think that this interest will not disappear, at least not in those RST applica-

tions where speed is more important than solution accuracy, e.g., in wirelength estimation

during placement.

Besides speed, a subtler, but nonetheless important, advantage for heuristics such as BI1S

and IRV is their more predictable and worst-case bounded running time. Moreover, BI1S and

IRV hold more promise than the GeoSteiner algorithm for giving e�cient solutions to objective

functions other than length minimization. Since both BI1S and IRV are essentially solving

the Steiner tree problem in graphs, they can be adapted without much loss in e�ciency to

almost any cost function|IRV does rely on costs satisfying triangle inequality. In contrast,

the e�ciency of a critical phase in the GeoSteiner algorithm, the Full Steiner Tree (FST)

22

0

20

40

60

80

100

1 2 4 8 16 32 64 128 256 512

F
re

qu
en

cy

GeoStnr CPU time (sec)

0

20

40

60

80

100

1 1.5 2 2.5 3 3.5 4

F
re

qu
en

cy

BI1S CPU time (sec)

0

20

40

60

80

100

1 1.5 2 2.5 3 3.5 4

F
re

qu
en

cy

IRV CPU time (sec)

Fig. 13. Histograms of running times on 1000 instances of size 250. Note the logarithmic scale along

GeoSteiner's time axis.

23generation phase, heavily depends on structural properties speci�c to the underlying metric

space. Even when well-understood, these structural properties may not lead to the same

e�ciency as in the rectilinear case. For example, FST generation is more than 100 times

slower on Euclidean instances than it is on rectilinear ones, and becomes in this case the

bottleneck of the whole algorithm [28].

VI. Acknowledgments

The authors wish to thank Sridhar Rajagopalan for his involvement with an earlier version

of this work, Alex Zelikovsky for many enlightening discussions, and one of the anonymous

referees for many constructive comments that helped improving the presentation.

References

[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for the generalized Steiner

problem on networks, SIAM J. on Computing, 24 (1995), pp. 440{456.

[2] P. Berman and V. Ramaiyer. Improved approximations for the Steiner tree problem, J. of Algorithms, 17 (1994),

pp. 381{408.

[3] M. Borah, R.M. Owens, and M.J. Irwin. An edge-based heuristic for Steiner routing, IEEE Trans. on CAD 13

(1994), pp. 1563{1568.

[4] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms, MIT Press, Cambridge, MA, 1990.

[5] U. F�ossmeier and M. Kaufmann. Solving rectilinear Steiner tree problems exactly in theory and practice, Proc.

5th European Symp. on Algorithms (1997), Springer-Verlag LNCS 1284, pp. 171{185.

[6] U. F�ossmeier, M. Kaufmann, and A. Zelikovsky. Faster approximation algorithms for the rectilinear Steiner tree

problem, Discrete and Computational Geometry 18 (1997), pp. 93{109.

[7] J.L. Ganley. Computing optimal rectilinear Steiner trees: A survey and experimental evaluation, Discrete Applied

Mathematics, 89 (1998), pp. 161{171.

[8] J.L. Ganley and J.P. Cohoon. Improved computation of optimal rectilinear Steiner minimal trees, Int. J. of

Computational Geometry and Applications, 7 (1997), pp. 457{472.

[9] R.-H, G�uting, O. Nurmi, and T. Ottmann. Fast algorithms for direct enclosures and direct dominances, J. of

Algorithms, 10 (1989), pp. 170{186.

[10] M.R. Garey and D.S. Johnson. The rectilinear Steiner tree problem is NP-complete, SIAM J. Appl. Math., 32

(1977), pp. 826{834.

[11] M.X. Goemans and D.P. Williamson. A general approximation technique for constrained forest problems, SIAM

J. on Computing, 24 (1995), pp. 296{317.

[12] J. Gri�th, G. Robins, J.S. Salowe, and T. Zhang. Closing the gap: near-optimal Steiner trees in polynomial

time, IEEE Trans. on CAD, 13 (1994), pp. 1351{1365.

[13] M. Hanan. On Steiner's problem with rectilinear distance, SIAM J. Appl. Math., 14 (1966), pp. 255{265.

[14] J.-M. Ho, G. Vijayan, and C.K. Wong. New algorithms for the rectilinear Steiner tree problem, IEEE Trans. on

CAD, 9 (1990), pp. 185{193.

[15] M. Hollander and D.A. Wolfe. Nonparametric Statistical Methods, 2nd Edition, John Wiley & Sons, 1999.

24
[16] F.K. Hwang. An O(n log n) algorithm for suboptimal rectilinear Steiner trees, IEEE Trans. on Circuits and

Systems, 26 (1979), pp. 75{77.

[17] F.K. Hwang, D.S. Richards, and P. Winter. The Steiner tree problem, Ann. of Discrete Math. 53, North-Holland,

Amsterdam, 1992.

[18] A.B. Kahng and G. Robins. A new class of iterative Steiner tree heuristics with good performance, IEEE Trans.

on CAD, 11 (1992), pp. 1462{1465.

[19] F.D. Lewis, W.C.-C. Pong, and N. Van Cleave. Local improvement in Steiner trees, Proc. of the 3rd Great Lakes

Symp. on VLSI (1993), pp. 105{106.

[20] H. J. Pr�omel and A. Steger. RNC-approximation algorithms for the Steiner problem, in R. Reischuk and M. Mor-

van, editors, Proc. of the 14th Symp. on Theoretical Aspects of Computer Science (1997), volume 1200 of Lecture

Notes in Computer Science, pages 559{570.

[21] S. Rajagopalan and V.V. Vazirani. On the bidirected cut relaxation for the metric Steiner tree problem, 10th

ACM-SIAM Symp. on Discrete Algorithms, 1999, pp. 742{751.

[22] G. Robins. Steiner code available at

www.cs.virginia.edu/~robins/steiner.tar.

[23] G. Robins and J.S. Salowe. Low-degree minimum spanning trees, Discrete and Computational Geometry 14

(1995), pp. 151{165.

[24] G. Robins and A. Zelikovsky. Improved Steiner Tree Approximation in Graphs, to appear in Proc. of ACM/SIAM

Symposium on Discrete Algorithms (SODA'2000).

[25] J.S. Salowe and M.D. Warme. Thirty-�ve-point rectilinear Steiner minimal trees in a day, Networks 25 (1995),

pp. 69{87.

[26] V.V. Vazirani. Approximation Algorithms. Book in preparation available at

www.cc.gatech.edu/fac/Vijay.Vazirani/book.ps.

[27] D.M. Warme. E-mail communication, September 1999.

[28] D.M. Warme, P. Winter, and M. Zacharisen. Exact Algorithms for Plane Steiner Tree Problems: A Computa-

tional Study, Technical Report DIKU-TR-98/11, Dept. of Computer Science, University of Copenhagen, 1998.

[29] D.M. Warme, P. Winter, and M. Zacharisen. GeoSteiner 3.0 package, available at

ftp.diku.dk/diku/users/martinz/geosteiner-3.0.tar.gz.

[30] Y.F. Wu, P. Widmayer, and C.K. Wong. A faster approximation algorithm for the Steiner problem in graphs,

Algorithmica 23 (1986), pp. 223{229.

[31] M. Zachariasen. Rectilinear Full Steiner Tree Generation, Networks 33 (1999), pp. 125{143.

[32] A. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem, Algorithmica, 9 (1993), pp

463{470.

