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Abstract

We give a tight analysis of the MST heuristic recently introduced by G.-H. Lin

and G. Xue for approximating the Steiner tree with minimum number of Steiner

points and bounded edge-lengths. The approximation factor of the heuristic is shown

to be one less than the MST number of the underlying space, de�ned as the max-

imum possible degree of a minimum-degree MST spanning points from the space.

In particular, on instances drawn from the rectilinear (resp. Euclidean) plane, the

MST heuristic is shown to have tight approximation factors of 3, respectively 4.

Keywords: Approximation algorithms, Steiner trees, MST heuristic, VLSI CAD,

�xed wireless network design.

1 Introduction

The classical Steiner tree problem is that of �nding a shortest tree spanning
a given set of terminal points. The tree may use additional points besides

the terminals, these points are commonly referred to as Steiner points. In the
Minimum number of Steiner Points Tree (MSPT) problem one also seeks a

tree spanning all terminals, but there is an upper-bound on the length of tree
edges, and the objective is to minimize the number of Steiner points.

The MSPT problem was �rst introduced by Sarrafzadeh and Wong [8], moti-

vated by applications to VLSI CAD and network design. In these applications
terminals are typically points in the plane, and the underlying metric is either

L1, as in bu�er insertion for clock delay and skew minimization, or L2, as in the

design of �xed wireless networks. The MSPT problem is NP-hard even under
these restrictions [8]. While for arbitrary metric spaces the ln k-approximation

algorithm of Guha and Kuller [4] is best possible unless NP � TIME(nlog logn)
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(cf. combined results of [5] and [3]), optimal approximation results are not yet

known for the rectilinear and Euclidean planes.

Recently, Lin and Xue [6] considered the following MST heuristic for the

MSPT problem: Compute an MST on terminals, then subdivide each edge

(u; v) of the MST via dd(u; v)=Re � 1 equally spaced Steiner points, where

d(u; v) stands for the distance between u and v, and R > 0 is the prescribed

edge-length upper-bound. Lin and Xue proved that the MST heuristic has an

approximation factor not worse than 5 in the Euclidean plane, leaving open

the problem of �nding the exact approximation factor.

We give a tight analysis of the MST heuristic for any Lp metric space, showing

that its approximation factor is exactly one less than theMST number, de�ned

as the maximum possible degree of a minimum-degree MST spanning points

from the space. Since the MST numbers for the rectilinear and Euclidean

planes are 4 and 5 [7], our analysis implies that for these two metric spaces
the MST heuristic has tight approximation factors of 3 and 4, respectively.

The factor of 4 for the Euclidean plane has been obtained independently by
the authors of [2]. The analysis in [2] relies heavily on properties speci�c to
the Euclidean plane and does not seem to extend to other metric spaces. In
contrast, our analysis comes closer to the simplicity of the original argument

of Lin and Xue [6], using only triangle inequality and the fact that every set
of points from the space has an MST with maximum degree no larger than
the MST number.

2 Analysis of the MST heuristic

Let (X; d) be a metric space, and let � (P ) denote the set of all d-weighted
MSTs spanning P � X. Following Robins and Salowe [7], the MST number

of X, D(X), is de�ned by

D(X) = sup
P

min
T2�(P )

max
v2P

degT (v); (1)

where the supremum in (1) is taken over all �nite subsets P of X. Note that,

if D(X) is �nite, then every set of points in X admits an MST with maximum

degree at most D(X).

Theorem 1 The MST heuristic has an approximation factor of D�1 in every

metric space whose MST number is D <1.

Proof. Let P be a set of terminal points, and let Topt be an MSPT for P .

Let s1; : : : ; sk be the Steiner points spanned by Topt, numbered in the order in
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which a breadth-�rst traversal (started from an arbitrarily terminal t0 2 P )

encounters them. Since all edges of Topt have length at most R, it follows that,

for every 1 � i � k, si is within a distance of R of at least one point from

P [ fs1; : : : ; si�1g.

For a tree T , let beads(T ) =
P

(u;v)2E(T )(dd(u; v)=Re � 1) denote the number

of subdivision points, or beads, that need to be added on T 's edges in order to

satisfy the edge-length condition. It is easy to see that any MST has minimum

number of beads among trees spanning the same set of points; we will use this

fact below.

For 1 � i � k, let Ti be an MST on P [ fs1; : : : ; sig with maximum degree at

most D. We claim that, for every 1 � i � k,

beads(Ti�1) � beads(Ti) + (D � 1): (2)

Let v0; v1; : : : ; vp be the p + 1 � D nodes adjacent to si in Ti, one of which,
say v0, must be a closest neighbor of si in P [ fs1; : : : ; si�1g. Let T

0

i be the
tree obtained from Ti by removing si and connnecting to v0 the nodes vi; i =
1; : : : ; p.
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Note that d(si; v0) � R, since the BFS numbering ensures that si is within a
distance of R of at least one point from P [ fs1; : : : ; si�1g and v0 is the point

from this set closest to si. By triangle inequality, any edge (vj; v0) needs at

most one more bead than the edge (vj; si). Hence,

beads(T 0

i) � beads(Ti) + p � beads(Ti) + (D � 1):

Inequality (2) follows by noting that beads(Ti�1) � beads(T 0

i), since Ti�1 is an

MST spanning the same set of points as T 0

i .

Adding inequalities (2) for 0 � i � k and using the fact that beads(Tk) = 0

gives beads(T0) � k � (D � 1). Thus, the MST on P uses at most D � 1 times

more Steiner points than Topt. 2
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Theorem 2 The approximation guarantee given in Theorem 1 is tight for any

�xed-dimensional Lp metric space.

Proof. Robins and Salowe [7] show that in Lp metric spaces the MST number

is �nite, being equal to the maximum number of points that can be placed on

the surface of a unit ball such that each pair of points is strictly more than

one unit apart. When the MST heuristic is run with R = 1 on a set of D

points realizing the above con�guration, the result is a tree with D�1 Steiner

points, all of degree 2. On the other hand, the MSPT uses only one Steiner

point, of degree D, namely the center of the ball. 2

Since the MST number is 4 (resp. 5) for the rectilinear (resp. Euclidean) planes

[7], Theorems 1 and 2 give:

Corollary 3 The MST heuristic has a tight approximation factor of 3 in the

rectilinear plane, and of 4 in the Euclidean plane.

3 Conclusion and open problems

The obvious open problem is to �nd approximation algorithms that achieve
better factors than the MST heuristic in the rectilinear and Euclidean planes.
We believe this could be done by an adaptation of the techniques in [9,1],

based on restricted Steiner trees. 1
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