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Abstract. High-throughput sequencing makes possible to process samples con-
taining multiple genomic sequences and then estimate their frequencies or even
assemble them. The maximum likelihood estimation of frequencies of the se-
quences based on observed reads can be efficiently performed using expectation-
maximization (EM) method assuming that we know sequences present in the
sample. Frequently, such knowledge is incomplete, e.g., in RNA-seq not all iso-
forms are known and when sequencing viral quasispecies their sequences are
unknown. We propose to enhance EM with a virtual string and incorporate it
into frequency estimation tools for RNA-Seq and quasispecies sequencing. Our
simulations show that EM enhanced with the virtual string estimates string fre-
quencies more accurately than the original methods and that it can find the reads
from missing quasispecies thus enabling their reconstruction.
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1 Introduction

With the advent of high-throughput sequencing (HTS) technologies, it becomes pos-
sible to sequence samples containing multiple genomic sequences and then attempt to
estimate their frequencies or even assemble them. In this paper we will consider two
such HTS applications:

(1) RNA-seq, when the transcriptome (library of isoforms) is known but may be in-
complete and expression of isoforms (or genes) is estimated by their frequencies in
the sample and

(ii) viral quasispecies sequencing, when the reference sequence of the viral strain is
known but the task is to find sequences of distinct quasispecies which are slightly
different from the reference as well as to estimate their frequencies in the sample.

The maximum likelihood estimation of frequencies of the sequences (further re-
ferred as strings) can be efficiently performed using expectation-maximization (EM)



method for the viral quasispecies application(see [4, 10, 1]) and for RNA-seq !(see [7,
8]). In brief, the input to EM consists of a panel, i.e., a bipartite graph in which one
part correspond to the strings and another correspond to the reads. An edge connecting
a read with a string expresses the possibility of the read to be emitted by the string with
the probability associated with the edge. Given a panel and frequencies of the reads,
EM can find maximum likelihood estimate of string frequencies.

Although in the both applications a certain knowledge about the sequences in the
sample is available, such knowledge (recorded in the panel) is frequently incomplete.
In case of RNA-seq, not all isoforms are already in the databases and in case of viruses,
initially, no quasispecies sequences are known. In this paper, we propose a new method
of enhancing EM that tries to estimate the incompleteness of the panel obtaining more
accurate estimates of string frequencies and identifying reads that are more probable to
be emitted by missed strings.

The method adds a virtual string to the panel and then iteratively changes the panel
by assigning reads to the virtual string. The proposed enhanced method, so called Vir-
tual String EM (VSEM), has been incorporated into IsoEM [8] and ViSpA [1]. Our
simulations show that the VSEM-enhanced methods (IsoVSEM and ViSpA-VSEM)
estimate string frequency more accurately than the original methods and that ViSpA-
VSEM can find the reads from missing quasispecies thus enabling their reconstruction.

The rest of the paper is organized as follows. The next section describes VSEM.
In Section 3 we describe the IsoVSEM and results of its experimental validation on
transcriptome libraries. Section 4 describes the combination ViSpA-VSEM of ViSpA
and VSEM. In Section 5, we analyze experimental results comparing ViSpA, ViSpA-
VSEM and ShorAH [10] on the simulated reads with and without sequencing errors.

2 Virtual String Expectation Maximization

In this section we first formally define the panel and briefly describe EM method. Then
we show how to estimate the quality of the model. Finally we describe the VSEM
method enhancing EM with the virtual string.

The input data for EM method consists of a panel, i.e., a bipartite graph G =
{SJ R, E} such that each string is represented as a vertex s € S, and each read is rep-
resented as a vertex € R. With each vertex s € .S, we associate unknown frequency
fs of the string. And with each vertex r € R, we associate observed read frequency o,..
Then for each pair s;,7;, we add an edge (s;, r;) weighted by probability of string s;
to emit read r; with m genotyping errors:

l l—m
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where [ is length of read sequence, and € is the genotyping error rate.

Regardless of initial conditions EM algorithm always converge to maximum like-
lihood solution (see [3]).The algorithm starts with the set of IV strings. After uniform
initialization of frequencies f,, s € S, the algorithm repeatedly performs the next two
steps until convergence:

! Note that frequency estimation based on previous approaches is less accurate (see e.g. [9]).



— E-step: Compute the expected number n(j) of reads that come from string ¢ under
the assumption that string frequencies f(j) are correct, based on weights A, ;

— M-step: For each i, set the new value of f; to to the portion of reads being originated
by string s among all observed reads in the sample

In order to decide if the panel is incomplete we need to measure how well maximum
likelihood model explains the reads. We suggest to measure the model quality by the
deviation between expected and observed read frequencies as follows:
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where | R| is number of reads, o; is the observed read frequency of the read ; and e; is
the expected read frequencies of the read r; calculated as follows:
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where h;, ; is weighted match based on mapping of read r; to string s; and fJM L'is the
maximum-likelihood frequency of the string s;.
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Fig. 1. Flowchart for VSEM.

The main idea of the VSEM algorithm (see Algorithm 1) is to add to set of candi-
date strings a virtual string which emits reads that do not fit well to existing sequences.
The flowchart of VSEM is on Fig. 1. Initially, all reads are connected to the virtual
string with weight h,, ; = 0. The first iteration finds the ML frequency estimations
of candidates strings, ML frequency estimations of virtual string will be equal to 0,



Algorithm 1 VSEM algorithm

add virtual string vs to the set of candidate strings
initialize weights hys ; = 0
while Avs > e do

calculate fJM L by EM algorithm

s |los—es

D= 5 ‘\él 11
(5 =05 — €5
if § > 0 then

hvs,j+ =9
else

hus,j = maX{O, hus,j —+ (5}
end if

end while

since all edges between virtual string and reads h,s ; = 0. Then these estimation are
used to compute expected frequency of the reads according to (1). If the expected read
frequency is less than the observed one (under-estimated), then the lack of the read
expression is added to the weight of the read connection to the virtual string. For over-
estimated reads, the excess of read expression is subtracted from the corresponding
weight (but keeping it non-negative). The iterations are continued while the virtual
string frequency is decreasing by more than e.

Enhancing of ViSpA. Resulted edge weight between virtual string and each read can
be interpreted as the probability of the read to be emitted by missing strings. VSEM
transmits to ViSpA assembler the rounded read weights and during assembling of addi-
tional candidate quasispecies the preference is given to reads which are likely emitted
by missing strings.

Enhancing of IsoEM. The IsoEM incorporates the virtual string and the resulting iso-
form frequency estimations are improved. Based on the frequency of virtual string it is
possible to decide if the panel is likely to be incomplete, the total frequency of missing
strings is estimated by frequency of virtual string.

3 Experimental Validation of IsoVSEM on RNA-seq data

IsoEM is a novel expectation-maximization algorithm for inference of alternative splic-
ing isoform frequencies from high-throughput transcriptome sequencing (RNA-Seq)
data proposed in [8]. IsoEM takes advantage of base quality scores, strand information
and exploits disambiguation information provided by the distribution of insert sizes
generated during sequencing library preparation. In the bipartite graph consisting of
isoforms and reads an edge from an isoform to a read represents possibility that a read
is emitted by the isoform. It is noted [8] that EM can run in parallel for each connected
component of this bipartite graph. We enhance IsoEM algorithm by adding virtual string
to each connected component. The resulted algorithm IsoVSEM in the nested loop ap-
plies IsoEM instead of EM (see Algorithm 1). Since isoforms have different length we



estimate missing isoforms by volume defined as frequency of isoform multiplied by its
length.

Our validation of IsoVSEM includes two experiments over human RNA-seq data.
Below we describe the transcriptome data and read simulation and then give the settings
for the each experiment and analyze the obtained experimental results.

Data sets. [soVSEM was tested on human RNA-Seq data. The human genome data(hg18,
NCBI build 36) was downloaded from UCSC and CCDS together with the coordinates
of the isoforms in the KnownGenes table. The UCSC database contains 66803 isoforms
from 19372 genes, and CCDS database contains 20829 isoforms from 17373 genes.
Genes were defined as clusters of known isoforms defined by the GNFAtlas2 table such
that CCDS data set can be identified with the subset of UCSC data set.

30M single error-free reads of length 25 were randomly generated by sampling
fragments of isoforms from UCSC data set. Each isoform was assigned a true frequency
based on the abundance reported for the corresponding gene in the first human tissue
of the GNFAtlas?2 table, and a probability distribution over the isoforms inside a gene
cluster [8]. We simulate datasets with geometric (p=0.5) distributions for the isoforms
in each gene.

Expressionrange 0 (0,107 °] (107°%,10"°] (10°,10 7] (10~%,10~7] (10~7,10" 7] All

Full panel 0.0 61.7 220 8.0 32 2.1 10.3

MPE  Incomplete 0.0 59.3 41.3 24.8 19.7 59 33.7
Incomplete + VS 0.0  47.2 33.1 20.7 16.4 8.5 26.9

EF 15 Full panel 0.0 819 61.3 28.7 7.5 8.5 38.8
Incomplete 0.0 81.7 72.4 61.4 56.7 42.1 67.6
Incomplete+VS 0.0 77.2 68.2 57.6 53.0 36.8 63.6

Table 1. Median percent error (MPE) and 15% error fraction (EF ;5) for isoform expression
levels in Experiment 1.

Experiment 1: Comparison between IsoEm and IsoVSEM on reduced transcrip-
tome data. We assumed that in every gene 25% of isoforms is missing. In order to create
such an instance we assign to isoforms inside the gene geometric distribution(p=0.5),
assuming a priori that number of isoforms inside the gene is less or equal to 3. This way
we removed isoform with frequency 0.25. As a result 11339 genes were filtered out,
number of isoforms was reduced to 24099. Note that in our data set missing isoforms
do not have unique exon junctions that can emit reads indicating that certain isoforms
are missing.

We first check how well IsoVSEM can estimate the volume of missing strings. Al-
though the frequencies of all missing strings (isoforms) is the same (25%), the volumes
significantly differ because they have different length. Therefore, the quality can be
measured by correlation between actual missing volumes and predicted missing vol-
umes which are volumes of virtual strings. In this experiment it is 61% which is suffi-
ciently high to give an idea which genes are missing isoforms in the database.
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Fig. 2. Error fraction at different thresholds for isoform expression levels inferred from 30M reads
of length 25 simulated assuming geometric isoform expression. Blue line correspond to IsoEM
with the full panel, read line is IsoEM with the incomplete panel, and green line is IsoVSEM.

Table 1 reports the median percent error (MPE) and .15 error fraction EF ;5 for
isoform expression levels inferred from 30M reads of length 25, computed over groups
of isoforms with various expression levels. MPE is the median relative error of isoform
frequency estimation and the error fraction with threshold t, denoted EF;, is defined as
the percentage of isoforms with relative error greater or equal to t.

Figure 2 gives the error fraction at different thresholds ranging between 0 and 1.
Clearly the best performance is achieved when the the isoform library is full, using vir-
tual string explains accuracy gain of IsoVSEM over IsoEM. IsoVSEM achieves better
accuracy in the case when the panel is incomplete. Performance of IsoEm and [soVSEM
for the full panel is the same.

Expression range 0 (0,107°] (107°,107°] (10~>,10" 7] (10,10 7] (103,10~ 7] All
Full panel 0.0 100 227 7.3 3.5 2.5 11.8

MPE  Incomplete 0.0 100 45.5 29.4 28.5 28.7 31.8
Incomplete + VS 0.0 100 432 27.09 25.68 1434 29.61
EF .5 Fullpanel 5.1 912 62.8 29.3 15.8 7.6 455
Incomplete  18.6  95.6 85.6 83.3 89.2 86.7 80.0
Incomplete+VS 17.6 91.8 81.3 77.9 80.3 75.5 752

Table 2. Median percent error (MPE) and 15% error fraction (EF ;15) for isoform expression
levels in Experiment 2.



Experiment 2: Comparison between IsoEm and IsoVSEM on the CCDS panel. In
this experiment UCSC database represents the full set of isoforms and CCDS represents
the incomplete panel. Reads were generated from UCSC library of isoforms, while only
frequencies of known isoforms from CCDS database were estimated. In contrast to
Experiment 1, we do not control the frequency of missing isoforms (i.e., isoforms from
UCSC which are absent in CCDS). Therefore, one cannot expect as good improvements
as in Experiment 1.

Table 2 reports the median percent error (MPE) and .15 error fraction EF ;5 for
isoform expression levels inferred from 30M reads of length 25, computed over groups
of isoforms with various expression levels. We do not report the number of isoforms
since they are different for UCSC and CCDS panels. Anyway, one can see a reasonable
improvement in frequency estimation of IsoVSEM over IsoEM.

4 VSEM Enhancement of ViSpA

In this section we first give high-level description of ViSpA [1], a recent viral spectrum
assembling tool for inferring viral quasispecies sequences and their frequencies from
pyrosequencing shotgun reads. Then we describe the flowchart of the combining tool
ViSpA-VSEM and required modifications to ViSpA.

ViSpA: Viral Spectrum Assembly. First, ViSpA aligns the reads to the consensus
genome sequence using SEGEMEHL [6] software correcting obvious sequencing er-
rors and removes subreads (reads that are completely covered by larger reads). Then it
builds a read graph with vertices representing remaining reads (superreads) and edges
representing overlaps between them. In this graph, each path from the leftmost vertex
to the rightmost vertex corresponds to a possible candidate quasispecies sequence. For
each edge e, ViSpA computes probability p(e) to connect two reads from the same
quasispecies. Then ViSpA assigns cost —log(p(e)) = log(1/p(e)) to each edge e,
making the minimum-cost paths more probable to represent quasispecies sequences.
Next, a set of candidate paths consisting of the max-bandwidth paths (paths minimizing
maximum edge cost) through each vertex is created and refined so that only distinct
sequences remain. The maximum-likelihood estimates of frequencies are calculated by
EM algorithm which takes in account all reads in the sample. Finally, ViSpA reports
most frequent candidate sequences and their frequencies as inferred viral quasispecies
spectrum.

Combining ViSpA with VSEM. Knowing which reads in a sample are likely to be pro-
duced from missing (unknown) quasispecies sequences may allow to expand ViSpA’s
candidate set. Additionally, we can improve ViSpA’s estimates for quasispecies fre-
quencies by taking in account incompleteness of the panel.

Figure 3 illustrates the proposed workflow between (modified) ViSpA and VSEM.
At each iteration, ViSpA gets a set of aligned reads and their 0/1-weights estimat-
ing probability to be emitted by unknown strings (candidates). Initially, all reads have
weight zero and ViSpA works as described above except the maximum likelihood es-
timates for candidate quasispecies sequences (strings) are calculated by VSEM. On all
other iterations, VSEM panel includes not only newly assembled sequences but also
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Fig. 3. Flowchart of ViSpA-VSEM

candidate sequences stored from the previous iterations. All sequences with negligible
EM frequency are filtered out from the cumulative set of sequences, called quasispecies
library. Once frequencies distribution is obtained, VSEM assigns 0/1-weight for each
read: O corresponds to high probability to be emitted by a missing sequences and 1,
otherwise. Finally, if the virtual string has high EM frequency and we expand our qua-
sispecies library with respect to previous iteration, we feed reads and their weights back
to ViSpA, and all process is repeated. At the end, we report sequences from quasispecies
library and their frequencies as reconstructed viral quasispecies spectrum.

The modifications of ViSpA in ViSpA-VSEM include (1) superread selection (a
weight-1 superread is removed if it shares a subread with a 0-weight superread), (2)
edge cost computation which takes in account vertex weights:

cost'(e) = cost(e) + 0.5 - L - (w(u) + w(v)),
where cost(e) is the original cost of e, L is the read length, and w(u), w(v) are the 0/1

weights assigned by VSEM to read v.

5 Experimental Validation of ViSpA-VSEM on Simulated Data

Data Sets. We simulate reads from 1739-bp long fragment from the EI1E2 region of
44 HCV sequences [5]. Each population was created by randomly selecting either 10
or 40 sequences among these HCV variants and assigning frequencies following either



(1) uniform (all sequences have the same frequency), or (2) skewed uniform (a single
sequence has high frequency; all other sequences have uniformly low frequency), or (3)
geometric (the i'" sequence is a constant percentage more frequent that the (i + 1)
sequence) distributions.

First, we simulate error-free reads without indels with respect to the reference se-
quence. The length of a read follows normal distribution with variance 400, and starting
position follows the uniform distribution. This simplified model of reads generation has
two parameters: number of the reads that varies from 20K up to 100K and the averaged
read length that varies from 100bp up to 500bp.

Then we simulate 454 pyrosequencing reads from the 10 random quasispecies (un-
der geometric distribution) out of 44 HCV sequences [5] using FlowSim [2]. The gen-
erated dataset contains 39,131 reads with length varying from 50bp up to 550bp and
average length equaled to 322bp. Each position (except the end) is covered by at least
4000 reads. 99.96% of aligned reads has at least one indel with respect to the reference:
99.97% of deletions and 99.6% of insertions are 1bp long. Only 1.1% of aligned reads
have unknown base(s).

Frequency estimation quality. We evaluate predicted frequencies by the following
statistics.

— Kullback-Leibler divergence

RE = Zpi log &,
iel v

where P = {p;} and @) = {g;} are true distribution and its approximation, and
I = {i|p; > 0, g; > 0} are real sequences among assembled candidate sequences,
— correlation between real and predicted frequencies,
— average prediction error:
T = EiEI Ipi — ail
]
Detection of panel incompleteness. We have checked how well VSEM can detect
incompleteness of the panel in the following experiment. We have repeatedly (for dif-
ferent simulated frequency distribution for 10 quasispecies strings) deleted from the
full panel each string (one at a time) and record the resulted frequency of the virtual
string. If no string has been deleted, then virtual string has always stopped growing at
frequency less than 105, and if the frequency of the deleted string has been at least
1%, then the resulted virtual string frequency has grown to at least .5%. Thus VSEM
can reliably detect incomplete panel if missing strings have total frequency at least 1%.

Improving quasispecies frequencies estimation using VSEM. Fig. 3 show our ex-
perimental results on simulated error-free reads generated from 40 quasispecies. The
correlation is slightly improved for cases when the portion of missing strings is small
and increases to as much as 15% when bigger portion of strings is missing.

The results on reads generated by Flowsim [2] and corrected by ShorAH are very
similar to the results on error free reads.



% of missing strings
rl/nr < 10% 10%-20% 20%-30% 30%-40% 40%-50% > 50%
r o err [r err |[r err |r err |r  err [r err
ViSpA 100/20K  {|90.2 4.5 |91.0 6.8 |75.4 5.1 |68.6 1.6 |40.8 2.3 |39.8 104
ViSpA-VSEM |[100/20K  ||91.6 2.3 |92.8 44 |76.5 4.1 |70.5 1.4 |54.2 2.0 |50.8 7.4
ViSpA 300/20K  ||95.7 3.8 |93.2 10.2|89.8 1.0 |66.7 1.5 |62.1 2.1 |46.8 9.7
ViSpA-VSEM [[300/20K  |[95.4 1.7 |95.8 1.1 [96.9 0.6 |85.7 0.9 |88.0 0.9 |60.4 2.6
ViSpA 100/100K {|95.2 4.5 939 9.1 |84.8 1.4 |74.2 1.8 |74.5 2.3 |73.4 99
ViSpA-VSEM |/100/100K |97.8 2.6 |95.6 3.0 |86.3 1.3 |79.8 1.7 |79.0 2.1 |74.2 8.8
ViSpA 300/100K {|96.2 3.9 |88.6 12.4|88.9 1.0 |85.1 1.4 |75.1 2.3 |49.5 10.5
ViSpA-VSEM ||300/100K {|96.2 2.0 {92.8 0.9 [93.7 0.7 [90.2 1.2 |84.4 1.7 |67.1 4.8

Table 3. Correlation (r) and average prediction error (err) between real quasispecies frequencies
and estimated quasispecies frequencies for EM vs VSEM. r.l/n.r denote the read length / number
of reads.

Detection of reads emitted by missing strings. The output of VSEM besides estimated
frequency of the virtual string also contain the weights of edges connecting reads to the
virtual string. These weights can be interpreted as probabilities of reads to be emitted
by the missing strings. In our experiments we have repeatedly measure the correlation
between the edge weights and the spectrum of reads emitted by missing strings which
has always exceeded 65%.

ViSpA versus ViSpA-VSEM. We compare quality of assembling and frequency esti-
mation for both methods. Quality of assembling is measured by sensitivity (portion of
the assembled real sequences among all real quasispecies) and its positive predictive
value (portion of the real sequences among all assembled) in cross-validation tests.

Error-free reads. Previously [1], we demonstrate that ViSpA outperforms SHORAH
in assembling haplotypes on error-free reads. ViSpA-VSEM can further improve pre-
dictive power and frequency estimation of ViSpA (see Table 4). On average, it infers
additional two (in case of geometric distribution) to four sequences (in case of uni-
form and skewed uniform distributions). Taking into account unknown quasispecies
sequences allows ViSpA-VSEM to estimate frequencies more accurately (average er-
ror is decreased 2.5 times for geometric distribution and more than 5 times for skewed
uniform and uniform distributions). Since relative entropy and correlation coefficient
r are measured only on the correctly inferred quasispecies sequences and are not ad-
justed with respect to the number of all quasispecies sequences in a sample, increasing
relative entropy and decreasing of correlation coefficient r are not correlated with loss
of predictive power. For example, predictive power is improved by obtaining additional
real quasispecies in the case of geometric distribution whereas correlation coefficient
becomes smaller.

Reads with simulated genotyping errors. It has been shown that ViSpA outperforms
SHORAH if sequencing errors are initially corrected (see [1]). So in our experiments,
we compare ViSpA and ViSpA-VSEM only on ShoRAH-corrected reads (see Fig.
5). The table reports the difference between 10 most frequent assemblies obtained by
ViSpA and 10 most frequent assemblies obtained after two iterations of ViSpA-VSEM.



ViSpA ViSpA-VSEM
Distribution |PPV ~SE RE r err |[PPV  SE RE r err |Gain
Geometric  |0.767 0.5 -0.0099 0.954 7.36 |0.5905 0.73 0.0276 0.9094 291 |23
Skewed 0.733 0.4 -0.0196 0.6725 13.01|0.701 0.77 0.0085 0.9665 2.5 4
Uniform 0.733 0.4 -0.0191 0.716 12.76/0.645 0.73 0.0108 0.9762 2.34 | 3.7
Table 4. Comparison between ViSpA and ViSpA-VSEM. Experiments are run on 100K reads
from 10 quasispecies with average read length equaled to 300. The table reports PPV, sensitiv-
ity(SE), relative entropy (RE), correlation between real and predicted frequencies (r), and aver-
aged prediction error (err)(reported in %). ”Gain” column reports averaged number of addition-
ally inferred real quasispecies sequences after 4 iterations (on average) for skewed distribution,
5 iterations (on average) for geometric distribution and 13 iterations (on average) for uniform
distribution.

ViSpA-VSEM can additionally infer a real quasispecies without allowing any mis-
matches between sequences(k = 0). Again, the frequency estimation is more accurate
since ViSpA-VSEM EM takes into account missing quasispecies which is confirmed
by the drop of the average prediction error.

ViSpA ViSpA-VSEM
#mismatche§PPV SE RE r err [PPV  SE RE r err |Gain
k=0 0.5 0.5 0.0720 0.9860 9.98 [0.5455 0.6 0.0494 09741 7.54 | 1
k=2 0.6 0.6 0.0668 0.9860 9.16 |0.6364 0.7 0.0434 0.9680 6.67 | 1
k=6 0.7 0.7 0.0577 0.9856 7.95 [0.7273 0.8 0.0369 0.9463 6.20 | 1
k=7 0.8 0.8 0.0525 0.9866 7.26 [0.8182 0.9 0.0335 0.9479 5.65 | 1

Table 5. Comparison between ViSpA and ViSpA-VSEM on their 10 most frequent assemblies.
Experimental results are run on 100K reads from 10 quasispecies with average read length
equaled to 300. The quasispecies sequence is considered found if one of candidate sequences
matches it exactly (k = 0) or with at most k (2, 6 or 7) mismatches. The table reports PPV,
sensitivity(SE), relative entropy (RE), correlation between real and predicted frequencies (r),
and averaged prediction error (err)(reported in %). ”Gain” column reports averaged number of
additionally inferred real quasispecies sequences after 2 iterations.

6 Conclusions and Future Works

In this paper, we propose VSEM, a novel modification of EM algorithm which allows to
estimate the frequencies of multiple genomic sequences present in a sample sequenced
with HTS technology. VSEM is aimed to improve the maximum likelihood frequency
estimations of assembled sequences and identify reads that belong to unassembled se-
quences. We have applied VSEM to enhance two tools: IsoEM (for inferring isofrom ex-
pression from RNA-seq data) and ViSpA (for inferring viral quasispecies spectrum from
pyrosequencing shotgun reads). Our experimental study shows that VSEM-enhanced



tools significantly improve their performance: IsoVSEM has better accuracy in estima-
tion isoform frequencies and ViSpA-VSEM can infer more quasispecies sequences and
better estimate their frequencies. Our results show potential of VSEM to improve other
metagenomics tools.
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