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Abstract. This paper describes an enhanced method for analyzing microbial
metatranscriptomic (community RNA-seq) data using Expectation - Maximiza-
tion (EM)-based differentiation and quantification of predicted gene, enzyme, and
metabolic pathway activity. Here, we demonstrate the method by analyzing the
metatranscriptome of planktonic communities in surface waters from the North-
ern Louisiana Shelf (Gulf of Mexico) during contrasting light and dark condi-
tions. The analysis reveals that the level of transcripts encoding proteins of ox-
idative phosphorylation varys little between day and night. In contrast, transcripts
of pyrimidine metabolism are significantly more abundant at night, whereas those
of carbon fixation by photosynthetic organisms increase 2-fold in abundance from
night to day.

1 Introduction

RNA-seq is a standard method for comparative analysis of gene transcription across dif-
ferent conditions. It supplanted a widely used microarray approach, enabling analysis of
a much larger number of genes, including those represented in pools of transcripts from
complex multi-species communities (metatranscriptomes). RNA-seq allows researchers
to determine and compare gene transcription levels, as well as the transcriptional activ-
ity of distinct metabolic pathways. Diverse bioinformatic tools have been developed to
facilitate comparisons of RNA-seq data [1–10]. Such tools include web-based services
with automated pipelines that allow assessment of the metabolic properties represented
in RNA-seq datasets. For example, the MAP platform [11] predicts genes expressed
in samples, while also provides information about gene classification into orthology
groups (see figure 1). Unfortunately, such pipelines fail to quantify transcripts in con-
cert with the annotation step. We therefore propose an enhanced pipeline that combines
the biochemical annotation with quantification analysis. For this purposes, we propose
to use an expectation-maximization (EM) technique similar to one from IsoEM2 [12].
We tested our algorithm using metatranscriptome data from marine bacterioplankton
sampled during both the day and nighttime, and therefore likely exhibiting predictable
variation in community transcription patterns.



Sample1 

Sample2 

Transcript/ 
contig 
assembly 

Metabolic  
pathway 
inference 

Differential 
activity 

Inferring Enzymes 

IsoEM2: Gene expression 

Direct EM for pathway activity inference 

2nd  EM: Pathway activity 

EC1.1.1.1 
EC2.2.2.2 
EC3.3.3.3 

EC4.4.4.4 
EC5.5.5.5 
EC1.2.3.4 

Assembled  
contigs 

Enzymes Metabolic  
pathways 

Multiple meta- 
transcriptomic 
samples 

RNA-seq 
reads 

1st EM: Enzyme abundance  

RNA-seq 

Predicted  
genes 

Gene  
prediction 

MAP pipeline 

Fig. 1: The pipeline MAP and the enhanced pipeline for quantification and differential
analysis of the metabolic pathway activity. The quantification enhancements are drawn
in red.

2 Methods

In this section we describe the procedure of inferring metabolic pathway activity lev-
els from RNA-Seq data for naturally occurring microbial communities. We also apply
differential pathway activity level analysis similar to the non-parametric statistical ap-
proach described in [13], which was successfully applied for gene differential expres-
sion.
A general meta-omic pipeline is described on Figure 1. Several metatranscriptomic
samples are sequenced on an Illumina Hi-Seq (2x150 bp) and the resulting reads are
assembled into a set of contigs. Genes detected on the contigs are mapped against
protein databases and enzymatic functions are inferred. Finally, the representation of
metabolic pathways is inferred based on the presence/absence of enzymes within each
pathway. The above generic pipeline has been described in [11]. This paper proposes
to enhance the above pipeline with the inference of metabolic pathway activity lev-
els using repeated maximum likelihood inference and resolution by the Expectation -
Maximization (EM) algorithm. The proposed inferences are depicted in red on Figure
1.

Inference of pathway activity levels The first step is to estimate the abundances of
the assembled contigs. The abundances can be inferred by any RNA-seq quantification
tool. Here, we suggest using IsoEM2 [12], as this method is sufficiently fast to handle
Illumina Hiseq data and more accurate than kallisto [14]. The next proposed step is
to estimate the abundance of enzymes based on contig abundances. For this step we
propose so-called 1-st EM. The 2-nd EM is used to infer metabolic pathway activity
levels based on inferred enzyme abundances and databases of metabolic pathways. The
1-st and the 2-nd EM’s can be also integrated into a single direct EM that directly infers
pathway activity levels from contig abundances. All componentsm (1-st EM, 2-nd EM
and direct EM) are built with similarities to IsoEM2 methodology.

Differential analysis of pathway activity Using the estimates of pathway activity lev-
els in the differential pathway activity analysis requires estimating uncertainty. The ex-
tension of our bootstrapping approach introduced in [15] is useful for the direct maxi-



mum likelihood model since the pathway activity levels are inferred directly from RNA-
seq reads that can be resampled. The current version of IsoEM2 allows the user to gen-
erate bootstrapped samples from the RNA-Seq reads and to infer abundance estimates,
based on Fragments Per Kilobase of transcript per Million mapped reads (FPKM). We
estimate pathway activity level for each of the bootstrapped samples and then run a
differential expression (DE) analysis similar to the one described in [13].

3 Results

In this section we apply our analysis pipeline to two conditions (day. night) of a plank-
tonic marine microbial community. We describe a subset of the most abundant pathways
and conduct a differential pathway activity level analysis that highlights statistically sig-
nificant functional features from the repertoire of metabolic processes occurring in the
community.

Datasets. The samples were collected from surface waters (2 m depth) at 12:30 and
23:55 (local time) at a station on the Northern Louisiana Shelf (Gulf of Mexico) in July
2015. Seawater ( 1 L) was pumped directly onto a 0.22 um Sterivex filter, preserved
in 1.8 ml of RNA-later and flash frozen. Samples were stored a -80 C until extrac-
tion. RNA was isolated from the samples by a phenol-chloroform method following
the Mirvana RNA kit protocol. Samples were treated with DNase to remove residual
DNA signal from the metatranscriptome. The RNA-Seq data were generated via Il-
lumina HiSeq 2500 sequencing at the Department of Energy Joint Genome Institute
(DOE-JGI). Detailed information about the two samples is provided in the Table 1.

Sample Reads Contigs
Name Depth Code Time Length Count Insert size Total Total length
Day 2m 177 2m 12:30 PM 2× 151 bp 89.4 M 195±49 94.7 k 58.3 MB
Night 2m 240 2m 11:55 PM 2× 151 bp 91.4 M 187±49 108 k 68.1 MB

Table 1: Dataset description

MAP pipeline. A preliminary annotation of RNA-seq data was obtained using the
DOE-JGI Metagenome Annotation Pipeline (MAP v.4) (JGI portal) [11]. The MAP pro-
cessing consists of feature prediction including identification of protein-coding genes.
In this pipeline, the MEGAHIT metagenome assembler is used to first assemble RNA-
Seq reads into scaffolds. Further, several software suites (GeneMark.hmm, MetaGe-
neAnnotator, Prodigal, FragGeneScan) are used to predict genes on assembled scaf-
folds. The MAP pipeline also annotates genes according to EC numbers, which are
a necessary input in our maximum likelihood model. The annotations are obtained
via homology searches (using USEARCH) against a non-redundant proteins sequence
database (maxhits=50, e-value=0.1) where each protein is assigned to a KEGG Orthol-
ogy group (KO). The top 5 hits for each KO, with the condition that the identity score



Pathway
Abundance
reads ×103

Code Description Day Night
ko00190 Oxidative phosphorylation (Energy metabolism) 2260 2700
ko00710 Carbon fixation in photosynthetic organisms (Energy metabolism) 837 422
ko00240 Pyrimidine metabolism (Nucleotide metabolism) 644 1110
ko00270 Cysteine and methionine metabolism (Amino acid metabolism) 568 176
ko00020 Citrate cycle - TCA cycle (Carbohydrate metabolism) 525 411
ko00900 Terpenoid backbone biosynthesis (Metabolism of terpenoids and polyketides) 508 261
ko01230 Biosynthesis of amino acids 333 471
ko00195 Photosynthesis (Energy metabolism) 327 63
ko00230 Purine metabolism (Nucleotide metabolism) 318 618
ko00630 Glyoxylate and dicarboxylate metabolism (Carbohydrate metabolism) 299 530
ko00061 Fatty acid biosynthesis (Lipid metabolism) 37 179

Table 2: 10 most abundant pathways in the Day and Night samples.

is at least 30% and 70% of the protein length is matched, are used. The KO IDs are
translated into EC numbers using KEGG KO to EC mapping.

The enhanced quantification pipeline. Our enhanced pipeline is depicted in red on
Figure 1. We start our analysis from the RNA-Seq metatranscriptomic reads. First, we
find the abundance estimates (frequencies) for each metatranscriptomic gene/transcript
by applying Maximum Likelihood abundance estimation. For this purpose we use IsoEM2.
The custom GTF annotation file needed for supplying each run of IsoEM2 was prepared
by using the fastaToGTF script from the same software suite. Next, we use FPKM es-
timates as the weights of each transcript for inferring abundances of each EC number.
We use transcripts to EC notation alignments as provided by the MAP pipeline.

Highly active pathways. Table 2 shows the 10 most active pathways in the Day sample
sorted in descending order of their activity level, i.e., the number of reads attributed by
the proposed maximum likelihood model. The 11th pathway listed (ko0061) is among
the 10 most active at night but is not among the 10 most active in the day. Similarly, the
pathway ko00195 is among the most 10 active at night but is not among the 10 most
active in the day. All other 9 pathways are among the most active during both night and
day.

Differential pathway analysis. In Table 3 there is a list of all metabolic pathways
which are up-regulated at noon with at least 1.7 fold change, 95% confidence and at
least 1000 reads assigned by EM. The values of abundances are given at 95% confidence
interval upper boundary (therefore, they are slightly greater than in the Table 2). In Table
4 there is a list of all metabolic pathways which are up-regulated at noon with at least
1.7 fold change, 95% confidence and at least 1000 reads assigned by EM.

Discussion. The results in Tables 2-4 are reflective of planktonic microbial communi-
ties driven by a diurnal cycle. During the daytime, pathways mediating photosynthesis,
carbon fixation, and the building blocks for amino acid biosynthesis are the most abun-



dant. At night there is an increase in nucleotide and lipid generation, probably for new
cell production. In general, the community appears to be gaining energy and substrates
during the day and expending them at night by generating crucial cellular components.
This is supported by the differential expression between the day and night transcript
pools, with energy (photosynthesis) and small organic molecule synthesis (e.g, fruc-
tose, glutamine-glutamate, glycosaminoglycan, etc.) being up-regulated during the day
and the synthesis of larger biomolecules at night (e.g. lipid metabolism, amino acids,
and carotenoids). There is a clear shift in energy sources between day and night. While
oxidative phosphorylation is highly transcribed at both time points, it is clear that pho-
tosynthesis elevates some of this energy requirement. This is evidenced by a slight
decrease of oxidative phosphorylation and increase of TCA-related transcripts during
the day, potentially replenishing the NADH/NADPH reserves for the use of the electron
transport chain at night. As predcited, these results indicate a community undergoing
diel cycling, thereby providing validation of our proposed EM-based pipeline and sug-
gesting this method as an valuable tool for coupled annotation and quantification of
metabolic pathways in community RNA-seq data.
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Pathway reads in 103

Code Description Day Night
ko00053 Ascorbate and aldarate metabolism (Carbohydrate metabolism) 0 1.88
ko00061 Fatty acid biosynthesis (Lipid metabolism) 55.9 270
ko00120 Primary bile acid biosynthesis (Lipid metabolism) 2.75 116
ko00140 Steroid hormone biosynthesis (Lipid metabolism) 0 4.11
ko00232 Caffeine metabolism (Biosynthesis of other secondary metabolites) 0 1.05
ko00260 Glycine, serine and threonine metabolism (Amino acid metabolism) 49.3 227
ko00311 Penicillin and cephalosporin biosynthesis 0 2.74
ko00365 Furfural degradation (Xenobiotics biodegradation and metabolism) 0 2.12
ko00430 Taurine and hypotaurine metabolism (Metabolism of other amino acids) 3.19 62.3
ko00472 D-Arginine and D-ornithine metabolism (Metabolism of other amino acids) 0 1.25
ko00780 Biotin metabolism (Metabolism of cofactors and vitamins) 7.05 48.6
ko00906 Carotenoid biosynthesis (Metabolism of terpenoids and polyketides) 0 26.2
ko00984 Steroid degradation (Xenobiotics biodegradation and metabolism) 0 2.07
ko00362 Benzoate degradation (Xenobiotics biodegradation and metabolism) 3.58 16.7
ko00592 alpha-Linolenic acid metabolism (Lipid metabolism) 0.19 2.89
ko00072 Synthesis and degradation of ketone bodies (Lipid metabolism) 2.67 11.6
ko00364 Fluorobenzoate degradation (Xenobiotics biodegradation and metabolism) 0.180 2.96
ko01051 Biosynthesis of ansamycins (Metabolism of terpenoids and polyketides) 0 3.38
ko00760 Nicotinate and nicotinamide metabolism (Mcofactors and vitamins) 30.2 103
ko00281 Geraniol degradation (Metabolism of terpenoids and polyketides) 1.57 170
ko00627 Aminobenzoate degradation (Xenobiotics biodegradation and metabolism) 0.949 4.06
ko00730 Thiamine metabolism (Metabolism of cofactors and vitamins) 10.4 35.4
ko00643 Styrene degradation (Xenobiotics biodegradation and metabolism) 0.958 22.6
ko01200 Carbon metabolism 13.7 86.9
ko00220 Arginine biosynthesis (Amino acid metabolism) 3.53 11.0
ko00440 Phosphonate and phosphinate metabolism 1.30 5.33
ko00905 Brassinosteroid biosynthesis (Metabolism of terpenoids and polyketides) 2.00 35.6
ko00941 Flavonoid biosynthesis (Biosynthesis of other secondary metabolites) 2.84 6.03
ko00720 Carbon fixation pathways in prokaryotes (Energy metabolism) 1.36 15.9
ko00290 Valine, leucine and isoleucine biosynthesis (Amino acid metabolism) 68.0 193
ko00403 Indole diterpene alkaloid biosynthesis 0 2.68
ko01053 Biosynthesis of siderophore group nonribosomal peptides 0 1.16
ko00920 Sulfur metabolism (Energy metabolism) 47.7 135
ko00625 Chloroalkane and chloroalkene degradation 24.3 51.8

Table 4: Up-regulated pathways in the Night sample


