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ABSTRACT
Summary: This note presents IsoEM2 and IsoDE2, new versions
with enhanced features and faster runtime of the IsoEM and IsoDE
packages for expression level estimation and differential expression.
IsoEM2 estimates FPKM and TPM levels for genes and isoforms with
confidence intervals through bootstrapping, while IsoDE2 performs
differential expression (DE) analysis using the bootstrap samples
generated by IsoEM2. Both tools are available with a command line
interface as well as a graphical user interface through wrappers for
the Galaxy platform.
Availability: The source code of this software suite is available
at https://github.com/mandricigor/isoem2. The Galaxy
wrappers are available at https://toolshed.g2.bx.psu.edu/
view/saharlcc/isoem2_isode2/c6d2dbdf0a4d

Contact: imandric1@student.gsu.edu, ion@engr.uconn.edu

1 INTRODUCTION
RNA-Seq experiments use high-throughput sequencing to generate
both sequence and abundance information about expressed gene
isoforms. The two most common applications of RNA-Seq are
to quantify gene/isoform expression levels in single samples and
identify genes/isoforms that are differentially expressed between
samples. Both applications are affected by noise introduced by
library preparation and sequencing errors as well as ambiguities in
read mapping.

Numerous tools for RNA-Seq quantification have been developed
to address these challenges. A comprehensive assessment study
(Kanitz et al., 2015) recently compared the most commonly used
tools BitSeq (Glaus et al., 2012), CEM (Li and Jiang, 2012),
Cufflinks (Trapnell et al., 2010), eXpress (Roberts and Pachter,
2013), IsoEM (Nicolae et al., 2011), MMSEQ (Turro et al., 2011),
RSEM (Li and Dewey, 2011), rSeq (Salzman et al., 2011), Sailfish
(Patro et al., 2014), Scripture (Guttman et al., 2010), and TIGAR2
(Nariai et al., 2014). The results in (Kanitz et al., 2015) show that
IsoEM (Nicolae et al., 2011) has one of the highest accuracies in all
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experiments (see also Supplementary Table 1) while being orders of
magnitude faster than the other best-performing methods.

IsoEM is based on the Expectation-Maximization (EM) algorithm.
Its probabilistic model takes into account the fragment length
distribution (with mean/standard deviations specified by the
user or automatically inferred when using paired-end reads)
and incorporates base quality scores and strand information (if
available). IsoDE (Al Seesi et al., 2014) performs differential
gene expression analysis using FPKM/TPM values estimated for
bootstrap samples generated by re-sampling alignments. Although
bootstrapping is computationally expensive, the high speed of
IsoEM makes the running time of IsoDE practical.

Here we introduce IsoEM2, a new version of the IsoEM package
that uses bootstrapping to infer confidence intervals for gene and
isoform expression level estimates. The accompanying differential
expression tool IsoDE2 has also been updated to take advantage of
the fast in-memory bootstrapping of IsoEM2, resulting in speedups
of over 200× over the original version in (Al Seesi et al., 2014).
Compared to the previous versions, the main enhancements are
the addition of confidence intervals for FPKM and TPM estimates
produced by IsoEM2, the substantially faster running time for
performing bootstrapping with IsoDE2, and the development of
Galaxy wrappers making both IsoEM2 and IsoDE2 easy to use via
a user-friendly web interface.

Table 1 provides a feature-based comparison of the tools included
in the assessment of (Kanitz et al., 2015) and the subsequently
published Kallisto (Bray et al., 2016). IsoEM2 offers a broad
range of features and achieves one of the highest accuracies
(Supplementary Table 1). It is also significantly faster than the other
best-performing methods with the exception of Kallisto. On real
datasets with over 100M read pairs, the HISAT2/IsoEM pipeline
requires just over 1 hour to perform both read alignment and
RNA-Seq quantification with 200 bootstraps using 16 CPU cores
(Supplementary Table 3). Although the alignment-free Kallisto is
5-10× faster, its confidence intervals are substantially less reliable
than those generated by IsoEM2 (see Tables 2 and 3).
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Table 1. Feature-based comparison of state-of-the-art RNA-Seq quantification tools. In the reference row, G stands for genome and T for transcriptome.
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Alignment free 7 3 7 7 7 7 7 7 7 3 7 7

Reference G/T T T G G T T G/T T T G T
Confidence
intervals

3 3 7 7 3 3 7 3 7 7 7 7

Indels 3 3 3 3 3 3 3 7 3 3 3 3

Integrated DE 3 3 3 7 3 3 3 3 7 3 7 7

GUI 3 7 7 7 3 7 7 7 7 3 7 7

Multi-threading 3 3 3 7 3 3 7 3 7 3 7 7

Frag. length
distribution

3 3 7 7 3 3 3 3 7 7 7 7

Sequence bias 3 3 3 3 3 3 3 7 7 3 7 3

2 SOFTWARE FEATURES
2.1 IsoEM2
IsoEM2 takes as input aligned RNA-Seq reads in (compressed)
SAM format and outputs FPKM and TPM estimates of gene and
isoform expression levels. Unlike the original implementation in
(Nicolae et al., 2011), IsoEM2 computes confidence intervals for
the estimates using the bootstrap method (Efron and Efron, 1982).
In each run IsoEM2 generates N bootstrap estimates by in-memory
re-sampling of the compatible read alignments. For each genomic
feature (gene or isoform) and given confidence level C ∈ (0, 1), the
confidence interval [clow, chi] is computed from the N bootstrap
estimates B = {b1, . . . , bN} by setting clow and chi equal to the
k-th smallest, respectively k-th largest element of B, where k =
bN(1− C)/2c. By default IsoEM2 uses C = 0.95 and N = 200,
but these settings can be changed by the user. IsoEM2 generates four
tab delimited output files for gene/isoform FPKM/TPM estimates.
Each file includes a point estimate and the confidence interval
for each feature. Additionally, it generates a compressed archive
containing the bootstrap estimates used to compute the confidence
intervals; these archives can be used for DE analysis using IsoDE2.

Besides the command-line version, IsoEM2 is also available with
a user-friendly GUI through a Galaxy wrapper (Supplementary
Figure 1). The wrapper can be downloaded from the Galaxy Tool
Shed and installed on any local installation of Galaxy. The Galaxy
tool is designed to work with both single-end and paired-end
Illumina RNA-Seq reads as well as single-end Ion Torrent reads.
It takes as input unaligned RNA-Seq reads and it maps them to a
transcriptome reference selected by the user through the wrapper
interface. The aligned reads are then automatically processed by
IsoEM2. In addition to IsoEM2, the wrapper needs HISAT2 (Kim
et al., 2015) to be installed on the Galaxy server.

2.2 IsoDE2
IsoDE2, which is an extension of IsoDE (Al Seesi et al., 2014),
performs differential expression (DE) analysis using bootstrap
samples generated by IsoEM2. To test for differential expression,
the bootstrap expression level estimates generated for the two
conditions by IsoEM2 are paired and used to compute for each
gene a set of fold change estimates. A confident fold change f is

then computed for a user-specified significance level under the null
hypothesis that fold changes obtained from bootstrap estimates are
equally likely to be greater or smaller than f . For details on the
format of IsoDE2 output files see Supplementary data.

3 EXPERIMENTAL RESULTS
We conducted experiments to assess both the running time and the
accuracy of confidence intervals of the updated IsoEM2/IsoDE2
suite and of the newly published Kallisto (Bray et al., 2016). We
only included Kalisto in this comparison since IsoEM was already
shown to dominate in accuracy and/or running time the methods
included in the comparative assessment of (Kanitz et al., 2015).

3.1 Runtime Comparison
The running time of IsoEM2 is much smaller compared to the
bootstrapping step (called IsoBoot) of the old IsoDE. This is
achieved by implementing the re-sampling in IsoEM2 based on
internal data structures representing connected components of the
read-isoform compatibility graph (Nicolae et al., 2011). To assess
the runtime improvement, we used two mouse retina RNA-Seq
datasets from (Karunakaran et al., 2016) with ∼100M unaligned
read pairs each. On each dataset, generating 200 bootstrap
samples with IsoEM2 has a speed-up of over 200× compared to
IsoBoot (Supplementary Table 2). Although Kallisto is 5-10× faster
(Supplementary Table 3), the HISAT2/IsoEM pipeline remains very
practical, requiring just over 1 hour to perform read alignment and
RNA-Seq quantification with 200 bootstraps using 16 CPU cores.

3.2 Accuracy Comparison
To assess the accuracy of gene/isoform expression level estimates
we computed the Pearson correlation with the known ground truth.
To assess the quality of confidence intervals we used the percentage
of genes for which confidence intervals contained the known ground
truth. Since Kallisto does not output explicit confidence intervals,
we ran it with the “-B 200” option to generate 200 bootstrap
estimates and computed confidence intervals using the approach
described in Section 2 for IsoEM2.
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Table 2. Gene expression level estimation accuracy on simulated RNA-Seq
datasets with 1M-10M single-end reads from Kanitz et al. (2015).

.

Number of reads 1M 3M 10M

All genes
Pearson

correlation
IsoEM2 0.995 0.996 0.996
Kallisto 0.84 0.84 0.84

Confidence interval
coverage for C=95%

IsoEM2 0.94 0.95 0.94
Kallisto 0.80 0.78 0.78

Genes with non-zero ground-truth
Pearson

correlation
IsoEM2 0.96 0.98 0.98
Kallisto 0.96 0.98 0.98

Confidence interval
coverage for C=95%

IsoEM2 0.74 0.77 0.72
Kallisto 0.33 0.27 0.38

Table 3. Transcript expression level estimation accuracy on simulated RNA-
Seq datasets with 1M-10M single-end reads from Kanitz et al. (2015).

Number of reads 1M 3M 10M

All isoforms
Pearson

correlation
IsoEM2 0.98 0.98 0.98
Kallisto 0.89 0.89 0.89

Confidence interval
coverage for C=95%

IsoEM2 0.95 0.95 0.94
Kallisto 0.89 0.86 0.82

Isoforms with non-zero ground truth
Pearson

correlation
IsoEM2 0.90 0.94 0.96
Kallisto 0.90 0.94 0.96

Confidence interval
coverage for C=95%

IsoEM2 0.59 0.64 0.61
Kallisto 0.44 0.38 0.28

Tables 2 and 3 give Pearson correlations and confidence
interval coverages for gene, respectively isoform expression level
estimates obtained by IsoEM2 and Kallisto on datasets with 1M-
10M simulated single-end reads from (Kanitz et al., 2015). The
confidence interval coverage for C = 95% reports how frequently
the 95% CI estimated by IsoEM2 or Kallisto contains the true
gene expression value. The accuracy metrics are computed both
over the subset of genes/isoforms with non-zero ground truth, as
in (Kanitz et al., 2015), and over all genes/isoforms. We note that,
although Kallisto has similar Pearson correlations to IsoEM2 over
the genes and isoforms with non-zero truth, its Pearson correlation
is significantly lower than that of IsoEM2 when including isoforms
with zero ground-truth. More importantly, for all considered sets
of genes and isoforms, the coverage of 95%-confidence intervals
computed by Kallisto is substantially lower than that of IsoEM2.

4 CONCLUSION
In this note we presented the IsoEM2/IsoDE2 suite for RNA-
Seq gene and isoform expression level estimation and differential
expression analysis. The main feature of these tools is the fast non-
parametric computation of confidence intervals and identification
of DE genes based on bootstrapping. Although when including
alignment time IsoEM2 is 5-10× slower than the alignment free
tool Kallisto, the confidence intervals computed by IsoEM2 are

substantially more accurate than those generated by Kallisto. We
hope that the improved accuracy combined with the ease of use
provided by the Galaxy interface will make the IsoEM2/IsoDE2
suite a preferred choice for the analysis of RNA-Seq datasets.
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Supplementary Data for “Fast Bootstrapping-Based Estimation of

Confidence Intervals of Expression Levels and Differential

Expression from RNA-Seq Data”

Supplementary Figure 1: User interface for IsoEM2 on Galaxy

IsoDE2 input/output description

As for IsoEM2, IsoDE2 is made available both through a command line interface and a Galaxy GUI (Sup-
plementary Figure 2). This requires the user to provide one or more (if replicates are available) IsoEM2
bootstrapping archives for each condition along with a desired significance level α. By default, IsoDE2 gen-
erates four tab-delimited output files containing DE results based on gene/isoform FPKM/TPM estimates.
The four files have identical format with the following fields:

• Gene/isoform ID

• Confident log2(FC): the base 2 logarithm of the largest condition 2 vs condition 1 fold change of
gene/isoform FPKM/TPM estimates supported by the bootstrap samples at a significance level of α

1



Supplementary Figure 2: User interface for IsoDE2 on Galaxy

(see [3] for details on the model used to compute bootstrap support). Positive values represent over-
expression in condition 2, negative values representing over-expression in condition 1, and zero values
indicate that no significant change was detected.

• Single run log2(FC): the base 2 logarithm of the ratio between expression levels estimated by IsoEM2
for condition 2 and condition 1 (or the mean estimates in case replicates are provided for the two
conditions).

• Condition 1/2 FPKM/TPM: expression level estimated for conditions 1 and 2 (mean values in case of
replicates).

The subset of genes with confident fold change above a user specified threshold can be selected from the
output of IsoDE2 using a separate Galaxy filtering tool (Supplementary Figure 3).
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Supplementary Figure 3: User interface for IsoDE2 fold change filter on Galaxy

Supplementary Table 1: Pearson correlation between estimated and ground truth gene/isoform expression
levels on simulated RNA-Seq datasets with 1M-10M single-end reads from [1]. As in [1], correlation is
computed only over the genes/isoforms with non-zero simulated expression. Highest value for each dataset
is typeset in bold.
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Pearson correlation over isoforms with non-zero ground truth
1M reads 0.90 0.90 0.89 0.89 0.76 0.90 0.90 0.90 0.87 0.89 0.75 0.90
3M reads 0.94 0.94 0.94 0.92 0.77 0.93 0.92 0.93 0.90 0.93 0.76 0.93
10M reads 0.96 0.96 0.97 0.94 0.77 0.95 0.93 0.95 0.92 0.95 0.77 0.95

Pearson correlation over genes with non-zero ground truth
1M reads 0.96 0.96 0.90 0.93 0.94 0.96 0.95 0.96 0.93 0.96 0.89 0.96
3M reads 0.98 0.98 0.96 0.95 0.95 0.97 0.97 0.98 0.94 0.98 0.90 0.98
10M reads 0.98 0.98 0.98 0.95 0.96 0.98 0.97 0.98 0.95 0.98 0.91 0.98

Supplementary Table 2: Runtime comparison of IsoEM2 with the bootstrapping step of IsoDE, called Iso-
Boot, on two mouse retina RNA-Seq datasets from [2]. IsoDE2 takes longer than the DE step of IsoDE due
to the increased number of performed analyses (genes/isoforms and FPKM/TPM). The time reported for
both IsoDE and IsoDE2 is for processing 200 bootstrap samples. Experiments were conducted on a Dell
PowerEdge R815 server with quad 2.5GHz 16-core AMD Opteron 6380 processors and 256Gb of RAM.

Dataset
Metric P0-CE E16-CE
Raw read pairs 117.4M 99.3M
Mapped read pairs 66.08M 65.83M
IsoBoot runtime (200 bootstraps) 682,074 sec. 499,473 sec
IsoEM2 runtime (200 bootstraps) 2,256 sec. 2,197 sec.
Speedup 302× 227×
IsoDE run-time (200 bootstraps) 43 sec.
IsoDE2 run-time (200 bootstraps) 232 sec.
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Supplementary Table 3: Runtime comparison of the HISAT2/IsoEM2 piped commands with Kallisto on
the P0-CE and E16-CE mouse retina RNA-Seq datasets from [2]. Here, we include the HISAT2 mapping
time in the comparison since Kallisto starts from unmapped reads, while IsoEM2 needs alignments. The
runtime of IsoEM2 without read mapping is reported in Supplementary Table 2; however, note that HISAT2
and IsoEM2 computations are partly overlapped since we pipe the HISAT2 output directly to the input of
IsoEM2. Experiments were conducted on a Dell PowerEdge R815 server with quad 2.5GHz 16-core AMD
Opteron 6380 processors and of 256Gb RAM.

Tool

Dataset
P0-CE E16-CE

# threads # threads
1 2 4 8 16 1 2 4 8 16

Kallisto 5779 2,865 1,450 696 332 4,493 2,408 1,396 720 428

HISAT2/IsoEM2 27,482 14,891 9,544 5,486 4,639 24,744 13,859 8,366 4,904 3,629
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