
Approximation Algorithms for VLSI Routing

A Thesis
Presented to

The Academic Faculty

by

Ion I. Măndoiu

In Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Georgia Institute of Technology
August 2000

Copyright c 2000 by Ion I. Măndoiu

Approximation Algorithms for VLSI Routing

Approved:

Vijay V. Vazirani, Chairman

Kalomire-Eleni Mihail

Dana Randall

H. Venkateswaran

Alexander Zelikovsky

Date Approved

Preface

This thesis gives improved approximation algorithms and heuristics for several NP-hard

problems arising in the global routing phase of physical VLSI design. In each of these

problems interconnection topologies must be specified for nets consisting of a source and

multiple sink terminals. Different optimization objectives are used, depending on the

functionality of the nets. We address the single-net routing problem under three of the most

important objectives: minimizing length, skew, and number of buffers. We also address a

multi-net global buffered routing problem in which a large number of nets must be routed

simultaneously using only buffers located in a given set of regions, each with prescribed

capacity.

The problem of finding a minimum-length interconnection of a net using only horizontal

and vertical wires, the so called rectilinear Steiner tree (RST) problem, has long been one

of the fundamental problems in the field of electronic design automation. In this thesis we

give a new RST heuristic which has at its core a recent 3/2 approximation algorithm of

Rajagopalan and Vazirani for the metric Steiner tree problem on quasi-bipartite graphs—

these are graphs that do not contain edges connecting pairs of Steiner vertices. Our new RST

heuristic achieves an excellent running time by combining an efficient implementation of

the RV algorithm with simple, but powerful geometric reductions. Experiments conducted

on both random and real VLSI instances show that the new RST heuristic runs significantly

faster than the best existing RST heuristics and exact algorithms. Moreover, the new

heuristic typically gives higher-quality solutions than previously best heuristics.

The clock skew is the maximum difference in arrival times of the clock signal at

synchronizing elements. Obtaining zero- or bounded-skew clock routing is critical for

maximizing the clock rate of today’s deep-submicron VLSI designs. At the same time, due

iii

to power consumption, signal integrity, and area utilization considerations, it is necessary

to minimize the total wirelength used by the clock tree. The problems of finding zero- and

bounded-skew clock trees with minimum total wirelength have received much attention in

the VLSI CAD literature. However, the first strongly polynomial algorithms with proven

constant approximation factors have been proposed only recently: Charikar et al. [16] have

given 2e � 5:44 and 16:86-approximation algorithms for zero- and bounded-skew trees,

respectively. In this thesis we give practical algorithms with improved approximation factors

for both problems. For n points in the rectilinear plane, our algorithms find, in O(n log n)

time, zero- and bounded-skew trees of length at most 3 and 9 times the optimum. In general

metric spaces, the respective approximation factors are 4 and 14, and can be guaranteed in

O(n2) time.

As integrated circuit technology scales into the deep-submicron range, the effect of

interconnect on chip performance becomes increasingly dominant. An important step in

maintaining reasonable signal delay is to ensure that the length of each wire segment is

whithin prescribed bounds; this can be achieved by buffer insertion. Since buffers occupy

a significant area on the chip and introduce additional power requirements, the goal of

buffered routing is to meet the wire segment upper-bound using the minimum number of

buffers. In this thesis we consider two problems related to buffered routing. The first

problem is to find a routing with minimum number of buffers for a single net, subject to

upper-bounds on the length of each wire segment. We give a tight analysis of the MST

heuristic recently introduced by G.-H. Lin and G. Xue for this problem. The approximation

factor of the heuristic is shown to be one less than the MST number of the underlying space,

defined as the maximum possible degree of a minimum-degree MST spanning points from

the space. In particular, on instances drawn from the rectilinear plane, the MST heuristic

has a tight approximation factor of 3.

The second buffered routing problem addressed in this thesis is how to perform si-

multaneous buffering of a large number of nets, given an existing buffer block plan, i.e.,

iv

using buffers located at a given set of buffer blocks, each with limited capacity. We give a

provably good algorithm based on a novel approach to multiterminal multicommodity flow

approximation inspired by recent results of Garg and Könemann [35] and Fleischer [29].

Our algorithm routes the nets subject to both upper and lower bounds on the length of wire

segments, as well as path-length upper bounds and buffer parity constraints per connection.

The new algorithm outperforms existing algorithms for the problem [20], and has been

validated on top-level layouts extracted from a recent high-end microprocessor design.

v

Contents

Preface iii

List of Algorithms ix

List of Figures x

List of Tables xi

Acknowledgements xii

1 Introduction 1

1.1 Rectilinear Steiner trees : 3

1.2 Zero- and bounded-skew clock trees : 5

1.3 Bounded edge-length Steiner trees with minimum number of Steiner points 7

1.4 Multi-net global routing via buffer blocks : : : : : : : : : : : : : : : : : 8

2 A new heuristic for rectilinear Steiner trees 11

2.1 Introduction : 11

2.2 Steiner trees in graphs : 14

2.2.1 The bidirected cut relaxation : 14

2.2.2 The RV algorithm : 16

2.2.3 Efficient implementation of the RV-Phase algorithm : : : : : : : 18

2.2.4 The iterated RV heuristic : 21

2.3 Rectilinear Steiner trees : 22

2.3.1 Edge reductions : 22

vi

2.3.2 Vertex reductions : 23

2.4 Experimental results : 24

2.4.1 Experimental setup : 24

2.4.2 Solution quality : 25

2.4.3 Running time : 27

2.4.4 Convergence rate : 30

2.4.5 Running time predictability : 33

2.5 Conclusions : 34

3 Practical approximation algorithms for zero- and bounded-skew clock trees 37

3.1 Introduction : 37

3.2 Constructive lower bounds : 40

3.3 Zero-skew stretching of spanning trees : : : : : : : : : : : : : : : : : : 43

3.3.1 Zero-skew stretching in arbitrary metric spaces : : : : : : : : : : 43

3.3.2 Zero-skew stretching in metrically convex metric spaces : : : : : 45

3.4 ZST approximation via spanning trees : : : : : : : : : : : : : : : : : : : 47

3.5 Practical considerations for approximating the rectilinear ZST : : : : : : 51

3.6 Approximate bounded-skew trees : 53

3.6.1 The MST based algorithm : 53

3.6.2 The approximate Steiner tree based algorithm : : : : : : : : : : : 55

3.7 Conclusions and open problems : 56

4 Minimizing the number of Steiner points in bounded edge-length Steiner trees 58

4.1 Introduction : 58

4.2 Analysis of the MST heuristic : 60

4.3 Conclusion and open problems : 62

vii

5 Provably good global buffering by multiterminal multicommodity flow approx-

imation 63

5.1 Introduction : 63

5.2 Integer program formulation of the GRBB problem : : : : : : : : : : : : 67

5.3 Approximation of vertex-capacitated MTMCF : : : : : : : : : : : : : : 69

5.4 Rounding the fractional MTMCF : 75

5.5 Implemented algorithms : 77

5.5.1 Greedy routing algorithms : 77

5.5.2 Flow rounding algorithms : 78

5.6 Implementation experience : 79

5.7 Conclusions and future research directions : : : : : : : : : : : : : : : : 81

Vita 83

Bibliography 84

viii

List of Algorithms

1 The RV-Phase algorithm : 17

2 Implementation of the RV-Phase algorithm : : : : : : : : : : : : : : : : 20

3 The IRV algorithm : 21

4 The zero-skew stretching algorithm for arbitrary metric spaces : : : : : : 44

5 The zero-skew stretching algorithm for metrically convex metric spaces : 46

6 The Rooted-Kruskal algorithm : 48

7 The MST based bounded-skew tree algorithm : : : : : : : : : : : : : : : 54

8 The approximate Steiner tree based bounded-skew tree algorithm : : : : : 55

9 The MTMCF approximation algorithm : : : : : : : : : : : : : : : : : : 70

10 The randomized MTMCF rounding algorithm : : : : : : : : : : : : : : : 76

11 The multiterminal greedy (MTG) routing algorithm : : : : : : : : : : : : 78

12 The MTMCF routing algorithm : 79

ix

List of Figures

1 The empty rectangle test : 23

2 Average improvement over MST : 26

3 95% confidence intervals for the difference in percent improvement over

MST of IRV and BI1S : 27

4 IRV vs. BI1S on 1000 250–terminal instances : : : : : : : : : : : : : : : 28

5 IRV vs. GeoSteiner on 1000 250–terminal instances : : : : : : : : : : : 28

6 Speed-up achieved by using the empty rectangle test : : : : : : : : : : : 31

7 Average CPU time : 31

8 Convergence to the final solution on instance 16BSHREG.RESET : : : : 32

9 Convergence to the final solution on a random 406–terminal instance : : : 32

10 Histograms of running times on 1000 250–terminal instances : : : : : : : 35

11 The basic step of the stretching algorithm for arbitrary metric spaces : : : 44

12 Loop folding in metrically convex metric spaces : : : : : : : : : : : : : 46

13 The basic elimination step in the proof of the MST ratio : : : : : : : : : : 61

14 Percent of sinks connected vs. time on instance i1 : : : : : : : : : : : : : 82

x

List of Tables

1 Average percent improvement over MST on VLSI instances : : : : : : : : 29

2 Running time on VLSI instances : 29

3 Summary of results on the zero- and bounded-skew tree problems and

comparison to the results of Charikar et al. : : : : : : : : : : : : : : : : 40

4 Percent of sinks connected and CPU time for the greedy algorithms : : : : 80

5 Percent of sinks connected and CPU time for the 2TMCF algorithm : : : 80

6 Percent of sinks connected and CPU time for the 3TMCF algorithm : : : 80

xi

Acknowledgements

First and foremost, I would like to thank my advisor, Vijay Vazirani, for his continuous

guidance, advice, and support throughout my years at Georgia Tech. Vijay initiated me to

approximation algorithms, and encouraged my efforts to combine theoretical work in this

field with experimental validation.

I am also grateful to Alex Zelikovsky, who has timely accepted a position with the

Computer Science department of Georgia State University just as I was trying to learn more

about VLSI CAD. He ended up acting as my second advisor for the past year and a half,

and I have greatly benefited from our close collaboration.

The results in this thesis have been obtained in joint work with Feodor Dragan, Joe

Ganley, Andrew Kahng, Sudhakar Muddu, Vijay Vazirani, and Alex Zelikovsky. Working

with them has been a rewarding experience. I wish to thank my coauthors for giving me

this opportunity and for allowing me to include our joint results in this thesis.

During my Ph.D. studies at Georgia Tech I benefited in many ways from interactions

with faculty members of the College of Computing, and of the Mathematics and Industrial

Systems Engineering departments. Extra thanks go to Howard Karloff, Milena Mihail,

Dana Randall, Leonard Schulman, Prasad Tetali, and H. Venkateswaran for serving on my

Ph.D. examination, proposal, and/or defense committees. I would also like to express my

deepest gratitude to Cristian Calude and Ioan Tomescu for guiding my first research steps

at the University of Bucharest.

Last, but not least, I would like to thank my family—my faraway parents and brother,

my wife and our daughter—for their love and support. This thesis is dedicated to them.

xii

Chapter 1

Introduction

Physical VLSI design is the process of translating the electrical description of a circuit

into a geometrical layout. Obtaining good solutions to the NP-hard problems arising in

this process is crucial for the production of low-cost, high-performance integrated circuits.

In this thesis we explore, both theoretically and experimentally, several approximation

algorithms and heuristics for problems related to the global routing phase of physical

design.

In global routing, interconnection topologies must be specified for a large number of

signal nets, each consisting of a source and multiple sink terminals. Routing is typically

performed one net at a time, a feasible solution to a single-net instance of the routing problem

being a rectilinear Steiner tree for the set of terminals. Different optimization objectives are

used, depending on the functionality of the nets. The most important objectives considered

in the VLSI literature are [50]:

� Length. Minimizing length has long been the prevailing objective in VLSI routing,

since a minimum-length interconnection occupies the minimum amount of area and

has minimum overall capacitance and resistance. Although recent advances of inte-

grated circuit technology into the deep-submicron realm have introduced additional

routing objective functions, minimizing length remains the most important objective

for non-critical nets and in physically small instances. This objective is captured by

the the well-studied Rectilinear Steiner Tree (RST) problem.

1

� Delay. As VLSI technology scales to smaller feature sizes and larger layout ar-

eas, propagation delay increasingly dominates delay through switching devices. In

performance-driven routing, one seeks to control the propagation delay between the

source and a specified set of sinks. A standard formulation of this objective is the

Rectilinear Steiner Arborescence (RSA) problem, that asks for a minimum length

“shortest-path” rectilinear Steiner tree rooted at the source, i.e., a minimum length

Steiner tree in which the length of each source-to-sink path is as small as possible.

� Skew. In order to maximize the clock rate it is necessary to minimize the skew

of the clock network, i.e., the maximum difference between source-to-sink delays.

Two formulations capturing this objective have received much attention in the VLSI

literature. The Zero-Skew Tree (ZST) problem is to find a minimum length rooted

rectilinear Steiner tree in which all root-to-leaf paths have equal length. The Bounded-

Skew Tree (BST) problem is defined similarly,except that the length of two root-to-leaf

paths may differ by at most a given number b.

� Buffers. Buffer insertion is an increasingly popular solution for maintaining sig-

nal integrity and achieving reasonable signal delay in the global nets of today’s

interconnect-dominated deep-submicron designs. To minimize the increase in area

and power requirements, it is desirable to use the smallest number of buffers that

meets the given upper-bound on buffer–buffer and buffer–terminal wire lengths. The

Minimum number of Steiner Points Tree (MSPT) problem captures this objective by

modeling buffers as Steiner points, possibly of degree 2.

In Chapters 2–4 of this thesis we consider the single-net routing problem under three of

the above objectives: minimizing length, skew, and number of buffers. In the final chapter

we address a multi-net global buffered routing problem in which a large number of nets

must be routed simultaneously using only buffers located at a given set of buffer blocks,

2

each with limited capacity. In the remaining of this chapter we formally introduce these

problems and give a summary of our results.

1.1 Rectilinear Steiner trees

Since VLSI fabrication technology typically mandates the use of only horizontal and vertical

interconnect, the problem that captures the length-minimization objective in global VLSI

routing is the following variant of the classical Steiner tree problem:

Rectilinear Steiner Tree Problem: Given a set of terminals in the plane, find a minimum

length interconnection of the terminals, using only horizontal and vertical wires. Wires are

allowed to meet at points other than the terminals, these non-terminal meeting points are

referred to as Steiner points.

The RST problem was defined by Hanan in 1966 [40], and has been the subject of active

research ever since. Since the RST problem is NP-hard [34], most of the research effort

on the problem has been devoted to designing heuristics and approximation algorithms, see

e.g. [1, 8, 11, 31, 36, 41, 45, 50, 53, 61, 75, 77]. In an extensive survey of RST heuristics

up to 1992 [46], the Batched Iterated 1-Steiner (BI1S) heuristic of Kahng and Robins [49]

emerged as the clear winner, with an average improvement over the MST on terminals of

almost 11%.

After a steady, but relatively slow progress [30, 33, 68], exact RST algorithms have

recently witnessed spectacular progress [73], with the new release of the GeoSteiner

code by Warme, Winter, and Zachariasen matching in average running time the fast BI1S

implementation of Robins. We are thus faced with the paradoxical situation that an exact

algorithm for an NP-hard problem has the same average running time as a state-of-the-art

heuristic for the problem.

In Chapter 2 of this thesis we give a new RST heuristic that improves over the BI1S

heuristic of Kahng and Robins in both speed (the new heuristic is faster by a factor of 2–10,

3

depending on the instance size) and average solution quality. The new heuristic comes

within 0.5% of the optimum solution computed by GeoSteiner on the average, and runs

4–10 times faster than the exact code.

Our results are obtained by exploiting a number of recent algorithmic and implemen-

tation ideas. On the algorithmic side, we build on the recent 3=2 approximation algorithm

of Rajagopalan and Vazirani [64] for the metric Steiner tree problem on quasi-bipartite

graphs; these are graphs that do not contain edges connecting pairs of Steiner vertices.

This algorithm is based on the linear programming relaxation of a sophisticated integer

formulation of the metric Steiner tree problem, called the bidirected cut formulation. It is

well known that the RST problem can be reduced to the metric Steiner tree problem on

graphs [40], however, the graphs obtained from the reduction are not quasi-bipartite. We

give an RV-based heuristic for finding Steiner trees in arbitrary (non quasi-bipartite) metric

graphs. The heuristic, called Iterated RV (IRV), computes a Steiner tree of a quasi-bipartite

subgraph of the original graph using the RV algorithm, in order to select a set of candi-

date Steiner vertices. The process is repeated with the selected Steiner vertices treated

as terminals—thereby allowing the algorithm to pick larger quasi-bipartite subgraphs, and

seek additional Steiner vertices for inclusion in the tree—until no further improvement is

possible.

The efficient implementation of the IRV heuristic depends critically on the size of the

quasi-bipartite subgraphs considered in each iteration. We decrease the size of the graphs

that correspond to RST instances by applying reductions, which are deletions of edges and

vertices that do not affect the quality of the result. Our key edge reduction is based on

Robins and Salowe’s result that bounds the maximum degree of a rectilinear MST [66],

and allows us to retain in the graph at most 4 edges incident to each vertex. Notably, the

same reduction is the basis of a significant speed-up in the running time of BI1S [37], and

is currently incorporated in Robins’ implementation. Our vertex reduction is based on a

simple empty rectangle test [8, 31, 76].

4

It is interesting to note that, due to poor performance and prohibitive running times,

none of the previous algorithms with proven guarantees for the Steiner tree problem in

graphs [1, 8, 36, 61, 77] was found suitable as the core algorithmic idea around which

heuristics can be built for use in the industry. Our adaptation of the RV algorithm fills

this void for the first time, and points to the importance of drawing on the powerful new

ideas developed recently in the emerging area of approximation algorithms for NP-hard

optimization problems.

1.2 Zero- and bounded-skew clock trees

Today’s high-performance VLSI circuits use almost exclusively synchronous designs. In

these circuits, a clock signal, distributed by means of a tree rooted at the clock source,

must be delivered periodically to a set of clock sinks. To achieve maximum clock rate it is

necessary to minimize the clock skew, i.e., the maximum difference in arrival times of the

clock signal at synchronizing elements.

Clock skew can be controlled in a number of ways, e.g., by using wires with non-

uniform width or by inserting buffers. In this thesis we address the most popular approach

of controlling skew, which is to control the length of wires in the clock tree. In this approach,

a feasible routing for a set of sinks S is a zero-skew tree (ZST), i.e., a rooted Steiner tree in

which all root-to-sink paths have equal length. Due to power consumption, signal integrity,

and area utilization considerations, the objective is to minimize the total length of the ZST.

Thus the clock tree construction problem has been formalized [5] as follows:

Rectilinear Zero-Skew Tree Problem: Given a set S of sinks in the rectilinear plane, find

a zero-skew tree of minimum total length for S.

As noted in [50], a more realistic design requirement is captured by bounded-skew

trees (BST). A rooted Steiner tree T for the set S of sinks is a b-bounded-skew tree if the

difference in length between any two root-to-sink paths is at most b.

5

Rectilinear Bounded-Skew Tree Problem: Given a set S of sinks in the plane and bound

b > 0, find a b-bounded-skew tree of minimum total length for S.

The rectilinear BST problem and the generalization of the ZST problem to arbitrary

metric spaces are NP-hard [16]. The complexity of the rectilinear ZST problem is not

known—for a fixed tree topology the problem can be solved in linear time by using the

Deferred-Merge Embedding (DME) algorithm independently introduced in [10, 13, 24].

Although the rectilinear zero- and bounded-skew tree problems have received much

attention in the VLSI CAD literature [6, 10, 13, 14, 19, 24, 25, 47, 18, 54] (see Chapter 4

of [50] for a detailed review), the first algorithms with constant approximation factors have

been proposed only recently, by Charikar et al. [16]. Charikar et al. generalize the ZST

and BST problems to arbitrary metric spaces, and, for this general setting, give algorithms

with approximation factors of 2e � 5:44 and 16.86, respectively. The BST algorithm in

[16] relies on an approximation algorithm for the Steiner tree problem in graphs. Using

the currently best Steiner tree approximation of Robins and Zelikovsky [67] and Arora’s

PTAS for computing rectilinear Steiner trees [3, 4], the BST bounds in [16] can be updated

to 16.11 for arbitrary metric spaces, and to 12.53 for the rectilinear plane.

In Chapter 3 of this thesis we give practical algorithms with improved approximation

factors for both problems. For n points in the rectilinear plane, our algorithms find zero-

and bounded-skew trees of length at most 3 and 9 times the optimum. In general metric

spaces, the respective approximation factors are 4 and 14.

An important feature of our algorithms is their practical running time: our algorithms

run inO(n log n) time for the rectilinear plane and inO(n2) time for arbitrary metric spaces.

Thus, our algorithms can easily handle the clock nets with hundreds of thousands of sinks

that occur in large cell-based or multi-chip module designs.

6

1.3 Bounded edge-length Steiner trees with minimum number of Steiner

points

Bounded edge-length Steiner trees are a natural model for applications arising in VLSI

routing as well as wireless network design. In these applications terminals are points in the

plane, and the underlying metric is either the rectilinear metric,L1, as in buffer insertion for

clock delay and skew minimization, or the Euclidean metric, L2, as in the design of fixed

wireless networks. The goal is to minimize the number of Steiner points, which correspond

to buffers, respectively radio relays.

Minimum Number of Steiner Points Tree Problem: Given a set S of terminals in an

arbitrary metric space and bound R > 0, find a Steiner tree for S with minimum number of

Steiner points among the trees with edges of length at most R.

The MSPT problem, which is a special case of the node-weighted Steiner tree problem

[51], was first introduced by Sarrafzadeh and Wong [69]. The problem is NP-hard even when

restricted to points in the rectilinear or Euclidean planes [69]. The results of [51] and [28]

imply that, for arbitrary metric spaces, the MSPT problem cannot be approximated within

a factor of (1 � ") lnn, where n is the number of terminals, unless NP � TIME(nlog logn).

Thus, the lnn-approximation algorithm of Guha and Kuller [38] is optimal in this case.

Optimal approximation results are not known for the rectilinear and Euclidean planes.

Recently, Lin and Xue [55] considered the following MST heuristic for the MSPT prob-

lem: Compute an MST on terminals, then subdivide each edge (u; v) of the MST via

dd(u; v)=Re � 1 equally spaced Steiner points, where d(u; v) stands for the distance be-

tween u and v. Lin and Xue proved that the MST heuristic has an approximation factor

not worse than 5 in the Euclidean plane, leaving open the problem of finding the exact

approximation factor.

In Chapter 4 of this thesis we give a tight analysis of the MST heuristic for any

Lp metric space, showing that its approximation factor is exactly one less than the MST

7

number, defined as the maximum possible degree of a minimum-degree MST spanning

points from the space. Since the MST numbers for the rectilinear and Euclidean planes are

4 and 5 [66], our analysis implies that for these two metric spaces the MST heuristic has

tight approximation factors of 3 and 4, respectively.

1.4 Multi-net global routing via bu�er blocks

Process scaling leads to an increasingly dominant effect of interconnect on high-end chip

performance. Each top-level global net must undergo repeater insertion to maintain signal

integrity and reasonable signal delay. Estimates of the need for repeater insertion range up

to 106 repeaters for top-level on-chip interconnect for 50nm technology. These repeaters

occupy a significant area on the chip, affect global routing congestion, can entail non-

standard cell height and special power routing requirements, and can act as noise sources.

In a block- or reuse-based methodology, designers seek to isolate repeaters for global

interconnect from individual block implementations.

For these reasons, a buffer block methodology has become increasingly popular in

structured-custom and block-based ASIC methodologies. In Chapter 5 of this thesis we

address the problem of how to perform buffering of global nets given an existing buffer

block plan. We give a provably good algorithm based on a recent approach of Garg

and Könemann [35] and Fleischer [29]. Our method routes the nets using available buffer

blocks subject to both upper and lower bounds on repeater intervals, as well as path-length

upper bounds and buffer parity constraints per connection. More formally, our problem is

defined as follows.

Given:

� a planar region with rectangular obstacles;

� a set of nets in the region, each net has:

8

– a single source and one or more sinks;

– a non-negative importance (criticality) coefficient;

� each sink has:

– a parity requirement, which specifies the required parity of the number of buffers

(inverters) on the path connecting it to the source;

– a timing-driven requirement, which specifies the maximum number of buffers

allowed on this path;

� a set of buffer blocks, each with given capacity; and

� an interval [L;U] specifying lower and upper bounds on the distance between buffers.

The Global Routing via Buffer Blocks (GRBB) Problem is to route a subset of the

given nets, with maximum total importance, such that:

� the distance between the source of a route and its first repeater, between any two

consecutive repeaters, respectively between the last repeater on a route and the route’s

sink, are all between L and U ;

� the number of trees passing through any given buffer block does not exceed the

block’s capacity;

� the number of buffers on each source-sink path should not exceed the given upper

bound and should be of the given parity; to meet the parity constraint two buffers of

the same block can be used.

If possible, the optimum solution to the GRBB problem simultaneously routes all the nets.

Otherwise, it maximizes the sum of the importance coefficients over routed nets. The

importance coefficients can be used to model various practical objectives. For example, im-

portance coefficients of 1 for each net correspond to maximizing the number of routed nets,

9

and importance coefficients equal the number of sinks in the net correspond to maximizing

the number of connected sinks.

In Chapter 5 of this thesis we show that the GRBB problem can be formulated as

a generalized version of (vertex-capacitated) integer multiterminal multicommodity flow

(MTMCF). Exploiting this formulation, we give a new algorithm for the GRBB problem

based on randomized rounding of an approximate solution to the fractional relaxation of

the integer MTMCF program. Prior to our work, multicommodity flow based heuristics

have been applied [60, 70, 12, 43, 2] to unbuffered versions of VLSI global routing in

which the main constraints are given by edge, not vertex, capacities. As noted in [56], the

applicability of these algorithms has often been limited to problem instances of relatively

small size by the prohibitive cost of solving exactly the fractional relaxation. Following

[2], we avoid this limitation by using an approximate MTMCF algorithm. This algorithm,

based on recent results of [35, 29], allows for a smooth trade-off between running time and

solution accuracy. Our experiments show that even MTMCF solutions with low accuracy

give good final solutions for the GRBB problem.

An interesting feature of our algorithm is its ability to work with multiterminal nets—

previous work on the GRBB problem [20, 71] has considered only the case of 2-pin nets.

Experiments on top-level layouts extracted from a recent high-end microprocessor design

validate our MTMCF-based algorithm, and indicate that (1) the algorithm significantly

outperforms existing algorithms for the problem [20], even when applied to 2-pin net

decompositions, and (2) applying the MTMCF algorithm on multipin nets instead of 2-pin

decompositions further increases the quality of the solution, even when the same time

budget is given to both algorithms.

10

Chapter 2

A new heuristic for rectilinear Steiner trees�

2.1 Introduction

The rectilinear Steiner tree (RST) problem is that of finding a minimum-length intercon-

nection of a set of terminals in the plane using only horizontal and vertical wires. The RST

problem was introduced by Hanan in 1966 [40], and has been the subject of active research

ever since, mostly because of its aplications in electronic design automation. Although

recent advances of integrated circuit technology into the deep-submicron realm have intro-

duced additional routing objectives besides length minimization, the Steiner tree problem

retains its importance for non-critical nets and in physically small instances.

Since the RST problem is NP-hard [34], most of the research effort on the problem

has been devoted to designing heuristics and approximation algorithms, see e.g. [1, 8, 11,

31, 36, 41, 45, 49, 53, 61, 75, 77]. In an extensive survey of RST heuristics up to 1992

[46], the Batched Iterated 1-Steiner (BI1S) heuristic of Kahng and Robins [49] emerged

as the clear winner with an average improvement over the MST on terminals of almost

11%. Subsequently, two other heuristics [11, 53] have been reported to match the same

performance.

After a steady, but relatively slow progress [30, 33, 68], exact RST algorithms have

recently witnessed spectacular progress [73] (see also [32]). The new release [74] of the

GeoSteinercode by Warme, Winter, and Zachariasen has average running time comparable

to the fast BI1S implementation of Robins [65] on random instances. We are thus faced

�This chapter is based on joint work with Vijay V. Vazirani and Joseph L. Ganley [57, 58].

11

with the paradoxical situation that an exact algorithm for an NP-hard problem has the same

average running time as a state-of-the-art heuristic for the problem. It appears that, for the

RST problem, progress on heuristics has lagged behind that on exact algorithms.

We try to remedy this situation by proposing a new RST heuristic. Our experiments show

that the new heuristic has better average running time than both Robins’ implementation of

BI1S and the GeoSteiner code. Moreover, the new heuristic gives higher-quality solutions

than BI1S on the average; of course, it cannot beat GeoSteiner in solution quality.

Our results are obtained by exploiting a number of recent algorithmic and implemen-

tation ideas. On the algorithmic side, we build on the recent 3=2 approximation algorithm

of Rajagopalan and Vazirani [64] for the metric Steiner tree problem on quasi-bipartite

graphs; these are graphs that do not contain edges connecting pairs of Steiner vertices.

This algorithm is based on the linear programming relaxation of a sophisticated integer

formulation of the metric Steiner tree problem, called the bidirected cut formulation. It is

well known that the RST problem can be reduced to the metric Steiner tree problem on

graphs [40], however, the graphs obtained from the reduction are not quasi-bipartite. We

give an RV-based heuristic for finding Steiner trees in arbitrary (non quasi-bipartite) metric

graphs. The heuristic, called Iterated RV (IRV), computes a Steiner tree of a quasi-bipartite

subgraph of the original graph using the RV algorithm, in order to select a set of candi-

date Steiner vertices. The process is repeated with the selected Steiner vertices treated

as terminals—thereby allowing the algorithm to pick larger quasi-bipartite subgraphs, and

seek additional Steiner vertices for inclusion in the tree—until no further improvement is

possible.

The efficient implementation of the IRV heuristic depends critically on the size of the

quasi-bipartite subgraphs considered in each iteration. We decrease the size of the graphs

that correspond to RST instances by applying reductions, which are deletions of edges and

vertices that do not affect the quality of the result. Our key edge reduction is based on

Robins and Salowe’s result that bounds the maximum degree of a rectilinear MST [66],

12

and allows us to retain in the graph at most 4 edges incident to each vertex. Notably, the

same reduction is the basis of a significant speed-up in the running time of BI1S [37], and

is currently incorporated in Robins’ implementation [65]. Our vertex reduction is based on

a simple empty rectangle test that has its roots in the work of Berman and Ramaiyer [8]

(see also [31, 76]).

We ran experiments to compare our implementation of IRV against Robins’ implemen-

tation of BI1S [65] and against the GeoSteiner code of Warme, Winter, and Zachariasen

[74]. The results reported in Section 2.4 show that, on both random and real VLSI instances,

our new heuristic produces on the average higher-quality solutions than BI1S. The quality

improvement is not spectacular, but we should note that solutions produced by BI1S are

already less than 0.5% away from optimum on the average.

More importantly, IRV’s improvement in solution quality is achieved with an excellent

running time. On random instances with up to 250 terminals, our IRV code runs 4–10

times faster than the lp solve based version of GeoSteiner used in our experiments, and

2–10 times faster than Robins’ implementation of BI1S—the speed-up increases with the

number of terminals. After noticing that BI1S can also benefit from vertex reductions, we

incorporated the empty rectangle test into Robins’ BI1S code. The enhanced BI1S code

becomes about 30% faster than our IRV code on large random instances. However, this

does not necessarily mean that BI1S is the best heuristic in practice. Results on real VLSI

instances indicate a different hierarchy: On these instances both IRV and GeoSteiner are

faster than the enhanced BI1S.

It is interesting to note that, due to poor performance and prohibitive running times,

none of the previous algorithms with proven guarantees for the Steiner tree problem in

graphs [1, 8, 36, 61, 77] was found suitable as the core algorithmic idea around which

heuristics can be built for use in the industry. Our adaptation of the RV algorithm fills

this void for the first time, and points to the importance of drawing on the powerful new

ideas developed recently in the emerging area of approximation algorithms for NP-hard

13

optimization problems [72].

The remainder of this chapter is structured as follows. Section 2.2 describes the RV

algorithm and its extension to non quasi-bipartite graphs. Section 2.3 describes how this

extension, IRV, is used to solve RST instances, and Section 2.4 presents experimental

results comparing IRV with BI1S and GeoSteiner on test cases both randomly generated

and extracted from real circuit designs.

2.2 Steiner trees in graphs

The metric Steiner tree in graphs (GST) problem is: Given a connected graph G = (V;E)

whose vertices are partitioned in two sets, T and S, the terminal and Steiner vertices

respectively, and non-negative edge costs satisfying the triangle inequality, find a minimum

cost tree spanning all terminals and any subset of the Steiner vertices. Recently, Rajagopalan

and Vazirani [64] presented a 3/2 approximation algorithm (henceforth refered to as the

RV algorithm) for the GST problem when restricted to quasi-bipartite graphs, i.e., graphs

that have no edge connecting a pair of Steiner vertices. In this section we review the

RV algorithm, discuss its implementation, and present an RV-based heuristic for the GST

problem on arbitrary graphs.

2.2.1 The bidirected cut relaxation

The RV algorithm is based on a sophisticated integer programming (IP) formulation of the

GST problem. A related, but simpler formulation is given by the following observation: A

set of edges E0 � E connects terminals in T if and only if every cut of G separating two

terminals crosses at least one edge ofE0. The IP formulation resulting from this observation

is called the undirected cut formulation. The IP formulation on which the RV algorithm is

based, called the bidirected cut formulation, is obtained by considering a directed version

of the above cut condition.

14

Let ~E be the set of arcs obtained by replacing each undirected edge (u; v) 2 E by two

directed arcs u! v and v ! u. For a set C of vertices, let �(C) be the set of arcs u! v

with u 2 C and v 2 V nC . Finally, if to is a fixed terminal, let C contain all sets C � V that

contain at least one terminal but do not contain to. The bidirected cut formulation attempts

to pick a minimum cost collection of arcs from ~E in such a way that each set in C has at

least one outgoing arc:

minimize
X
e2~E

cost(e)xe (1)

s.t.
X

e: e2�(C)

xe � 1; C 2 C

xe 2 f0; 1g; e 2 ~E

By allowing xe’s to assume non-negative fractional values we obtain a linear program (LP)

called the bidirected cut relaxation of the GST problem:

minimize
X
e2~E

cost(e)xe (2)

s.t.
X

e: e2�(C)

xe � 1; C 2 C

xe � 0; e 2 ~E

The dual of the covering LP (2) is the packing LP:

maximize
X
C2C

yC (3)

s.t.
X

C: e2�(C)

yC � cost(e); e 2 ~E

yC � 0; C 2 C

From LP-duality theory, the cost of any feasible solution to (3) is less than or equal to the

15

cost of the optimum solution to (2), and hence, less than or equal to the cost of any feasible

solution to (1). The RV algorithm uses this observation to guarantee the quality of the

solution produced: The algorithm constructs feasible solutions to both IP (1) and LP (3),

in such a way that the costs of the two solutions differ by at most a factor of 3/2.

2.2.2 The RV algorithm

The RV algorithm works on quasi-bipartite graphs G. At a coarse level, the RV algorithm

is similar to the Batched Iterated 1-Steiner algorithm of Kahng and Robins [49]: Both

algorithms work in phases, and in each phase some Steiner vertices are iteratively added to

the set of terminals. While BI1S adds Steiner vertices to T greedily—based on the decrease

in the cost of the MST—the RV algorithm uses the bidirected cut relaxation to guide the

addition.

In each phase, the RV algorithm constructs feasible solutions to both IP (1) and LP

(3). The bidirected cut formulation and its relaxation are inherently asymmetric, since they

require a terminal to to be singled out. However, the RV-Phase algorithm works in a

symmetric manner: The information it computes can be used to derive feasible solutions

for any choice of to.

A set C � V is called proper if both C and V n C contain terminals; with respect

to the original set of terminals only sets in C and their complements are proper. During

its execution, the RV-Phase algorithm tentatively converts some Steiner vertices into

terminals; note that the only proper sets created by these conversions are singleton sets

containing new terminals, and their complements. The algorithm maintains a variable yC ,

called dual, for every proper set, including the newly created ones. The amount of dual felt

by arc e is
P

C : e2�(C) yC ; we say that e is tight when
P

C : e2�(C) yC = cost(e). A set C of

vertices is unsatisfied if it is proper and �(C) does not contain any tight arc.

The RV-Phase algorithm (Algorithm 1) starts with yC set to 0 for every proper set C ,

and an empty list ~L of tight arcs. It then proceeds in a primal-dual manner, by alternatively

16

Input: Bidirected quasi-bipartite graphG = (V; ~E), set T � V of terminals
Output: Augmented set T

1. ~L ;; For each proper set C, yC 0
2. If all proper sets are satisfied by arcs in ~L, return T and exit
3. Otherwise, uniformly raise the y values of minimally unsatisfied sets until an arc

u! v goes tight
4. If u =2 T , then T T [fug; repeat from Step 1

5. Else, ~L ~L [fu! vg; repeat from Step 2

Algorithm 1: The RV-Phase algorithm

raising dual variables as long as this does not violate the packing constraints of (3), and

picking tight edges into ~L, thus satisfying more and more proper sets. When the algorithm

stops, all proper sets are satisfied by tight arcs in ~L.

Theorem 1 [64] (a) If arc u ! v, u =2 T , goes tight then cost(MST(T [fug)) <

cost(MST(T)).

(b) At the end of the RV-Phase algorithm, cost(MST(T [fug)) � cost(MST(T)) for

every u =2 T .

The RV algorithm (whose pseudo-code we omit) repeats the RV-Phase algorithm

followed by removal of unnecessary Steiner vertices, until no further improvement is made

in the cost of MST(T). At the end of the algorithm, the duals raised around proper sets

are converted into a solution to (1) by picking to and discarding yS’s with S =2 C. The

3/2 approximation guarantee follows by relating the cost of this solution to the cost of

MST(T).1

1The tree produced by the RV algorithm is locally optimal, i.e., cannot be improved by the adition or
deletion of a single Steiner vertex. Recently, Robins and Zelikovsky [67] used a different argument to prove
that any locally optimal Steiner tree gives a 3/2-approximation for the metric Steiner tree in quasi-bipartite
graphs.

17

2.2.3 E�cient implementation of the RV-Phase algorithm

Since our heuristic for general graphs uses the RV-Phase algorithm as a subroutine, we

describe here an efficient implementation of it. Several implementation ideas are derived

from the following key property maintained throughout the RV-Phase algorithm:

Lemma 2 [64] Let u and v be two terminals. If all arcs along some path u! x1 ! � � � !

xk ! v are tight, then so are the arcs on the reverse path, v ! xk ! � � � ! x1 ! u.

For implementation purposes we do not need to keep track of the duals raised; all that

matters is the order in which arcs get tight. The tightening time of an arc can be determined

by monitoring the number of minimally unsatisfied sets (henceforth called active sets) that

are felt by that arc.

It is easy to see that the set of vertices reachable via tight arcs from a terminal u forms

an active set; Lemma 2 implies that no other active set can contain u. Thus, we get:

Corollary 3 For any terminal u, there is exactly one active set containing u at any time

during the algorithm. Hence, the tightening time of any arc u ! v, u 2 T , is exactly

cost(u; v).

Unlike terminals, Steiner vertices may be contained in multiple active sets. Hence, arcs

out of Steiner vertices will feel dual at varying rates during the algorithm.

Lemma 4 Let u be a Steiner vertex. If arc u ! v goes tight in the RV-Phase algorithm,

then arc v ! u goes tight at the same time or before u ! v does. Moreover, each arc

u! w for which w! u is already tight will go tight together with u! v.

Proof : In order to get tight, u ! v must feel some active set, i.e., there must exist a

tight path from a terminal v0 6= v to u. After u ! v gets tight, there is a tight path from

v0 to v, and, by Lemma 2, the reverse path (hence the arc v ! u) must also be tight. The

second claim follows similarly. 2

18

Since several arcs out of a Steiner vertex get tight simultaneously, we say that the vertex

crystallizes when this happens. Note that crystallization is precisely the moment when the

vertex is added to T , i.e., when it begins to be treated as terminal. Lemma 4 implies that, in

order to detect when a Steiner vertex crystallizes, it suffices to monitor the amount of dual

felt by the shortest arc out of that Steiner vertex, which we will call critical arc.

Our implementation of RV-Phase (Algorithm 2) is a discrete-event simulation of the

continuous-time Algorithm 1. The structure of the algorithm is reminiscent of the well-

known MST algorithm of Kruskal (see, e.g., [21]): Arcs out of terminals are sorted in non-

decreasing order, then marked as tightened one by one (and active sets updated accordingly)

until a Steiner vertex crystallizes or all terminals are connected. However, unlike Kruskal’s

algorithm, which visits each edge only once, the RV-Phase algorithm must restart the tree

construction from scratch after each vertex crystallization. Our implementation exploits the

fact that the two opposite arcs connecting a pair of terminals get tight at the same time, and

handles one of these arcs implicitly. The main advantage of this implicit representation is

that the list of arcs out of terminals does not have to be updated and re-sorted after vertex

crystallizations.

In order to determine the crystallization times, we maintain for each terminal u its active

set, as(u), i.e., the set of vertices reachable from u by tight arcs. We also maintain for each

Steiner vertex s the cost c(s) of its critical arc and the number na(s) of active sets containing

s. Whenever na(s) changes its value we update the amount df(s) of dual felt by the critical

arc of s. Notice that, if na(s) > 1, the critical arc of s feels only na(s) � 1 of the active

sets, since one of the active sets contains both ends of the critical arc. Thus, if na(s) > 1,

the estimate for the crystallization time of s is given by ut(s)+(c(s)�df(s))=(na(s)�1),

where ut(s) represents the time of the last update of df(s). If na(s) � 1, the critical arc of

s feels no dual, so s has an estimated crystallization time of1.

19

Input: Bidirected quasi-bipartite graphG = (V; ~E), set T � V of terminals
Output: Augmented set T

1. Let a1; : : : ; am be the arcs in f(u; v) 2 ~Eju; v 2 T; u < vg[

f(u; v) 2 ~E j u 2 T; v =2 Tg, sorted non-decreasingly by cost
2. S V n T ; time 0; i 1

For each t 2 T , as(t) ftg

For each s 2 S,

c(s) minfcost(s; u) j (s; u) 2 ~Eg

df(s) 0; na(s) 0; ut(s) 0

3. (u; v) ai; time cost(u; v)

4. C fs 2 S j na(s) > 1g

If C 6= ; then

ct minfut(s) + (c(s)� df(s))=(na(s)� 1) j s 2 Cg

s0 argminfut(s) + (c(s)� df(s))=(na(s)� 1) j s 2 Cg

Else, ct 1

5. If time > ct then T T [fs0g; repeat from step 2
6. Else, if v 2 S and v =2 as(u) then

If na(v) > 1, df(v) df(v) + (na(v)� 1)(time� ut(v))
as(u) as(u) [fvg; na(v) na(v) + 1; ut(v) time

7. Else, if v 2 T and v =2 as(u) then

For each s 2 as(u) \ as(v) do

df(s) df(s) + (na(s)� 1)(time� ut(s))

na(s) na(s)� 1; ut(s) time

as(u) as(v) as(u) [as(v)

8. If T � as(u) then return T and exit
9. Else, i i+ 1; repeat from Step 3

Algorithm 2: Implementation of the RV-Phase algorithm

20

Input: Arbitrary graph G = (V;E), set T � V of terminals
Output: Steiner tree on terminals

1. Tbest Tin T

2. Remove from G all edges (u; v) with u; v =2 T , bidirect remaining edges, then
run the RV-Phase algorithm on the resulting graph. This will add some Steiner
vertices to T

3. Construct an MST on T , then prune from T n Tin all vertices with tree degree
� 2

4. If cost(MST(T)) < cost(MST(Tbest)) then

Tbest T ; repeat from Step 2

5. Return MST(Tbest).

Algorithm 3: The IRV algorithm

Maintaining active sets using an augmented disjoint-set data-structure leads to a worst

case running time ofO(k � jT j � jSj), where k is the number of crystallized Steiner vertices—

all other operations are performed in O(k � jEj � log jV j).

2.2.4 The iterated RV heuristic

A simple way of dealing with non-quasi-bipartite graphs is to remove all Steiner-Steiner

edges and then run the RV algorithm. To allow Steiner-Steiner edges to come into play, we

iterate this process. If a Steiner vertex is added to T during some run of the RV algorithm,

for subsequent runs we extend the graph by adding all edges incident to it, not just those

leading to terminals.

Preliminary experiments have shown that it is better—in both running time and solution

quality—to extend the graph after running just one RV-Phase, not the full RV algorithm,

on the quasi-bipartite graph. This gives Algorithm 3.

21

2.3 Rectilinear Steiner trees

The rectilinear Steiner tree (RST) problem is defined as follows: Given a set T of terminals

in the plane, find a shortest interconnection of the terminals using only horizontal and

vertical lines. Lines are allowed to meet at points other than the terminals; as usual,

non-terminal meeting points are called Steiner points.

By a classical result of Hanan [40], there exists an optimal rectilinear Steiner tree that

uses only Steiner points located at intersections of vertical and horizontal lines passing

through terminals. Thus, finding a minimum rectilinear Steiner tree on a set of terminals

reduces to finding a minimum Steiner tree in the Hanan grid, with edge costs given by the

L1 (or Manhattan) metric, d(u; v) = jxu � xvj+ jyu � yvj.

The IRV algorithm yields good results when applied to a graph for which the cost and

structure of the minimum Steiner tree does not change much after the removal of Steiner-

Steiner edges. For the RST problem, the best choice with respect to solution quality is to

run IRV on the complete graph induced by the Hanan grid. We obtain a practical running

time by applying a few simple, yet very effective, reductions to this graph.

2.3.1 Edge reductions

By a result of Robins and Salowe [66], for any set of points there exists a rectilinear MST

in which each point p has at most one neighbor in each of the four diagonal quadrants,

�x � y < x, �y < x � y, x < y � �x, and y � x < �y, translated at p. Hence,

the optimum Steiner tree in the quasi-bipartite graph is not affected if we remove all edges

incident to a Steiner vertex except those connecting it to the closest terminals from each

quadrant. We can also discard all edges connecting pairs of terminals except for the jT j � 1

edges in MST(T)—this merely amounts to a particular choice of breaking ties between

terminal-terminal edges during RV-Phase. Combined, these two edge reductions leave a

quasi-bipartite graph with O(jT j+ jSj) edges, as opposed to O(jT j � (jT j+ jSj)) without

22

(x ,y)

v

u

u v

Figure 1: The empty rectangle test

edge reductions.

2.3.2 Vertex reductions

Zachariasen [76] noted that reductions based on structural properties of full Steiner com-

ponents, which play a crucial role for exact algorithms such as [30] and [73], can also be

used to remove from the Hanan grid a large number of Steiner vertices without affecting

the optimum Steiner tree. Simpler versions of these reductions suffice in our case, since we

only want to leave unaffected the optimum Steiner tree in the graph that results after the

removal of Steiner-Steiner edges.

We incorporated in our code a version of the empty rectangle test [76], originally due

to Berman and Ramaiyer [8]. Consider a grid point found, say, at the intersection of

the vertical line through a terminal u and the horizontal line through a terminal v (see

Figure 1). The empty rectangle test says that the point must be retained in the graph only

if (1) the rectangle determined by terminals u and v is empty, i.e., contains no terminals in

its interior, and (2) the shaded quadrant contains at least one terminal. We used a simple

O(jT j2) implementation of this test; an O(jT j log jT j+ k) implementation, where k is the

number of empty rectangles, is also possible [39].

23

As noted in [31, 76], a stronger version of the empty rectangle test is guaranteed to

remove all but a set of O(jT j) Steiner points, still with no increase in the cost of the

optimum RST with no Steiner-Steiner edges. By using this stronger test the overall running

time of IRV as applied to RST reduces to O(k � jT j2), where k is the number of crystallized

Steiner vertices (usually a small fraction of jT j).

2.4 Experimental results

We compared our algorithm against Robins’ implementation [65] of BI1S [49, 37], and

against the recent release [74] of the exact GeoSteiner algorithm of Warme, Winter, and

Zachariasen [73].

2.4.1 Experimental setup

All experiments were conducted on a SGI Origin 2000 with 16 195MHz MIPS R10000

processors—only one of which is actually used by the sequential implementations included

in our comparison—and 4 G-Bytes of internal memory, running under IRIX 6.4 IP27.

Timing was performed using low-level Unix interval timers, under similar load conditions

for all experiments.

We coded our heuristic in C; Robins’ BI1S implementation and GeoSteiner are coded

in C as well. The three programs were compiled using the same compiler (gcc version

egcs-2.90.27) and optimization options (-O4). Whenever we had a choice in the configu-

ration of BI1S or GeoSteiner, we optimized for speed. The only exception to this rule

was the choice of LP–solver in GeoSteiner: Since CPLEX was not available on our test

machine, we configured GeoSteiner to use Warme’s customized version of the public-

domain package lp solve. In order to assess the loss in speed induced by this choice, we

ran both versions of GeoSteiner on a different machine that had a licensed copy of CPLEX

6.5.1. Although CPLEX is generally considered to be significantly faster than lp solve,

24

the CPLEX version of GeoSteiner was only 30% faster than the lp solve version on ex-

periments involving 1000 random instances. The lp solve version of GeoSteiner contains

some optimizations—made possible by intimate access to the internals of lp solve—not

included in the CPLEX version. However, since the optimized portions of the code were

infrequently executed in our experiments, these optimizations do not fully explain the un-

expectedly small speed advantage of CPLEX. As suggested by David Warme, the most

plausible explanation is the expensive CPLEX preprocessing, that pays off handsomely on

large and difficult instances but not as well on the LPs occurring in our computational study.

The test bed for our experiments consisted of two categories of instances:

� Random instances: For each instance size between 10 and 250, in increments of 10,

we generated uniformly at random 1,000 instances2 consisting of points in general

position3 drawn from a 10000� 10000 grid.

� Real VLSI instances: To further validate our results, we ran the three competing

algorithms on a set of 9 large instances extracted from two different VLSI designs.

2.4.2 Solution quality

Following the standard practice [46], we use the percent improvement over the MST on

terminals,

cost(MST)� cost(Algo. RST)
cost(MST)

� 100;

to compare the quality of the RSTs produced by the three algorithms.

2Of the total of 25,000 random instances, the lp solve based GeoSteiner exhibited numerical instability
on 18. These instances could only be solved by turning on a perturbation scheme that has the effect of slowing
down GeoSteiner. In the solution quality results reported below for GeoSteiner we use all 25,000 instances,
since all of them could be solved to optimality in one way or another. However, in the running time results
we omit these 18 instances to avoid penalizing GeoSteiner for the increased running time caused by turning
on perturbations.

3A set of points is in general position if no two points share a common x- or y-coordinate.

25

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

0 50 100 150 200 250

Im
pr

ov
em

en
t o

ve
r

M
S

T
 (

%
)

No. terminals

GeoStnr
BI1S
IRV

Figure 2: Average improvement over MST

Figure 2 shows the average percent improvement over MST for BI1S, IRV, and

GeoSteiner on random instances. Both IRV and BI1S come on the average within 0.5%

of the optimum solution found by GeoSteiner. Moreover, IRV has a very small advantage

over BI1S for almost all instance sizes. Although this advantage is small—less than 0.05%

on the average—it is statistically very significant, i.e., likely to be observed with high

probability on any set of instances. Figure 3 shows the 95% confidence intervals for the

expected difference between the percent improvement over MST of IRV and the percent

improvement over MST of BI1S. For all but three instance sizes the confidence interval

does not contain the origin. Wilcoxon’s signed-rank sum test [42] also confirms—with a

one-sided p-value lower than 0.001 for instances of size 100 or more—the small advantage

that IRV has over BI1S.

For a more detailed comparison, Figure 4 gives a scatter plot of the percent improvement

over MST of IRV versus that of BI1S for the 1000 random instances with 250 terminals. On

26

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 50 100 150 200 250

(I
R

V
 %

 im
pr

ov
.)

 -
 (

B
I1

S
 %

 im
pr

ov
.)

No. terminals

Avg.

Figure 3: 95% confidence intervals for the difference in percent improvement over MST of
IRV and BI1S

61% of these instances IRV finds a better solution than BI1S. The quality of the solutions

produced by IRV is further illustrated by the scatter plot in Figure 5, which shows the

percent improvement over MST of IRV versus the maximum possible improvement. On

the same 1000 random instances, IRV is rarely more than 1% away from optimum, and on

the average is less than 0.5% away.

Solution quality results on VLSI instances are presented in Table 1. These results are

consistent with the findings on random instances: IRV gives solutions of the same quality

as BI1S on 3 instances, of better quality on 5 instances, and of worse quality on 1 instance.

Both heuristics come very close to optimum; in fact, BI1S finds an optimum solution on

one instance and IRV finds optimum solutions twice.

2.4.3 Running time

We noted in Section 2.3 that our IRV implementation uses edge and vertex reductions in

order to speed-up the computation. Figure 6 shows the speed-up obtained by using the

empty rectangle test described in section 2.3.2; edge reductions described in Section 2.3.1

lead to an even more significant speed-up, similar to the one reported in [37] for BI1S.

Despite its simplicity, the empty rectangle test reduces the number of Steiner points by a

27

8

9

10

11

12

13

8 9 10 11 12 13

IR
V

 im
pr

ov
em

en
t o

ve
r

M
S

T
 (

%
)

BI1S improvement over MST (%)

Figure 4: IRV vs. BI1S on 1000 250–terminal instances

8

9

10

11

12

13

8 9 10 11 12 13

IR
V

 im
pr

ov
em

en
t o

ve
r

M
S

T
 (

%
)

GeoSteiner improvement over MST (%)

Figure 5: IRV vs. GeoSteiner on 1000 250–terminal instances

28

Design.Net No. term. No. Stnr. BI1S IRV GeoStnr

16BSHREG.CLK 185 1375 1.757 1.757 1.757
16BSHREG.RESET 406 4730 3.666 3.666 3.810
16BSHREG.VDD 573 5089 8.079 8.079 8.118
16BSHREG.VSS 556 6058 7.854 8.131 8.192
MAR.BRANCH 188 2034 9.007 9.158 9.221
MAR.CLK 264 3355 7.637 7.748 7.957
MAR.GND 245 3264 6.300 6.321 6.476
MAR.RESET 109 1021 11.206 11.246 11.246
MAR.VDD 340 3681 6.038 6.003 6.181

Table 1: Average percent improvement over MST on VLSI instances

Design.Net No. term. No. Stnr. BI1S IRV GeoStnr

16BSHREG.CLK 185 1375 1.31 0.25 2.80
16BSHREG.RESET 406 4730 10.07 1.65 4.37
16BSHREG.VDD 573 5089 30.29 2.94 1.73
16BSHREG.VSS 556 6058 36.71 3.29 7.90
MAR.BRANCH 188 2034 1.26 0.62 5.21
MAR.CLK 264 3355 2.34 1.57 13.16
MAR.GND 245 3264 1.96 1.26 1.03
MAR.RESET 109 1021 0.24 0.16 0.65
MAR.VDD 340 3681 7.69 1.59 8.19

Table 2: Running time on VLSI instances

29

factor of over 15 for 250 terminal instances. This speeds up the IRV algorithm by essentially

the same factor. Due to the direct correspondence between the reduction in Steiner vertices

and the speed-up of the algorithm, it seems worthwhile to explore further reduction ideas,

in particular those suggested in [31, 76].

After noticing that BI1S can also benefit from vertex reductions, we incorporated the

empty rectangle test into Robins’ code. As shown in Figure 6, we obtained again a speed-up

roughly equal to the decrease in the number of Steiner vertices. All running times reported

below for BI1S refer to this sped-up version of Robins’ code.

Figure 7 compares the average running time of BI1S, IRV, and GeoSteiner on random

instances. On these instances IRV is 4–10 times faster than GeoSteiner and BI1S is

30% faster than IRV. Surprisingly, the results on VLSI instances presented in Table 2

indicate different trends than results on random instances. On these instances, both IRV and

GeoSteiner run significantly faster than predicted by experiments on random instances.

In particular, IRV is always faster than BI1S, sometimes by as much as a factor of 10.

Although IRV is still faster than GeoSteiner, the difference in speed is not as impressive

on these instances as it is on random instances.

2.4.4 Convergence rate

Figures 8 and 9 display the rate of convergence to the final solution for BI1S, IRV, and

GeoSteiner, when run on 16BSHREG.RESET and on a random instance of the same size,

respectively. Each point on the IRV and BI1S curves corresponds to the addition/deletion

of a single Steiner point to/from the solution; the points defining the GeoSteiner curve

represent moments when better feasible solutions are found during the branch-and-cut

search. A logarithmic time-scale is used in both figures to better put in perspective the early

rate of convergence for each algorithm.

Although Figures 8 and 9 don’t give much insight on GeoSteiner, they do capture many

of the fundamental features of BI1S and IRV. For example, it is immediately apparent that

30

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250

S
pe

ed
-u

p
fa

ct
or

No. terminals

Steiner pt. reduction
BI1S speed-up
IRV speed-up

Figure 6: Speed-up achieved by using the empty rectangle test

0

5

10

15

20

25

0 50 100 150 200 250

A
vg

. C
P

U
 ti

m
e

(s
ec

.)

No. terminals

GeoStnr
BI1S
IRV

Figure 7: Average CPU time

31

0

2

4

6

8

10

0.25 0.5 1 2 4 8 16

%
 a

w
ay

 fr
om

 O
P

T

CPU seconds

GeoStnr
BI1S
IRV

Figure 8: Convergence to the final solution on instance 16BSHREG.RESET

0

2

4

6

8

10

12

14

0.25 0.5 1 2 4 8 16 32 64

%
 a

w
ay

 fr
om

 O
P

T

CPU seconds

GeoStnr
BI1S
IRV

Figure 9: Convergence to the final solution on a random 406–terminal instance

32

BI1S uses a greedy strategy, selecting in each step the point whose addition to the solution

gives the largest immediate gain. By contrast, due to the different nature of its selection

rules, IRV may select some points with very large gain only late in the process. IRV differs

from BI1S not only with respect to the order in which Steiner points are selected, the

two algorithms end up making different selections as well. For example, although the two

algorithms obtain solutions of the same cost on 16BSHREG.RESET, the two solutions are

not identical. Out of 68 Steiner points selected by IRV and 67 selected by BI1S, only 51

are shared—42 of which are also selected by GeoSteiner.

The phase structure of IRV and BI1S is also clearly visible in Figures 8 and 9. Both

algorithms need 3 phases on 16BSHREG.RESET, and 5 on the random instance. The

first phase adds most Steiner vertices to the solution, also giving the bulk of the overall

improvement in solution quality. The following phases add fewer and fewer points, with

the last phase merely verifying that a local optimum has been reached.

Although Steiner point selection is slower in IRV than in BI1S (compare the slopes),

IRV appears to have a smaller phase–setup cost compared to BI1S. Indeed, IRV’s phase

initialization consists of sorting the edges in the quasi-bipartite graph, while BI1S needs to

start a phase by computing the gain corresponding to each Steiner point—this is done by an

MST computation for each Steiner point. Surprisingly, Robins’ MST algorithm seems to

work better on random sets of points: the phase–setup time in Figure 9 is less than a third of

the phase-setup time in Figure 8, despite the fact that the random instance has more Steiner

points (7366 versus 4730 in 16BSHREG.RESET). This explains why BI1S is faster than

IRV on random instances but not on VLSI instances.

2.4.5 Running time predictability

Figure 10 gives histograms for the running times of GeoSteiner, BI1S, and IRV on 1000

instances of size 250. Most striking is the heavy-tailed distribution for the running time

of GeoSteiner (note the logarithmic scale along GeoSteiner’s time axis). The running

33

time of BI1S has a multi-spike distribution, determined by the number of phases—typically

between 2 and 4. The running time of the IRV algorithm depends in a much smoother

way on the number of phases (again between 2 and 4 most of the time) due to its reduced

phase–setup cost.

2.5 Conclusions

The experimental data presented in Section 2.4 shows that IRV produces high-quality

rectilinear Steiner trees, typically better than those produced by the Batched Iterated 1-

Steiner heuristic. The same data shows that BI1S is significantly sped up by the addition of

the empty rectangle test. With this enhancement, BI1S runs 30% faster than IRV on random

instances, but not on large VLSI instances as those considered in our experiments. It should

be interesting to perform extensive tests on full VLSI designs to see how the running times

of the two heuristics compare when applied to a mix of both small and large nets.

Our experimental data also confirms the excellent average running time of the exact

GeoSteiner algorithm of Warme, Winter, and Zachariasen [73]. When exact algorithms

achieve practical running times, one is immediately prompted to ask if any interest remains

in suboptimal heuristics. We think that this interest will not disappear, at least not in those

RST applications where speed is more important than a small loss in solution accuracy, e.g.,

in wire-length estimation during placement.

Compared to GeoSteiner, heuristics such as BI1S and IRV have the advantage of a

more predictable and worst-case bounded running time.4 Moreover, BI1S and IRV hold

more promise than the GeoSteiner algorithm for giving efficient solutions to objective

functions other than length minimization. Since both BI1S and IRV are essentially solving

the Steiner tree problem in graphs, they can be adapted without much loss in efficiency to

4Of course, GeoSteiner takes exponential time in the worst case. For example, Berman, Fössmeier,
Karpinski, Kaufmann and Zelikovsky [7] (see also [50], pp. 39–40) give an infinite family of RST instances
on which GeoSteiner provably needs exponential time.

34

0

20

40

60

80

100

1 2 4 8 16 32 64 128 256 512

F
re

qu
en

cy

GeoStnr CPU time (sec)

0

20

40

60

80

100

1 1.5 2 2.5 3 3.5 4

F
re

qu
en

cy

BI1S CPU time (sec)

0

20

40

60

80

100

1 1.5 2 2.5 3 3.5 4

F
re

qu
en

cy

IRV CPU time (sec)

Figure 10: Histograms of running times on 1000 250–terminal instances

35

almost any edge-cost function—IRV does rely on costs satisfying triangle inequality. In

contrast, the efficiency of a critical phase in the GeoSteiner algorithm, the Full Steiner Tree

(FST) generation phase, heavily depends on structural properties specific to the underlying

metric space. Even when well-understood, these structural properties may not lead to the

same efficiency as in the rectilinear case. For example, FST generation is more than 100

times slower on Euclidean instances than it is on rectilinear ones, and becomes in this case

the bottleneck of the whole algorithm [73].

36

Chapter 3

Practical approximation algorithms for zero- and bounded-skew

clock trees�

3.1 Introduction

Today’s high-performance VLSI circuits use almost exclusively synchronous designs. In

these circuits, a clock signal, distributed by means of a tree rooted at the clock source, must

be delivered periodically to a set of synchronizing elements, or clock sinks. To achieve

maximum clock rate it is necessary to minimize the clock skew, i.e., the maximum difference

in arrival times of the clock signal at synchronizing elements.

In the typical VLSI physical design cycle, clock routing is done after the placement

phase has determined positions for all clock sinks. At this stage the clock skew can be

controlled in a number of ways, e.g., by using wires with non-uniform width or by inserting

buffers. We address the most popular approach, which is to control the wirelength in the

clock tree. In this approach, a feasible routing for a set of sinks S is a zero-skew tree

(ZST), i.e., a rooted Steiner tree in which all root-to-sink paths have equal length. Due to

power consumption, signal integrity, and area utilization considerations, the objective is to

minimize the total length of the ZST. Thus the clock tree construction problem has been

formalized [5] as follows:

Rectilinear Zero-Skew Tree Problem: Given a set S of sinks in the rectilinear plane, find

a zero-skew tree of minimum total length for S.

�This chapter is based on joint work with Alexander Z. Zelikovsky [78].

37

As noted in [50], a more realistic design requirement is captured by bounded-skew

trees (BST). A rooted Steiner tree T for the set S of sinks is a b-bounded-skew tree if the

difference in length between any two root-to-sink paths is at most b.

Rectilinear Bounded-Skew Tree Problem: Given a set S of sinks in the plane and bound

b > 0, find a b-bounded-skew tree of minimum total length for S.

The rectilinear BST problem and the generalization of the ZST problem to arbitrary

metric spaces are NP-hard [16]. The complexity of the rectilinear ZST problem is not

known—for a fixed tree topology the problem can be solved in linear time by using the

Deferred-Merge Embedding (DME) algorithm independently introduced in [10, 13, 24].

Although the rectilinear zero- and bounded-skew tree problems have received much

attention in the VLSI CAD literature [6, 10, 13, 14, 19, 24, 25, 47, 48, 54] (see Chapter 4

of [50] for a detailed review), the first algorithms with constant approximation factors have

been proposed only recently, by Charikar et al. [16]. Charikar et al. generalize the ZST

and BST problems to arbitrary metric spaces, and, in this general setting, give algorithms

with approximation factors of 2e � 5:44 and 16.86, respectively. The BST algorithm in

[16] relies on an approximation algorithm for the Steiner tree problem in graphs. Using

the currently best Steiner tree approximation of Robins and Zelikovsky [67] and Arora’s

PTAS for computing rectilinear Steiner trees [3, 4], the BST bounds in [16] can be updated

to 16.11 for arbitrary metric spaces, and to 12.53 for the rectilinear plane (see Table 3).

In this chapter we introduce a new approach to these problems, based on zero-skew

“stretching” of spanning trees. The new approach leads to simple algorithms with improved

approximation guarantees for the rectilinear ZST and BST problems, and for their extensions

to arbitrary metric spaces introduced in [16]. Our contributions include:

� constructive lower bounds on the cost of the optimum ZST and BST in arbitrary

metric spaces;

38

� improved approximation for the ZST problem in arbitrary metric spaces, based on a

reduction to the zero-skew spanning tree problem;

� improved approximation for the ZST problem in metrically convex metric spaces,1

based on skew elimination using Steiner points;

� improved approximation for the BST problem in arbitrary and metrically convex

metric spaces, based on combining an approximate ZST with a minimum spanning

tree for the sinks.

An important feature of our algorithms is their practical running time, which is asymp-

totically the same as the time needed for computing the minimum spanning tree. Thus,

our algorithms can easily handle the clock nets with hundreds of thousands of sinks that

occur in large cell-based or multi-chip module designs. For a summary of our results and a

comparison to the results of Charikar et al. [16] we refer the reader to Table 3.

The rest of the chapter is organized as follows. In next section we start with a formal

definition of the ZST and BST problems in general metric spaces and prove new lower

bounds on the length of the optimal ZST and BST. Then, in Section 3.3, we show how to

convert (or “stretch”) a rooted tree T spanning the set S of sinks into a zero-skew tree for

S. We show that such “stretching” increases the length by the sum of sink delays, where

the delay in T of a sink s is the length of the path connecting s to its furthest descendant.

We also show that, for metrically convex metric spaces such as the Euclidean or rectilinear

planes, it is possible to reduce the “stretching” length to half the sum of delays.

In Section 3.4 we give a Kruskal-like algorithm that builds a rooted spanning tree T

whose total delay does not exceed its length, and whose length is at most twice longer than

that of the optimal ZST. These two facts yield an approximation factor of 4 for the ZST

problem in arbitrary metric spaces and an approximation factor of 3 for metrically convex

1A metric space (M;d) is called metrically convex if, for every u; v 2 M and 0 � � � 1, there exists a
point w 2M such that d(u;w) = �d(u; v) and d(w; v) = (1� �)d(u; v).

39

Problem Zero-Skew Tree Bounded-Skew Tree

Metric General Convex Rectilinear General Convex Rectilinear

Approximation [16] 2e � 5:44 16:11� 12:53�

factor This thesis 4 3 14 11 9

Running [16] strongly polynomial strongly polynomial

time This thesis O(n2) O(n logn) O(n2) O(n logn)

Table 3: Summary of results on the zero- and bounded-skew tree problems and comparison
to the results of Charikar et al.

metric spaces. In Section 3.5 we discuss the implications of combining our ZST heuristics

with the DME algorithm.

Finally, in Section 3.6, we describe a construction of approximate bounded-skew trees

based on combining an approximate zero-skew tree for a subset of the sinks with subtrees

of a minimum spanning tree (MST) or approximate minimum Steiner tree for the sinks.

Combination with the MST gives a 14-approximation algorithm for the bounded-skew tree

problem in arbitrary metric spaces; the factor is reduced to 11 for arbitrary metrically convex

metric spaces, and to 9 for the rectilinear plane.

3.2 Constructive lower bounds

In this section, we establish new lower bounds for the ZST and BST problems in an

arbitrary metric space; in contrast to the lower bounds of Charikar et al. [16] these bounds

are constructive. We start by formalizing the “stretching” alluded to in the introduction and

defining the ZST and BST problems in an arbitrary metric space.

Let (M;d) be an arbitrary metric space. A stretched tree T = (V;E; �; cost) for a set

of sinks S � M is a rooted tree with node set V and edge set E, together with a pair of

�Values updated with respect to [16] by taking into account the currently best Steiner tree approximation
of Robins and Zelikovsky [67], respectively Arora’s PTAS for computing rectilinear Steiner trees [3, 4].

40

mappings, � : V !M and cost : E ! IR+, such that

(1) � is a 1–1 mapping between the leaves of T and S, and

(2) for every edge (u; v) 2 E, cost(u; v) � d(�(u); �(v)).

We refer to �(u) as the embedding of u. A stretched tree T is a zero-skew tree if all

root-to-leaf paths in T have equal cost; T is a b-bounded-skew tree if the difference between

the cost of any two root-to-leaf paths is at most b.

Zero-Skew Tree Problem: Given a set of sinks S in metric space (M;d), find a minimum

cost zero-skew tree for S.

Bounded-Skew Tree Problem: Given a set of sinks S in metric space (M;d) and bound

b > 0, find a minimum cost b-bounded-skew tree for S.

The minimum cost of a ZST (BST) for S will be denoted by ZST �(S), respectively

BST �(S). In our analysis we will use the following constructive lower bound onZST �(S):

Lemma 5 Let S be a set of n sinks. Then, for any enumeration s1; s2; : : : ; sn of the sinks

in S,

ZST �(S) �MinDistfs1; s2g+
1
2

n�1X
i=2

MinDistfs1; : : : ; si+1g

where MinDistfAg = minu;v2A; u 6=v d(u; v).

Proof : For any r � 0, let N(r) denote the minimum number of closed balls of (M;d)

needed to cover all sinks in S. The radius R of S is the smallest r for which N(r) = 1.

Charikar et al. [16] established that

ZST �(S) �
Z R

0
N(r) dr

41

Let ri = MinDistfs1; : : : ; si+1g=2 for every i = 1; : : : ; n � 1, and rn = 0. Clearly,

R � r1 � r2 � � � � � rn�1 � rn. Note that N(r) � i+ 1 for r < ri, since no two points

in the set fs1; : : : ; si+1g can be covered by the same ball of radius r. Hence,

Z R

0
N(r) dr �

n�1X
i=1

Z ri

ri+1

(i+ 1) dr =
n�1X
i=1

(i+ 1)(ri � ri+1) = 2r1 +
n�1X
i=2

ri

and the lemma follows. 2

It can be shown that the greedy enumeration (e.g. start from a diametrical pair of points

and add each time the point maximizing minimum distance to previously enumerated points)

may not deliver the maximum to the lower bound established in Lemma 5. The complexity

of finding the best enumeration is an open question.

Below we bound the cost of the optimum BST by comparing it with the optimum ZST.

Lemma 6 Let S be a set of sinks. Then, for any W � S and skew bound b > 0,

BST �(S) � ZST �(W)� b � (jW j � 1)

Proof : Let T be a b-bounded-skew tree for S. We use T to construct a ZST for W

of cost no larger than cost(T) + b � (jW j � 1) as follows. First, notice that T contains

a b-bounded-skew tree for W , say T 0, as subtree. Let Pu denote the unique path in T 0

connecting u to the root, and let u0 be a leaf of T 0 for which cost(Pu0) is maximum. We

get a zero-skew tree for W by adding to T 0 a loop, i.e., an edge whose ends are embedded

at the same point, of cost cost(Pu0)� cost(Pu) for each leaf u 6= u0. Since T 0 has skew at

most b, each of the jW j � 1 added loops has cost at most b. Thus, the resulting ZST has

cost at most cost(T 0) + b � (jW j � 1) � BST �(S) + b � (jW j � 1). 2

42

3.3 Zero-skew stretching of spanning trees

Let T = (S;E) be a rooted tree spanning the sinks in S �M . For any sink u, let Tu denote

the subtree of T rooted at u. The delay in T of u is defined by

delayT (u) = maxflength(Puv) j v leaf in Tug

wherePuv denotes the unique path inT connectingu andv, and length(Puv) =
P

e2Pu;v d(e).

Let length(T) =
P

e2E d(e) and delay(T) =
P

u2S delayT (u). In this section we show

that, for an arbitrary metric space (M;d), T can be stretched to a zero-skew tree of cost

length(T) + delay(T). The stretched zero-skew tree uses no Steiner points, i.e., has all

nodes embedded at the sinks. We also show that, by using Steiner points, the amount of

stretching can be reduced to half the delay of T in case the underlying space is metrically

convex.

3.3.1 Zero-skew stretching in arbitrary metric spaces

The stretching algorithm for arbitrary metric spaces (Algorithm 4) replaces each node u of

T by by k + 1 nodes, u0; u1; : : : ; uk, all embedded at u, where k is the degree of u in T .

Each child v of u in T is attached to a distinct copy of u (see Figure 11) by an edge of cost

equal to d(u; v), which is the length of the edge (u; v) in T . The k + 1 copies of u are

connected by loops in a path of total cost delayT (u), and the cost of each loop is set so that

all paths connecting uk to leaves of the stretched subtree have the same cost. For clarity, in

Algorithm 4 we omit curly braces for single element sets and use “�" and “+" instead of

“n" and “[", respectively.

Lemma 7 The stretched tree produced by Algorithm 4 has zero-skew and total cost equal

to length(T) + delay(T).

Proof : It is easy to see that the algorithm produces a zero-skew tree. Since the algorithm

assigns a cost of d(u; vk) + delayT (vk) = delayT (u) to the path (uk; uk�1; : : : ; u1; u0), the

43

QQ
��

t

t t t�
�
�
�
�
�
�
��@

@
@
@
@
@
@
@@

u

vk vk�1 : : : v1

t

t

t

t t

t t

�
�
�
�
�
�
�
�� @

@
@
@
@
@
@
@@

� -

uk uk�1 u1 u0

vk vk�1 � � � v1

path cost = delayT (u)

Figure 11: The basic step of the stretching algorithm for arbitrary metric spaces

Input: Rooted spanning tree T = (S;E) in a metric space (M;d)
Output: Zero-skew tree T1 = (V1; E1; �; cost) for S

1. V1 S, �(v) v for any v 2 V1

2. E1 E, cost(u; v) d(u; v) for any (u; v) 2 E1

3. For each sink u 2 S, do:

Sort u’s children, say v1; v2; : : : ; vk, such that

d(u; v1) + delayT (v1) � d(u; v2) + delayT (v2) � � � � � d(u; vk) + delayT (vk)

// Replace each node u with k + 1 nodes embedded at u

V1 V1 � u+ fu0; : : : ; ukg,

�(u0) �(u1) � � � �(uk) u

// Replace edges (u; vi) with edges through copies of u

E1 E1 � (u; vk) + (uk; vk); cost(uk; vk) d(u; vk)

For i = 1; : : : ; k � 1 do

E1 E1 � (u; vi) + (ui+1; ui) + (ui; vi);
cost(ui; vi) d(u; vi);
cost(ui+1; ui) [d(u; vi+1) + delayT (vi+1)] � [d(u; vi) + delayT (vi)]

E1 E1 + (u0; u1); cost(u0; u1) d(u; v1) + delayT (v1)

4. Output T1 = (V1; E1; �; cost)

Algorithm 4: The zero-skew stretching algorithm for arbitrary metric spaces

44

cost of T1 increases by

kX
i=1

d(u; vi)

!
+ delayT (u)

when processing node u of T in Step 3 of the algorithm. Hence, the total cost of T1 is

length(T) + delay(T). 2

3.3.2 Zero-skew stretching in metrically convex metric spaces

Before stating the algorithm, we need to introduce some more notations. A path P =

(p1; p2; : : : ; pk) in T1 is called critical if pk is a leaf of T1 and costT1(P) = length(P). By

construction, it follows that the treeT1 produced by Algorithm 4 has at least one critical path

starting from each node. Let P = (p1; p2; : : : ; pk) be a critical path in T1. For every 0 � � �

length(P), there exist i such that length(p1; p2; : : : ; pi) � � < length(p1; p2; : : : ; pi+1).

We denote the edge (pi; pi+1) by e(P; �). Since (M;d) is metrically convex, there

is a point v(P; �) 2 M such that such that the length(p1; : : : ; pi; v(P; �)) = � and

length(v(P; �); pi+1; : : : ; pk) = length(P)� �.

The improved stretching in metrically convex metric spaces (Algorithm 5) is based on

the following observation: any loop in the stretched tree T1 produced by Algorithm 4 can

be “folded” along a critical path of T1, thus saving half of the cost of the loop (see Figure

12).

Lemma 8 The stretched tree T2 produced by Algorithm 5 has zero-skew and total cost

equal to length(T) + delay(T)=2.

Proof : The total cost of the loops in the stretched tree T1 is equal to delay(T). Step

3 of the algorithm folds all these loops, saving half from the cost of each (see Figure 12).

Therefore, cost(T2) = length(T) + delay(T)=2. The tree T2 has zero-skew since T1 has

zero-skew and loop folding preserves all root-to-leaf path costs. 2

45

w
T
T
T
T
T
T
T
T
T
T
T�

�
�
�
�
�
�
�
�
�
�

QQ
��

ww

w

w

w

w
T
T
T
T
T
T
T
T
T
T
T�

�
�
�
�
�
�
�
�
�
��

�
�
�� A

A
A
AA �

�
�

�
�

�
�

A
A
A
AA
�
��

�
�
�
�� A

A
A
AA

�

�=2

�=2

ui+1 ui ui+1 ui

y

x

wi

Figure 12: Loop folding in metrically convex metric spaces

Input: Rooted spanning tree T = (S;E) in a metric space (M;d)
Output: Zero-skew tree T2 = (V2; E2; �; cost) for S

1. Find T1 = (V1; E1; �; cost) using Algorithm 4
2. (V2; E2; �; cost) (V1; E1; �; cost)

3. For each loop (ui+1; ui) 2 E2 do

// Add the attachment point to the critical path from ui+1

Find edge (x; y) = e(P; �=2) on the critical path P from ui+1, where
� = cost(ui+1; ui)

V2 V2 + wi, where wi = v(P; �=2)

E2 E2�(x; y)+(x;wi)+(wi; y); cost(x;wi) d(x;wi); cost(wi; y) d(wi; y)

// Replace the loop (ui+1; ui) with the edge (wi; ui)

E2 E2 � (ui+1; ui) + (wi; ui); cost(wi; ui) �=2

4. Output T2 = (V2; E2; �; cost)

Algorithm 5: The zero-skew stretching algorithm for metrically convex metric spaces

46

3.4 ZST approximation via spanning trees

In the previous section we have shown that one can stretch any rooted spanning tree into a

zero-skew tree whose cost is equal to the length of the spanning tree plus its delay (half the

delay, for metrically convex metric spaces). This motivates the following:

Zero-Skew Spanning Tree Problem: Given a set of pointsS in a (metrically convex) metric

space (M;d), find a rooted spanning tree T on S such that cost(T) = length(T)+delay(T)

(respectively, length(T) + delay(T)=2) is minimized.

Note that the minimum spanning tree (MST) on S has the shortest possible length but

may have very large delay—if the MST is a simple path, then its delay may be as much as

O(n) times larger than its length. On the other hand, a star having the least delay may be

O(n) times longer than the MST.

In this section we give an algorithm for finding a rooted spanning tree which has both

delay and length at most two times the minimum ZST cost. Therefore, our algorithm gives

factor 4 and 3 approximations for the ZST problem in general and metrically convex metric

spaces, respectively. Simultaneously, our algorithm gives factor 4 and 3 approximations for

the zero-skew spanning tree problem in the respective metric spaces, since cost(T) cannot

be smaller than the cost of the minimum ZST.

The algorithm (Algorithm 6) can be thought of as a rooted version of the well-known

Kruskal MST algorithm. At all times, the algorithm maintains a collection of rooted trees

spanning the sinks, initially each sink is a tree by itself. In each step, the algorithm chooses

two trees that have the smallest distance between their roots and merges them by linking

the root of one tree as child of the other. In order to keep the delay of the resulting tree

small, the child root is always chosen to be the root with smaller delay.

Lemma 9 delay(T) � length(T)

47

Input: Finite set S �M

Output: Rooted spanning tree T on S

1. Initialization:

ROOTS S; E ;

For each v 2 S, h(v) 0

2. While jROOTSj > 1 do:

Find the closest two sinks r; r0 2 ROOTS with respect to metric d

If h(r) < h(r0) then swap r and r0

E E + (r; r0)

h(r) maxfh(r); d(r; r0) + h(r0)g

ROOTS ROOTS � r0

3. Output the tree T = (S;E), rooted at the only remaining sink in ROOTS

Algorithm 6: The Rooted-Kruskal algorithm

Proof : Note that, at the end of the Rooted-Kruskal algorithm, h(u) represents exactly

the delay of node u in T . In any iteration the algorithm adds edge (r; r0) to E(T), thus

increasing length(T) by d(r; r0). On the other hand, since h(r) � h(r0) when h(r) is

updated, the iteration contributes at most d(r; r0) + h(r0) � h(r) � d(r; r0) to
P

u2S h(u),

hence, to the total delay of T . 2

Let n be the number of sinks in S.

Lemma 10 length(T) � 2(1� 1=n)ZST �(S)

Proof : Let s1 be the root of T , and let s2; : : : ; sn be the remaining n � 1 nodes of

T , indexed in reverse order of their deletion from ROOTS. Since in each iteration the

48

algorithm adds to T the edge joining a closest pair of points in ROOTS,

length(T) =
n�1X
i=1

MinDistfs1; : : : ; si+1g

Thus, by Lemma 5,

length(T) � 2 ZST �(S)�MinDistfs1; s2g = 2 ZST �(S)� d(s1; s2)

Since (s1; s2) is the longest edge in T , d(s1; s2) � length(T)=(n � 1), and the lemma

follows. 2

Lemmas 7, 9, and 10 give:

Theorem 11 For any metric space and any set of n sinks, running Algorithm 4 on the tree

T produced by the Rooted-Kruskal algorithm gives a zero-skew tree whose cost is at most

4(1� 1=n) times larger than ZST �(S).

Proof : By Lemma 7, the cost of the embedding is equal to length(T) + delay(T). But

delay(T) � length(T) by Lemma 9, and the approximation factor follows from Lemma 10.

2

Similarly, Lemmas 8, 9, and 10 give:

Theorem 12 For any metrically convex metric space and any set of n sinks, running

Algorithm 5 on the tree T produced by the Rooted-Kruskal algorithm gives a zero-skew tree

whose cost is at most 3(1� 1=n) times larger than ZST �(S).

Proof : By Lemma 8, the cost of the embedding is now equal to length(T) + (1=2) �

delay(T), and the theorem follows again from Lemmas 9 and 10. 2

The following example shows that the algorithm in Theorem 11 can produce zero-skew

trees which are 4(1 � 1=n) times larger than optimal. A similar example shows that the

algorithm in Theorem 12 has a tight approximation factor of 3(1� 1=n).

49

Example 13 Consider a discrete metric space on 2k+1 points, n = 2k of which are sinks.

We label the sinks with 0-1 sequences of length k, i.e., S = f� = bk�1bk�2 : : : b0 j bi 2

f0; 1gg. All sink-to-sink distances are equal to 1 and the distance from the single Steiner

point to each of the sinks is 1=2. In this space, the optimal ZST is a star rooted at the

Steiner point, and has cost equal to n=2. The Rooted-Kruskal algorithm may construct the

spanning tree T with root (11 : : : 1) and edges (�;�0), such that �0 is identical to � except

that the rightmost 0 in �0 is replaced with 1 in �. Indeed, at each iteration of Step 2, the

algorithm may choose to merge trees rooted at � and �0 as above. It may choose � to be

the root of the merged tree since h(�) = h(�0).

Clearly, length(T) = n � 1. On the other hand, since we always merge two roots

with the same h-value, each merge contributes exactly 1 to the total delay of T . Thus,

delay(T) = n� 1. By Lemma 7, the cost of the ZST produced by the algorithm is

length(T) + delay(T) = 2(n� 1) = 4
�
1� 1=n

�
�
n

2

2

Running time. The running time of the stretching algorithms given in Section 3.3

is dominated by the time needed to sort the children of each node; this can be done in

O(n log n) overall. For arbitrary metrics the Rooted-Kruskal algorithm can be implemented

in O(n2) time using Eppstein’s dynamic closest-pair data structure [26]. In the rectilinear

plane (in fact, in any fixed dimensional Lp space), the running time can be reduced to

O(n log n) time by using the dynamic closest-pair data structure of Bespamyatnikh [9].

These implementations of the Rooted-Kruskal algorithm are asymptotically optimal, since

the running times match known lower bounds for computing the first closest pair.

Finally, the total time for running the Rooted-Kruskal algorithm followed by one of the

stretching algorithms given in Section 3.3 is O(n2) in arbitrary metric spaces, respectively

O(n log n) in the rectilinear plane. Notice that this matches asymptotically the time needed

for computing a minimum spanning tree.

50

3.5 Practical considerations for approximating the rectilinear ZST

In the previous two sections it has been shown how to approximate ZST in metrically

convex metric spaces within a factor of 3. In order to obtain shorter ZSTs in the rectilinear

plane, we may combine the stretched spanning tree with the DME algorithm [10, 13, 24].

The DME algorithm gives the optimal rectilinear ZST for any given topology, which is

an unweighted binary tree with the leaves labeled by the sinks. Therefore, we may only

shorten the rectilinear ZST if we feed the topology of the stretched spanning tree into the

DME algorithm.

In Section 3.3 we suggested two different ways of stretching a spanning tree. One

may expect that the topology produced by Algorithm 5 (the loop folding algorithm) is

superior to the topology produced by Algorithm 4. Surprisingly, when stretching the

spanning tree produced by the Rooted-Kruskal algorithm, both algorithms lead to the same

topology. As proven below, in every loop folding step the attachment point for vertex ui,

wi = v(P; cost(ui+1; ui)=2), belongs to the edge (ui+1; vi+1) (see Figures 11 and 12), i.e.,

folding loops does not change the topology of the stretched tree produced by Algorithm 4.

Theorem 14 Let T be a rooted spanning tree constructed by the Rooted-Kruskal algorithm.

In any metrically convex metric space, the topologies produced by running Algorithms 4

and 5 on T are identical.

Proof : Let the children fv1; : : : ; vkg of a node u be sorted as in Algorithm 4, i.e.,

in non-decreasing order of d(u; vi) + delayT(vi). For brevity, denote di = d(u; vi) and

Di = delayT (vi). We will show that � = cost(ui+1; ui) is no greater than di+1. This will

ensure that the point v(P; �=2) lies on the edge (ui+1; vi+1) and, therefore, the tree topologies

produced by the two stretching algorithms are the same. Since � = (di+1+Di+1)�(di+Di),

it suffices to prove that

Di+1 � di +Di (4)

51

We say that index k precedes index l if the node vk has been attached to u before vl in

the Rooted-Kruskal algorithm. Let p1 be the maximum index preceding i + 1, p2 be the

maximum index preceding p1, and so on, until we arrive at an index pm with Dpm = 0.

Then d1 +D1 represents the length of the critical path from u at the time when vi+1 is linked

to u by the Rooted-Kruskal algorithm, and dpi+1 + Dpi+1 is the length of the critical path

from u at the time when vpi is linked to u.

Notice that, since dl � dk if k precedes l,

di+1 � dp1 � � � � � dpm (5)

Moreover,

Di+1 � dp1 +Dp1 (6)

and

Dpj�1 � dpj +Dpj (7)

for every j = 2; : : : ;m� 1, since through all attachments node u remains the root.

Assume, for a contradiction, that (4) does not hold. We will show by induction on j

that pj > i+ 1 and Di+1 � Dpj for every j = 1; : : : ;m. Since Dpm = 0, the above claim

implies that Di+1 = 0, making (4) trivially true.

To prove the claim, consider first j = 1. If p1 � i, then dp1 +Dp1 � di +Di, and (6)

implies (4). So, it must be the case that i+ 1 < p1. Then di+1 +Di+1 � dp1 +Dp1 , and (5)

implies that Di+1 � Dp1 .

Assume now that Di+1 � Dpj�1 for some j � 2. If pj � i, using (7) we get

Di+1 � Dpj�1 � dpj +Dpj � di +Di

So, it must be the case that i+1 < pj . Then di+1 +Di+1 � dpj +Dpj and, since di+1 � dpj

by (5), this implies that Di+1 � Dpj . 2

52

Corollary 15 Combination of the Rooted-Kruskal algorithm with the stretching algo-

rithm for arbitrary metric spaces (Algorithm 4) and with the DME algorithm gives a

3-approximation for the rectilinear ZST problem.

3.6 Approximate bounded-skew trees

In this section we give two approximation algorithms for the BST problem, both built

around a black-box ZST approximation algorithm. In both cases we construct a ZST for

an appropriately chosen subset of the sinks, then extend this ZST to a b-bounded-skew tree

for all sinks. In first algorithm (Algorithm 7) the extension is done by adding subtrees of

an MST on the sinks; in second (Algorithm 8) subtrees are extracted from an approximate

Steiner tree.

3.6.1 The MST based algorithm

The first algorithm (Algorithm 7) uses a simple iterative construction to cover the sinks by

disjoint b-skew subtrees of an MST T0 of S. The algorithm then outputs the union of these

subtrees with a ZST T1 on their roots. Clearly the resulting tree T 0 is a b-bounded-skew tree

for S. Moreover, cost(T 0) � cost(T1) + length(T0), since the subtrees are disjoint pieces

of T0. Hence, if the ZST algorithm used in Step 3 has an approximation factor of rZST , by

Lemma 6 we get that

cost(T 0)� rZSTZST �(W) + length(T0)

� rZST (BST �(S) + b � (jW j � 1)) + length(T0)

Notice that a path of length b or more is deleted from T for each node—except, possibly,

the last one—added to W in Step 2 of Algorithm 7. Hence, b � (jW j � 1) � length(T0),

and so

cost(T 0) � rZSTBST
�(S) + (rZST + 1)length(T0)

53

Input: Finite set S �M , bound b > 0
Output: b-bounded-skew tree for S

1. Find an MST T0 on S, with respect to the metric d, and root it at an arbitrary
node

2. Find a set W of sinks and a collection of subtrees of T0, (Bu)u2W , as follows:

W ;; T T0

While T 6= ; do:

Find a leaf v of T which is furthest from the root
Find the highest ancestor, say u, of v that still has delayT (u) � b

W W [fug; Bu Tu; T T nBu

3. Find an approximate zero-skew tree, T1, for W
4. Output the tree T 0 = T1 [

�S
u2W Bu

�

Algorithm 7: The MST based bounded-skew tree algorithm

Let rMST be the Steiner ratio for the metric space (M;d), i.e., the supremum, over all

sets of points S in (M;d), of the ratio between the length of an MST and the length of

a minimum Steiner tree for S. Since the length of the minimum Steiner tree for S is a

lower bound on BST �(S), we get that length(T0) � rMSTBST
�(S). Hence, we have the

following:

Theorem 16 Algorithm 7 has an approximation factor of rZST + rMST + rZST rMST .

Since the Steiner ratio is at most 2 for any metric space [52], and 3/2 for the rectilinear

plane [44], by using the results in Theorems 11 and 12 we get:

Corollary 17 The approximation factor of Algorithm 7 is 14 in arbitrary metric spaces, 11

in arbitrary metrically convex metric spaces, and 9 in the rectilinear plane.

Notice that the running time of Algorithm 7 is still O(n log n) for the rectilinear plane

and O(n2) for arbitrary metric spaces: The MST in Step 1 can be computed whithin

54

Input: Finite set S �M , bound b > 0
Output: b-bounded-skew tree for S

1. Find an approximate Steiner tree T0 on S, with respect to the metric d
2. Find a set W of sinks and a collection of subtrees of T0, (Bu)u2W , as follows:

W ;; T T0

While T 6= ; do:

Pick an arbitrary sink u in T , and let Bu be the subtree of T induced by
vertices within tree distance of at most b from u

W W [fug; T T nBu

3. Find an approximate zero-skew tree, T1, for W
4. Output the tree T 0 = T1 [

�S
u2W Bu

�

Algorithm 8: The approximate Steiner tree based bounded-skew tree algorithm

these time bounds using Hwang’s [45] rectilinear MST algorithm and Kruskal’s algorithm

respectively, while Step 2 can be implemented in linear time.

3.6.2 The approximate Steiner tree based algorithm

The second BST algorithm combines a ZST for a subsetW of the sinks with b-skew subtrees

of an approximate Steiner tree T0 (Algorithm 8).

Theorem 18 The BST problem can be approximated within a factor of rZST + rSMT +

2 rZST rSMT , given rZST , respectively rSMT , approximation algorithms for the ZST and

minimum Steiner tree problems.

Proof : By construction, the distance in T0 between any two sinks in W is at least b.

Consider the set of open balls of radius b=2 centered at the sinks in W , with the balls

considered in the metric space induced by T0. Since any two such balls are disjoint, and

55

each of them must cover at least b=2 worth of edges of T0, we get that

bjW j � 2 length(T0) (8)

To estimate the cost of the BST produced by the algorithm, notice that
S
u2W Bu has

total cost of at most length(T0). By Lemma 6 and (8), we get:

cost(T 0)� rZSTZST �(W) + length(T0)

� rZST (BST �(S) + b � (jW j � 1)) + length(T0)

� rZST (BST �(S) + 2 length(T0)) + length(T0)

and the theorem follows by observing that length(T0) � rSMTBST
�(S) since, as noted

above, the length of the minimum Steiner tree for S is a lower bound on BST �(S). 2

With the currently known approximation factors for Steiner trees and zero-skew trees,

Theorem 16 gives better BST approximations than Theorem 18 for the rectilinear plane, as

well as arbitrary (metrically-convex) metric spaces. However, Theorem 18 may improve

upon Theorem 16 for metric spaces with good Steiner tree approximation (rSMT close to

1) and large Steiner ratio (rMST close to 2), e.g., for high-dimensional Lp spaces.

3.7 Conclusions and open problems

We have given approximation algorithms for the ZST and BST problems with improved

approximation factors for general and metrically convex metric spaces, as well as the

rectilinear plane. Our algorithms have a practical running time: O(n log n) in the rectilinear

plane, and O(n2) in general metric spaces. Preliminary experiments also show that, when

combined with the linear time DME algorithm of [10, 13, 24], our rectilinear ZST algorithm

gives results competitive to those obtained by the Greedy DME heuristic of Edahiro [25],

which is regarded in the VLSI CAD community as the best ZST heuristic to date (see [50]).

An interesting open question is to determine the limitations of the spanning-tree based

ZST construction introduced in this thesis. One can define the zero-skew Steiner ratio of

56

a metric space as the supremum, over all sets of sinks, of the ratio between the minimum

zero-skew cost (i.e., length+ delay) of a spanning tree and the minimum ZST cost. The

results in Section 3.4 imply that the zero-skew Steiner ratio is at most 4 in arbitrary metric

spaces, and at most 3 in metrically convex metric spaces. On the other hand, we have

constructed instances showing that the zero-skew Steiner ratio can be as large as 3 for

arbitrary metric spaces; we conjecture that the ratio is never larger than 3. Determining the

complexity of the zero-skew spanning tree problem is another interesting open question.

In the planar versions of the rectilinear ZST and BST problems, one seeks zero,

respectively bounded-skew trees in the rectilinear plane with no self-intersecting edges.

Charikar et al. [16] have given the first constant approximation factors for these versions;

it would be interesting to find algorithms with improved approximation factors.

57

Chapter 4

Minimizing the number of Steiner points in bounded

edge-length Steiner trees�

4.1 Introduction

As integrated circuit technology scales into the deep-submicron range, the effect of in-

terconnect on chip performance becomes increasingly dominant. An important step in

maintaining reasonable signal delay is to ensure that no wire segment exceeds a certain

length; this can be achieved by using buffers to help interconnect global nets. Since buffers

occupy a significant area on the chip and introduce additional power requirements, the goal

of buffered routing is to meet the wire segment upper-bound using the minimum number

of buffers. In this chapter, we concentrate on a “single-net routing” version of the problem,

which is of interest when buffering is applied only to a very small number of nets. In next

chapter we will give algorithms for buffered routing of a large number of nets, all competing

for a limited amount of space at which buffers can be inserted.

The Minimum number of Steiner Points Tree (MSPT) Problem is defined as follows:

given a set of terminals and a prescribed upper-boundR > 0, find a Steiner tree spanning the

terminals and a minimum number of Steiner points such that the length of each edge in the

tree is at mostR. Note that, unlike the minimum length Steiner tree, the optimal MSPT may

contain Steiner points of degree two. It is easy to see that the MSPT problem is equivalent

to the variant in which we distinguish a source among the terminals, allow “passive” Steiner

�This chapter is based on joint work with Alexander Z. Zelikovsky [59].

58

points, i.e., branching points that do not count as buffers, and the objective is to minimize

the number of buffers subject to the constraint that, on each tree path connecting the source

to one of the remaining terminals, the distance between two consecutive buffers/terminals

is at most R.

The MSPT problem was introduced by Sarrafzadeh and Wong [69], who considered its

rectilinear and Euclidean versions, in which terminals are points in the plane and distances

are measured in theL1, respectivelyL2 metrics. The rectilinear MSPT problem is of interest

in VLSI, as explained above, while the Euclidean version has important applications in the

design of fixed wireless networks. Unfortunately, even these restricted versions of the MSPT

problem remain NP-hard [69]. While for arbitrary metric spaces the ln k-approximation

algorithm of Guha and Kuller [38] is best possible unless NP � TIME(nlog logn) (cf.

combined results of [50] and [27]), optimal approximation results are not yet known for the

rectilinear and Euclidean planes.

Recently, Lin and Xue [55] considered the following MST heuristic for the MSPT

problem: Compute an MST on terminals, then subdivide each edge (u; v) of the MST via

dd(u; v)=Re�1 equally spaced Steiner points, where d(u; v) stands for the distance between

u and v, and R > 0 is the prescribed edge-length upper-bound. Lin and Xue proved that

the MST heuristic has an approximation factor not worse than 5 in the Euclidean plane,

leaving open the problem of finding the exact approximation factor.

We give a tight analysis of the MST heuristic for any Lp metric space, showing that its

approximation factor is exactly one less than the MST number, defined as the maximum

possible degree of a minimum-degree MST spanning points from the space. Since the MST

numbers for the rectilinear and Euclidean planes are 4 and 5 [66], our analysis implies that

for these two metric spaces the MST heuristic has tight approximation factors of 3 and 4,

respectively.

The factor of 4 for the Euclidean plane has been obtained independently by the authors

of [17]. The analysis in [17] relies heavily on properties specific to the Euclidean plane and

59

does not seem to extend to other metric spaces. In contrast, our analysis comes closer to

the simplicity of the original argument of Lin and Xue [55], using only triangle inequality

and the fact that every set of points from the space has an MST with maximum degree no

larger than the MST number.

4.2 Analysis of the MST heuristic

Let (X; d) be a metric space, and let � (P) denote the set of all d-weighted MSTs spanning

P � X . Following Robins and Salowe [66], the MST number of X , D(X), is defined by

D(X) = sup
P

min
T2�(P)

max
v2P

degT (v); (9)

where the supremum in (9) is taken over all finite subsets P of X . Note that, if D(X) is

finite, then every set of points in X admits an MST with maximum degree at most D(X).

Theorem 19 The MST heuristic has an approximation factor of D � 1 in every metric

space whose MST number is D <1.

Proof : Let P be a set of terminal points, and let Topt be an MSPT for P . Let s1; : : : ; sk be

the Steiner points spanned by Topt, numbered in the order in which a breadth-first traversal

(started from an arbitrarily terminal t0 2 P) encounters them. Since all edges of Topt have

length at most R, it follows that, for every 1 � i � k, si is within a distance of R of at least

one point from P [fs1; : : : ; si�1g.

For a tree T , let beads(T) =
P

(u;v)2E(T)(dd(u; v)=Re � 1) denote the number of

subdivision points, or beads, that need to be added on T ’s edges in order to satisfy the

edge-length condition. It is easy to see that any MST has minimum number of beads among

trees spanning the same set of points; we will use this fact below.

60

ss

s

ss

s

s

ss

s

ss

s

s

Q
Q

Q
Q

QQ

C
C
C
C
C
C
C

�
�
�
�
�
�
�

�
�

�
�

��

bb
""

��
��

��
��

���

PPPPPPPPPPP@
@

@
@

@
@

@

JJ �
�

�
�

�
�

�

vp�1

...

vp�1

... v0v0si si

v1 v1

v2v2

vp vp

Ti T 0
i

Figure 13: The basic elimination step in the proof of the MST ratio

For 1 � i � k, let Ti be an MST on P [fs1; : : : ; sig with maximum degree at most D.

We claim that, for every 1 � i � k,

beads(Ti�1) � beads(Ti) + (D � 1): (10)

Let v0; v1; : : : ; vp be the p + 1 � D nodes adjacent to si in Ti, one of which, say v0,

must be a closest neighbor of si in P [fs1; : : : ; si�1g. Let T 0
i be the tree obtained from Ti

by removing si and connnecting to v0 the nodes vi; i = 1; : : : ; p.

Note that d(si; v0) � R, since the BFS numbering ensures that si is within a distance

of R of at least one point from P [fs1; : : : ; si�1g and v0 is the point from this set closest

to si. By triangle inequality, any edge (vj; v0) needs at most one more bead than the edge

(vj; si). Hence,

beads(T 0
i) � beads(Ti) + p � beads(Ti) + (D � 1):

Inequality (10) follows by noting that beads(Ti�1) � beads(T 0
i), since Ti�1 is an MST

spanning the same set of points as T 0
i .

61

Adding inequalities (10) for 0 � i � k and using the fact that beads(Tk) = 0 gives

beads(T0) � k � (D � 1). Thus, the MST on P uses at most D � 1 times more Steiner

points than Topt. 2

Theorem 20 The approximation guarantee given in Theorem 19 is tight for any fixed-

dimensional Lp metric space.

Proof : Robins and Salowe [66] show that in Lp metric spaces the MST number is finite,

being equal to the maximum number of points that can be placed on the surface of a unit ball

such that each pair of points is strictly more than one unit apart. When the MST heuristic

is run with R = 1 on a set of D points realizing the above configuration, the result is a tree

with D � 1 Steiner points, all of degree 2. On the other hand, the MSPT uses only one

Steiner point, of degree D, namely the center of the ball. 2

Since the MST number is 4 (resp. 5) for the rectilinear (resp. Euclidean) planes [66],

Theorems 19 and 20 give:

Corollary 21 The MST heuristic has a tight approximation factor of 3 in the rectilinear

plane, and of 4 in the Euclidean plane.

4.3 Conclusion and open problems

The obvious open problem is to find approximation algorithms that achieve better factors

than the MST heuristic in the rectilinear plane. We believe this could be done by an

adaptation of the techniques in [77, 8], based on restricted Steiner trees. Recently, [17]

proposed a 3-approximation algorithm for the MSPT problem in the Euclidean plane based

on these techniques.

62

Chapter 5

Provably good global bu�ering by multiterminal

multicommodity ow approximation�

5.1 Introduction

Process scaling leads to an increasingly dominant effect of interconnect on high-end chip

performance. Each top-level global net must undergo repeater1 insertion to maintain signal

integrity and reasonable signal delay. Estimates of the need for repeater insertion range up

to 106 repeaters for top-level on-chip interconnect for 50nm technology. These repeaters

occupy a significant area on the chip, affect global routing congestion, can entail non-

standard cell height and special power routing requirements, and can act as noise sources.

In a block- or reuse-based methodology, designers seek to isolate repeaters for global

interconnect from individual block implementations.

For these reasons, a buffer block methodology has become increasingly popular in

structured-custom and block-based ASIC methodologies. Two recent works by Tang and

Wong [71] and Cong, Kong and Pan [20] give algorithms to solve the buffer block planning

problem. Their formulation is roughly stated as follows: Given a placement of circuit

blocks, and a set of two-pin connections with feasible regions for buffer insertion,2 plan

�This chapter is based on joint work with F.F. Dragan, A.B. Kahng, S. Muddu, and A.Z. Zelikovsky
[22, 23].

1Following the literature, we will use the terms buffer and repeater fairly interchangeably. When we need
to be more precise: a repeater can be implemented as either an inverter or as a buffer (= two co-located
inverters).

2In [71] only a single buffer per connection is allowed.

63

the location of buffer blocks within available free space so as to route maximum number of

connections.

In this chapter, we address the problem of how to perform buffering of global nets given

an existing buffer block plan. (Hence, our work is compatible with and complements the

methods in [20, 71].) We give a provably good algorithm based on a recent approach of

Garg and Könemann [35] and Fleischer [29]. Our method routes the nets using available

buffer blocks, such that required upper and lower bounds on repeater interval—as well as

length upper bounds per connection—are satisfied. In addition, our algorithm observes

repeater parity constraints, i.e., it will choose to use an inverter or a buffer (= co-located

pair of inverters) according to source and destination signal parity. Previous works on the

problem [20, 71] assumed that global nets have been decomposed into two-pin connections.

Unlike these works, our model takes into account multiterminal nets and allows more than

one buffer to be inserted into any given connection.

Informally, our problem is defined as follows.

Given:

� a planar region with rectangular obstacles;

� a set of nets in the region, each net has:

– a single source and one or more sinks;

– a non-negative importance (criticality) coefficient;

� each sink has:

– a parity requirement, which specifies the required parity of the number of buffers

(inverters) on the path connecting it to the source;

– a timing-driven requirement, which specifies the maximum number of buffers

allowed on this path;

64

� a set of buffer blocks, each with given capacity; and

� an interval [L;U] specifying lower and upper bounds on the distance between buffers.

The Global Routing via Buffer Blocks (GRBB) Problem is to route a subset of the

given nets, with maximum total importance, such that:

� the distance between the source of a route and its first repeater, between any two

consecutive repeaters, respectively between the last repeater on a route and the route’s

sink, are all between L and U ;

� the number of trees passing through any given buffer block does not exceed the

block’s capacity;

� the number of buffers on each source-sink path should not exceed the given upper

bound and should be of the given parity; to meet the parity constraint two buffers of

the same block can be used.

If possible, the optimum solution to the GRBB problem simultaneously routes all the nets.

Otherwise, it maximizes the sum of the importance coefficients over routed nets. The

importance coefficients can be used to model various practical objectives. For example, im-

portance coefficients of 1 for each net correspond to maximizing the number of routed nets,

and importance coefficients equal the number of sinks in the net correspond to maximizing

the number of connected sinks.

If all nets have exactly two terminals (the source and a single sink), the GRBB problem

can be formulated as a generalized version of (vertex-capacitated) integer multicommodity

flow (MTMCF), see [22] for details. In this chapter we show that the GRBB problem

for arbitrary sized nets can be formulated as a generalized version of (vertex-capacitated)

integer multiterminal multicommodity flow (MTMCF). Exploiting this formulation,we give

a new algorithm for the GRBB problem based on randomized rounding of an approximate

solution to the fractional relaxation of the integer MTMCF program. Prior to our work,

65

multicommodity flow based heuristics have been applied [60, 70, 12, 43, 2] to unbuffered

versions of VLSI global routing in which the main constraints are given by edge, not vertex,

capacities. As noted in [56], the applicability of these algorithms has often been limited

to problem instances of relatively small size by the prohibitive cost of solving exactly the

fractional relaxation. Following [2], we avoid this limitation by using an approximate

MTMCF algorithm. This algorithm, based on recent results of [35, 29], allows for a smooth

trade-off between running time and solution accuracy. Our experiments show that even

MTMCF solutions with low accuracy give good final solutions for the GRBB problem.

An interesting feature of our algorithm is its ability to work with multiterminal nets—

previous work on the GRBB problem [20, 71] has considered only the case of 2-pin nets.

Experiments on top-level layouts extracted from a recent high-end microprocessor design

validate our MTMCF-based algorithm, and indicate that (1) the algorithm significantly

outperforms existing algorithms for the problem [20], even when applied to 2-pin net

decompositions, and (2) applying the MTMCF algorithm on multipin nets instead of 2-pin

decompositions further increases the quality of the solution, even when the same time

budget is given to both algorithms.

The rest of the chapter is organized as follows. In Section 5.2, we reduce the Global

Buffering Problem to a generalized version of integer multiterminal multicommodity flow.

The fractional relaxation of this problem is a special case of packing LP, and can thus

be approximated within any desired accuracy using the algorithm of Garg and Könemann

[35]. In Section 5.3 we present a faster approximation algorithm, obtained by extending

the ideas of Fleischer [29] to this special type of packing LPs. In Section 5.4 we describe

the randomized rounding process used to convert near-optimal fractional MCF solutions

into near-optimal integral solutions. In Section 5.5 we describe a number of implemented

global buffering heuristics, some based on the MTMCF approach, and some based on less

sophisticated greedy ideas. Finally, in Section 5.6 we give the results of an experimental

66

comparison of these heuristics on test cases extracted from the top-level layout of a re-

cent high-end microprocessor, and conclude in Section 5.7 with a list of future research

directions.

5.2 Integer program formulation of the GRBB problem

Given K nets Nk = (sk; t1
k; : : : ; t

qk
k), k = 1; : : : ;K , and n buffer blocks fr1; : : : ; rng,

denote S = fs1; : : : ; sKg, T = ft1
1; : : : ; t

q1
1 ; : : : ; t

1
K; : : : ; t

qK
K g, R = fr1; : : : ; rng. Let also

c(r) 2 N denote the capacity of the buffer block r 2 R, aik 2 feven, oddg be the parity

requirement for pair (sk; tik), and lik be the prescribed upper bound on the number of buffers

on path between source sk and sink tik.

Let pxy be a rectilinear path connecting points x and y of a planar region that avoids all

rectangular obstacles given in the region. Denote by d(x; y) the length of a shortest such

path. Let G = (V;E) be a graph with vertex set V = S [T [R. The edge set E contains

all edges of type vv, v 2 R (such an edge is called a loop). Two different vertices x and y

are adjacent (i.e., xy 2 E) if and only if L � d(x; y) � U .

A path p = (sk; v1; v2; : : : ; vl; t
i
k) in G between source sk and sink tik (k = 1; : : : ;K ,

i = 1; : : : ; qk) is a restricted (sk; tik)-path if

� vi 2 R for each i = 1; : : : ; l,

� the parity of l is aik,

� l � lik,

� there can be some pairs of different indices i; j 2 f1; : : : ; lg such that vi = vj; in this

case we must have ji� jj = 1.

A feasible Steiner tree for netNk is a Steiner treeTk inG connecting terminals sk; t1
k; : : : ; t

qk
k

such that, for every i = 1; : : : ; qk, the path of Tk connecting sk to tik is a restricted (sk; t
i
k)-

path as defined above.

67

Define capacities on all vertices of G by

c(v) :=

8><
>:

1; if v 2 S [T

capacity of buffer block v; if v 2 R

Let Tk be the set of all feasible Steiner trees for net Nk, and let T =
SK
k=1 Tk . For each

T 2 Tk , k = 1; : : : ;K , define g(T) := gk , where gk is the importance of Nk.

The GRBB problem is then equivalent to the following integer linear program:

maximize
X
T2T

g(T)fT

s.t.
X
T2T

�T (v)fT � c(v); v 2 V

fT 2 f0; 1g T 2 T

where fT = 1 if the tree T is used in the solution and fT = 0 otherwise, and �T (v) is the

number of occurrences of v in T , i.e.,

�T (v) :=

8>>>>><
>>>>>:

0; if v =2 T;

1; if v 2 T; but vv is not a loop on T;

2; if v 2 T; and vv is a loop on T:

Our approach will be to solve the relaxation of the above integer program obtained by

replacing the integrality constraint with fT � 0 for T 2 T ; we will then use randomized

rounding to obtain an integer solution. We will refer to this relaxation as the Multiterminal

Multicommodity Flow (MTMCF) LP.

Although the MTMCF LP is solvable in polynomial time (using, e.g., the ellipsoid

algorithm), exact algorithms are highly impractical. On the other hand, the MTMCF LP is

a special case of packing LP, and can thus be efficiently approximated within any desired

accuracy using the recent combinatorial algorithm of Garg and Könemann [35]. In next

section we give a significantly faster approximation algorithm based on a speed-up idea due

68

to Fleischer [29]. Fleischer’s idea, originally proposed for approximating the maximum

edge-capacitated MCF, has been recently extended [2] to edge-capacitated multiterminal

multicommodity flow. Here we take this approach further and show how to use it for

efficient approximation of vertex-capacitated multiterminal multicommodity flow.

5.3 Approximation of vertex-capacitated MTMCF

Our approximation algorithm for MTMCF simultaneously solves both the primal and the

dual LPs; the dual solution is used in proving the approximation guarantee of the algorithm.

The dual of the MTMCF LP is:

minimize
X
v2V

w(v)c(v)

s.t.
1

g(T)

X
v2T

w(v) � 1; T 2 T

w(v) � 0; v 2 V

The dual LP can be viewed as an assignment of non-negative weights, w(�), to the vertices

of G such that the weight of any tree T 2 T is at least 1; the objective is to minimize the

sum
P

v2V w(v)c(v). Here, the weight, weight(T), of the tree T is the sum of the weights

of vertices forming this tree (if the tree uses a loop vv then vertex v contributes twice to

this sum) divided by the importance g(T) of this tree.

Denote D(w) =
P

v2V w(v)c(v) and let �(w) be the weight of a minimum weight tree

from T (with respect to w(�)). The dual problem is equivalent to finding a weight function

w : V ! R+ such that � = D(w)
�(w) is minimized. In the following we will assume that

minfgk : k = 1; : : : ;Kg = 1—this can be easily achieved by scaling—and will denote by

Γ the maximum gk.

In our algorithm for approximating MTMCF (Algorithm 9), fk(v) denotes how many

times vertex v was used by all feasible Steiner trees found for the net Nk so far, and f

denotes the total number of minimum weight feasible Steiner trees used by algorithm. The

69

Input: Graph G with K nets N1; : : : ; NK, vertex capacities c(v)
Output: Variables fk(v) 2 [0; 1], k = 1; : : : ;K, v 2 V (G)

Set f = 0.

Set w(v) = � for all v 2 V .

Set fk(v) = 0 for all v 2 V and k = 1; : : : ;K.

For i = 1 to log1+2�
1+2�
�

do

For k = 1 to K do

Find a minimum weight tree T in Tk.
While weight(T) < minf1=Γ; �=Γ(1 + 2�)ig do
f = f + 1;
For all v 2 T , if T uses a loop vv then set fk(v) = fk(v) + 2 and

w(v) = w(v)(1 + 2�
c(v)

); else set fk(v) = fk(v) + 1 and
w(v) = w(v)(1 + �

c(v)
).

Find a minimum weight tree T in Tk.
End while

End for

End for

Output f

2 log1+2�
1+2�
�

, and fk(v)

2 log1+2�
1+2�
�

for each v 2 V and k = 1; : : : ;K.

Algorithm 9: The MTMCF approximation algorithm

algorithm associates a weight with each vertex, and every time it uses a minimum weight

tree T from Tk (k = 1; : : : ;K) to connect the pins of net Nk it multiplies the weight of

every vertex on this tree by 1 + �

c(v)
for a fixed � (if this tree uses a loop vv, then the weight

of v is multiplied by 1 + 2�
c(v)). Initially, every vertex v has weight � for some constant �.

Thus, the more often is a vertex used, the larger is its weight. Hence, an often used vertex

is less likely to be a part of future minimum weight trees.

According to Garg and Könemann’s approximation algorithm [35], we must use a

lightest (with respect to current weight functionw(�)) tree from T , if the weight of this tree

is less than 1=Γ. We also must stop after t iterations where t is the smallest number such

70

that �(w), computed with respect to vertex weights w(�) of this iteration, is at least 1=Γ.

We extend the Fleischer’s ideas [29] to our generalized fractional MTMCF problem and

reduce the number of minimum weight tree computations during the algorithm. Instead of

finding the lightest tree in T to connect the pins of a net, we settle for some tree within

a factor of (1 + 2�) of the lightest, and show that one can obtain a similar approximation

guarantee.

Let wi�1(�) be the weight function at the beginning of the ith iteration. We have

w0(v) = � for each v 2 V . For brevity denote �(wi), D(wi) by �(i), D(i) respectively.

Following Fleischer, we cycle through the nets, sticking with a net until the lightest feasible

Steiner tree for that net is above a 1 + 2� factor times a lower bound estimate of the overall

lightest tree. Let �̄(i) be a lower bound on �(i). To start, we set �̄(0) = �=Γ. As long as

there is some T 2 T with weight(T) � minf1=Γ; (1 + 2�)�̄(i)g, we use tree T . When

this no longer holds, we know that the weight of the lightest tree is at least (1 + 2�)�̄(i),

and so we set �̄(i + 1) = (1 + 2�)�̄(i). Thus, throughout the course of the algorithm, �̄

takes on values in the set f�=Γ(1 + 2�)igi2N . Since �(0) � �=Γ and �(t � 1) < 1=Γ,

�(t) < (1+2�)=Γ. Thus, when we stop, �̄(t) is between 1=Γ and (1+2�)=Γ. Each increase

of �̄ is by a 1 + 2� factor, hence the number of increases of �̄ is log1+2�
1+2�
�

(and the final

value of i is blog1+2�
1+2�
�
c).

Between updates to �̄, the algorithm proceeds by considering each net one by one. As

long as the lightest feasible Steiner tree T for net Nk has weight less than the minimum of

1 + 2� times the current value of �̄ and 1=Γ, this lightest tree T is used to connect the pins

of the net Nk. When minT2Tkweight(T) � (1 + 2�)�̄, net Nk+1 is considered. After all

K nets are considered, �̄ is updated. A total of at most K log1+2�
1+2�
�

minimum weight

feasible Steiner tree computations are used to update � over the course of the algorithm.

Theorem 22 Algorithm 9 is a (1 + !)-approximation algorithm for the MTMCF LP by

choosing � = (1 + 2�)((1 + 2�)LΓ)� 1
2� and � < minf:07; 1+!�Γ)

8Γ g, where L is the number

of vertices in the longest feasible Steiner tree of G connecting any net.

71

Proof : Our proof is an adaptation of the proof of Garg and Könemann [35] (see also

Fleischer [29]). First we show that the values fk(v)

2 log1+2�
1+2�
�

(v 2 V , k = 1; : : : ;K), computed

by the algorithm, are feasible, i.e., 1
2 log1+2�

1+2�
�

PK
k=1 fk(v) � c(v) and hence we do not

exceed the capacity of any vertex v of G. Consider an arbitrary vertex v of G and let

M =
PK

k=1 fk(v) denotes how many times the vertex v was used by all feasible Steiner

trees found by algorithm. For every two times that the vertex v was used by feasible Steiner

trees, the weight of v increased by a factor of at least (1+ 2�
c(v)

). Since w0(v) = �, it follows

that wt(v) � �(1 + 2�
c(v)

)
M
2 . Simplifying this expression, we get

wt(v) � �(1 +
2�
c(v)

)
M
2 = �((1 +

2�
c(v)

)c(v))
M

2c(v) � �(1 + 2�)
M

2c(v)

The last time we increased the weight of v, it was on a feasible Steiner tree of weight

less than 1=Γ. Hence, the weight of v was less than 1. Since in each iteration we increase

the vertex weight by factor of at most (1 + 2�), the final weight of v is at most (1 + 2�).

Consequently,

�(1 + 2�)
M

2c(v) � wt(v) � 1 + 2�; i.e., M � c(v)2 log1+2�

1 + 2�
�

Now we show that the ratio of the values of the dual and the primal solutions, =

�

f
2 log1+2�

1+2�
�

, is at most (1 + !).

For each iteration i � 1 we have

D(i) =
X
v2V

wi(v)c(v) =
X
v2V

wi�1(v)c(v) + �
X
v2T

wi�1(v)

�D(i � 1) + �(1 + 2�)Γ�(i� 1)

Note that, if T used a loop vv, then v contributes to the sum
P

v2T wi�1(v) twice (since

wi(v) = wi�1(v)(1 + 2�
c(v)

)).

Then,

D(i) �D(0) � �(1 + 2�)Γ
iX

j=1

�(j � 1)

72

Consider the weight functionwi(�)�w0(�). We have �(wi�w0) � �(wi)� �L, where

L is the number of vertices in the longest feasible Steiner tree of G connecting any net.

Consequently, if �(wi)� �L > 0, then

� �
D(wi � w0)

�(wi �w0)
�

D(i)�D(0)
�(i)� �L

�
�(1 + 2�)Γ

Pi
j=1 �(j � 1)

�(i)� �L

Thus, in any case (for the case �(wi)� �L � 0, it is trivial) we have

�(i)� �L+
�(1 + 2�)Γ

�

iX
j=1

�(j � 1)

� (1 +
�(1 + 2�)Γ

�
)i�1(�L+

�(1 + 2�)Γ
�

�(0))

� (1 +
�(1 + 2�)Γ

�
)i�1(�L+

�(1 + 2�)Γ
�

�L)

= �L(1 +
�(1 + 2�)Γ

�
)i � �Le

i�(1+2�)Γ
�

For the last inequality the fact 1 + x � ex for x � 0 is used.

Since we stop at iteration t with �(t) � 1=Γ, and t = f , we get

1=Γ � �(t) � �Le
t�(1+2�)Γ

� = �Le
f�(1+2�)Γ

� :

Hence,

�

f
�

�(1 + 2�)Γ
ln(�LΓ)�1

Now, for the ratio we obtain

 =
�

f
2 log1+2�

1 + 2�
�

�
2�(1 + 2�)Γ log1+2�

1+2�
�

ln(�LΓ)�1
=

2�(1 + 2�)Γ ln 1+2�
�

ln(1 + 2�) ln(�LΓ)�1

73

Since we have chosen � = (1 + 2�)((1 + 2�)LΓ)
�1
2� , we get

ln 1+2�
�

ln(�LΓ)�1
=

1
1� 2�

and hence,

 �
2�(1 + 2�)Γ

(1� 2�) ln(1 + 2�)
�

2�(1 + 2�)Γ
(1� 2�)(2�� 4�2=2)

� (1 + 2�)(1� 2�)�2Γ

Here we use that ln(1 + x) � x� x2=2 (by Taylor series expansion of ln(1 + x)).

Since (1 + 2�)(1� 2�)�2 is at most (1 + 8�), for � < :07, and (1 + 8�)Γ should be no

more than our approximation ratio (1 + !), we are done. 2

In Algorithm 9 we need to solve the following problem. Let Gk (k = 1; : : : ;K) be a

subgraph of the graph G induced by vertices fsk; t1
k; : : : ; t

qk
k g [R (recall that each vertex

v 2 R has a loop vv 2 E). Let also each vertex v of Gk have a non-negative weight w(v).

Find a minimum weight tree Tk in Gk connecting sk with t1
k; : : : ; t

qk
k such that, for each

i = 1; : : : ; qk, the path of Tk between sk and tik passes through even (odd, depending on

aik) number of vertices, and that number of vertices should not exceed lik. This path may

contain a loop. So, the vertex weight will contribute either once or twice (in case of loop)

to the weight of the tree Tk.

Let Lk = maxfl1k; : : : ; l
qk
k g. We reduce this problem to the usual shortest directed

rooted Steiner tree problem on an edge-weighted directed acyclic graph (dag) Dk with

V (Dk) = fskg[fri;j j 1 � i � n, 1 � j � Lkg[ft
1
k; : : : ; t

qk
k g andE(Dk) = E1[E2[E3,

where

E1 = f(sk; ri;1) j 1 � i � n, (sk; ri) 2 E(G)g

E2 = f(ri;j; ri0;j+1) j 1 � i; i0 � n, 1 � j < Lk,(ri; ri0) 2 E(G)g

E3 = f(ri;j; t
h
k) j 1 � i � n, 1 � h � qk, 1 � j � lhk ,j � ahk(mod 2), (ri; thk) 2 E(G)g

74

If the cost of each arc (x; y) in Dk is given by w(x), it is easy to see that finding the

minimum weight tree in Tk reduces to finding a minimum cost directed rooted Steiner tree

(DRST) inDk . Generally, the directed rooted Steiner tree problem asks, for a given directed

edge-weighted graphH = (X;U), a specified root r 2 X , and a set of terminals Y � X , to

find the minimum cost arborescence rooted at r and spanning all the vertices in Y (in other

words r should have a path to every vertex in Y). Unfortunately, the fact that Dk is acyclic

does not help. There is a simple reduction for this problem from arbitrary directed graphs to

acyclic graphs. As far as we know, the best result for the DRST problem is due to Charikar

et al. [15] which says that an O(log2 qk)-approximate solution can be found in quasi-

polynomial time O(n3 log qk). Since this is very inefficient, we need to find some other ways

to compute such trees. One way is to compute (exactly or approximately) a DRST once, and

then in all next iterations (with new edgelengths) using the found Steiner points p1; : : : ; ps

find a minimum directed spanning tree of the graph induced by fsk; t1
k; : : : ; t

qk
k ; p1; :::; psg

(this approach was used in [2]). To find a minimum spanning directed tree in directed

acyclic graphs, one can use a very simple procedure: for each vertex choose a shortest

incoming arc. After running this procedure one can recursively delete all leaves of the

spanning tree, that are not sinks of the net Nk.

5.4 Rounding the fractional MTMCF

In the previous section we presented an algorithm for approximating the optimum mul-

titerminal multicommodity flow (MTMCF) within any desired accuracy. The optimum

MTMCF gives an upper-bound on the maximum number of routable nets (connections).

In this section we show how to use the approximate MTMCF to route an almost optimal

number of nets (resp. connections). Our construction is based on the randomized round-

ing technique of Raghavan and Thomson [63], in particular, on the random-walk based

algorithm for rounding multicommodity flow [62] (see also [56]).

75

Input: Multiterminal flows fk(e) 2 [0; 1], k = 1; : : : ;K, e 2 E(G)
Output: Set of trees Tk 2 Tk

For each k = 1; : : : ;K, with probability fk, do

Tk fskg

For each sink tik in Nk do

P ;; v tik

While v =2 Tk do
Pick arc (u; v) with probability fk(u; v)=fk(v)
P P [f(u; v)g; v u

End while
Tk Tk [P

End for

End for

Algorithm 10: The randomized MTMCF rounding algorithm

The MCF rounding algorithm in [62] chooses a set of source-sink pairs by including

each pair (s; t) with a probability equal to the flow from s to t. Then, for each chosen pair,

(s; t), the algorithm performs a random-walk from s to t, based on probabilities given by

edge-flows. In our MTMCF rounding algorithm (Algorithm 10), a netNk = (sk; t1
k; : : : ; t

qk
k)

is also routed with probability equal to the net’s total flow, fk =
P

T2Tk fT . Since we need

to construct a tree connecting all sinks tik to the source sk, we route the net by performing

backward random walks from each sink until reaching either sk or a vertex on a path already

included in the tree. Thus, if the net has only one sink, our rounding algorithm becomes

identical to the algorithm in [62], except for the direction of the random walk.

Ensuring that no vertex capacities are exceeded can be accomplished in two ways.

Following [56], one way is to solve the MTMCF LP with capacities scaled down by a small

factor that guarantees that the rounded solution will meet the original capacities with very

high probability. A simpler approach, the so-called greedy-deletion algorithm [22], is to

76

repeatedly drop routed nets that visit over-used vertices until feasibility is achieved. We

implement a modification of the second approach: instead of dropping an entire tree, we

drop only the sinks which use paths through over-used vertices.

5.5 Implemented algorithms

In this section we describe the implemented algorithms for the Global Routing via Buffer

Blocks problem.

5.5.1 Greedy routing algorithms

We have implemented 3 greedy algorithms for the GRBB problem. The first algorithm,

similar to one proposed in [20], starts by decomposing each multiterminal net into 2-terminal

nets. Then, the algorithm attempts to route the 2-terminal nets one by one, using for routing

a shortest available path from the net’s source to its sink, if such a path exists. We will refer

to this algorithm as the forward 2-terminal greedy (F-2TG) algorithm.

The second greedy algorithm (Algorithm 11), referred to as the multiterminal Greedy

(MTG) algorithm, handles multiterminal nets, and thus does not have to resort to net

decomposition. For each multiterminal net we attempt to route the sinks one by one. For

each sink we use a shortest available path to one of the vertices already connected to the

source, if any such path exists.

The third algorithm, the backward 2-terminal greedy (B-2TG), works as F-2TG, except

for the fact that shortest paths are computed backward, from sinks toward sources and not

from sources toward sinks. Notice that B-2TG is the special case of MTG when applied to

2-terminal nets.

77

Input: Graph G with K nets N1; : : : ; NK, vertex capacities c(v)
Output: Set of trees Tk 2 Tk

For each k = 1; : : : ;K, do

Tk fskg

For each sink tik in Nk do

Using a backward BFS search, find a shortest path P from tik to Tk in G

using only vertices v with c(v) > 0; if no such path exists let P = ;

Tk Tk [P

For each vertex v in P , c(v) c(v)� 1

End for

End for

Algorithm 11: The multiterminal greedy (MTG) routing algorithm

5.5.2 Flow rounding algorithms

We have implemented two flow rounding algorithms. The first algorithm (Algorithm 12)

is based on MTMCF rounding. Our current implementation decomposes larger nets into

3-terminal nets before applying the MTMCF routing algorithm, we will refer to this imple-

mentation as 3TMCF. For 3-terminal nets we can find the optimum directed routed Steiner

tree efficiently, and we do not need to resort to the approximations suggested at the end of

Section 5.3.

In order to assess the benefit of using multiterminal nets, we include in our comparison

a second flow rounding algorithm, which starts by decomposing each multiterminal net

into 2-terminal nets and then solves approximately the fractional relaxation of the resulting

integer multicommodity flow program and applies randomized rounding. This algorithm

will be referred to as 2TMCF.

78

Input: Graph G with K nets N1; : : : ; NK, vertex capacities c(v)
Output: Set of trees Tk 2 Tk

Find an approximate MTMCF using Algorithm 9.

Round the approximate MTMCF using Algorithm 10.

Use greedy deletion to find a feasible integer solution.

Use the MTG Algorithm 11 on the unrouted nets to find a maximal routing.

Algorithm 12: The MTMCF routing algorithm

5.6 Implementation experience

All experiments were conducted on a SGI Origin 2000 with 16 195MHz MIPS R10000

processors—only one of which is actually used by the sequential implementations included

in our comparison—and 4 G-Bytes of internal memory, running under IRIX 6.4 IP27.

Timing was performed using low-level Unix interval timers, under similar load conditions

for all experiments. All algorithms were coded in C and compiled using gcc version

egcs-2.91.66 with -O4 optimization.

The three test cases used in our experiments were extracted from the next-generation

microprocessor chip at SGI. We used an optimized floorplan of the circuit blocks and also

optimized the location of the source/sink pin locations based on coarse timing budgets. We

used U = 4000�m, and varied L between 500�m and 2000�m. Path-length upper-bounds

were computed with the formula lk = dist(sk; tk)/1000. In all test cases considered the

number of nets was large (over 6000), and the number of buffer blocks small (50), with

relatively large capacity (400 buffers per block); such values are typical for this application

[22].

Tables 4–6 give the number of routed sinks and the running time on the three instances

by each of the algorithms included in our comparison. Figure 5.6 plots, for one of the

instances, the solution quality versus CPU time (in seconds, excluding I/O and memory

allocation) for each of the considered algorithms.

79

Instance GREEDY
ID Nets Sinks N/S F-2TG B-2TG MTG

i1 4764 6038 2.27
89.5
0.58

90.6
0.54

93.5
0.53

i2 4925 6296 2.28
89.9
0.84

91.6
0.58

93.6
0.55

i3 4938 6321 2.28
89.8
0.65

91.5
0.59

93.3
0.54

Table 4: Percent of sinks connected and CPU time for the greedy algorithms

Instance 2TMCF
ID Nets Sinks N/S " = 0:64 " = 0:32 " = 0:16 " = 0:08 " = 0:04 " = 0:02

i1 4764 6038 2.27
94.8
2.84

95.8
12.13

96.5
39.50

96.6
139.83

96.8
600.89

96.8
2321.67

i2 4925 6296 2.28
96.2
4.35

97.1
11.34

97.4
40.55

97.5
156.89

97.6
690.31

97.6
2604.34

i3 4938 6321 2.28
96.2
3.37

96.9
11.08

97.3
40.84

97.3
163.32

97.5
730.95

97.5
2638.04

Table 5: Percent of sinks connected and CPU time for the 2TMCF algorithm

Instance 3TMCF
ID Nets Sinks N/S " = 0:64 " = 0:32 " = 0:16 " = 0:08 " = 0:04 " = 0:02

i1 4764 6038 2.27
95.7

16.57
96.8

53.62
97.3

203.03
97.5

817.59
97.6

3166.03
97.6

12736.22

i2 4925 6296 2.28
97.0

19.50
98.0

64.13
98.4

242.17
98.5

942.34
98.6

3721.95
98.4

14854.06

i3 4938 6321 2.28
96.8

18.99
97.8

66.12
98.3

246.29
98.4

956.83
98.4

3813.42
98.3

15088.50

Table 6: Percent of sinks connected and CPU time for the 3TMCF algorithm

80

The first surprising thing to notice is that B-2TG gives noticeably better results than

F-2TG, despite the fact that the two algorithms are nearly identical (they both add paths

of the same length until some of the vertices use up the full capacity).3 Perhaps not so

surprising is the fact that the multiterminal greedy algorithm is better than both F-2TG and

B-2TG. Notice that the running time of all three greedy algorithms is virtually the same, so

MTG is the clear choice among them.

Our experiments clearly demonstrate the high quality of the solutions obtained by

flow rounding methods. Significant improvement over the best of the greedy methods

is possible even with a very small increase in running time, proof that even very coarse

MCF/MTMCF approximations give helpful hints to the randomized rounding procedure.

Since randomized rounding is very fast, faster in fact than any of the greedy algorithms,

the MCF/MTMCF algorithms can be further improved by running randomized rounding

with the same fractional flow a large number of times and taking the best of the rounded

solutions; our current implementation does not exploit this idea.

Finally, our experiments show that even a limited use of multiterminal nets (decom-

position into nets of size 3) gives improvements over the already very high-quality MCF

algorithm of Dragan et al. [22]. In fact, the 3TMCF algorithm outperforms the MCF

algorithm in [22] even when the same time budget is given to both algorithms.

5.7 Conclusions and future research directions

In this chapter, we addressed the problem of how to perform buffering of global nets

given an existing buffer block plan. We gave a provably good algorithm based on a novel

approach to MTMCF approximation inspired by recent results of Garg and Könemann [35]

3The advantage in computing backward shortest paths, as opposed to forward shortest paths, appears to
lie in the fact that the former gives a set of paths that are better spread out in the vicinity of the source of a
large net. If the sinks of such a net are grouped in a small number of clusters, which is typically the case in
real designs, the forward greedy algorithm is likely to use a small number of neighbors of the source for all
these paths, thus leading to the faster exhaustion of the available capacity in these vertices.

81

89

90

91

92

93

94

95

96

97

98

0.25 1 4 16 64 256 1024 4096 16384

C
on

ne
ct

ed
 s

in
ks

 (
%

 o
f a

ll
si

nk
s)

CPU seconds

F-2TG
B-2TG

MTG
2TMCF
3TMCF

Figure 14: Percent of sinks connected vs. time on instance i1

and Fleischer [29] on edge-capacitated MCF. Our MTMCF algorithm outperforms existing

algorithms for the problem [20], and has been validated on top-level layouts extracted from

a recent high-end microprocessor design.

As presented here, our work targets the very early global wireplanning activities, i.e.,

pre-synthesis chip planning. It should be interesting to extend the class of methodologies

to which the MTMCF approach applies. Possible directions in which the approach can be

extended are: (1) handling routing congestion, e.g., by introducing capacitated “virtual”

nodes in the flow graph; (2)handling timing criticality and budgets, e.g., by better use of net

ordering and weighting; (3)improved decomposition heuristics, perhaps based on clustering

techniques; and (4) more accurate treatement of multiterminal nets, by decomposition into

nets with more than 3 terminals.

82

Vita

Ion I. Măndoiu was born on November 30, 1967 in Strejeşti, a little

town on the right shore of the Olt river in Romania. Between 1982 and

1986 he attended the “Ion Minulescu” high school in the nearby city of

Slatina. Upon high school graduation he was admitted to the University

of Bucharest, which he started to attend in 1987 after nine months of military service. In

June 1992 he graduated, first in his class, with a M.S. in Computer Science. He has been

with the Department of Computer Science of the University of Bucharest since Octomber

1992, on leave since 1995 when he entered the Ph.D. program in the College of Computing

at Georgia Institute of Technology. His research interests include the design, analysis,

and implementation of exact and approximation algorithms, combinatorial optimization,

algorithmic problems in coding and information theory, and VLSI computer-aided design.

83

Bibliography

[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: an approximation algorithm for the

generalized Steiner problem in networks. SIAM J. Comput., 24:440–456, 1995.

[2] Ch. Albrecht. Provably good global routing by a new approximation algorithm for multicom-

modity flow. In Proc. ACM/SIGDA Int. Symp. Phys. Design, 2000.

[3] S. Arora. Polynomial time approximation scheme for Euclidean TSP and other geometric

problems. In Proc. 37th IEEE Ann. Symp. Found. Comput. Sci., pages 2–11, 1996.

[4] S. Arora. Nearly linear time approximation scheme for Euclidean TSP and other geometric

problems. In Proc. 38th IEEE Ann. Symp. Found. Comput. Sci., pages 554–563, 1997.

[5] H. Bakoglu. Circuits, interconnections, and packaging for VLSI. Addison-Wesley, Reading,

Massachusetts, 1990.

[6] H. Bakoglu, J.T. Walker, and J.D. Meindl. A symmetric clock-distribution tree and optimized

high-speed interconnections for reduced clock-skew in ULSI and WSI circuits. In Proc. IEEE

Int. Conf. Comput. Design, pages 118–122, 1986.

[7] P. Berman, U. Fössmeier, M. Karpinski, M. Kaufmann, and A. Zelikovsky. Approaching

the 5=4 approximation for rectilinear Steiner trees. Technical Report WSI-94-06, Wilhelm-

Schickard-Institut für Informatik, Universität Tübingen, Tübingen, Germany, 1994.

[8] P. Berman and V. Ramaiyer. Improved approximations for the Steiner tree problem. J.

Algorithms, 17:381–408, 1994.

[9] S.N. Bespamyatnikh. An optimal algorithm for closest-pair maintenance. Discret. Comput.

Geometry, 19:175–195, 1998.

[10] K.D. Boese and A.B. Kahng. Zero-skew clock routing trees with minimum wirelength. In

Proc. IEEE Int. ASIC Conf., pages 17–21, 1992.

[11] M. Borah, R. M. Owens, and M. J. Irwin. A fast and simple Steiner routing heuristic. Discret.

Appl. Math., 90:51–67, 1999.

84

[12] R. C. Carden and C.-K. Cheng. A global router using an efficient approximate multicommodity

multiterminal flow algorithm. In Proc. ACM/IEEE Design Automation Conf., pages 316–321,

1991.

[13] T.-H. Chao, Y.-C. Hsu, and J.-M. Ho. Zero skew clock net routing. In Proc. ACM/IEEE

Design Automation Conf., pages 518–523, 1992.

[14] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, K. D. Boese, and A. B. Kahng. Zero skew clock routing

with minimum wirelength. IEEE Trans. Circ. and Syst. II: Analog & Digital Sign. Process.,

39:799–814, 1992.

[15] M. Charikar, Ch. Chekuri, T. Cheung, Z. Dai, A. Goel, and S. Cheung. Approximation

algorithms for directed steiner problems. J. Algorithms, 33:73–91, 1999.

[16] M. Charikar, J. Kleinberg, R. Kumar, S. Rajagopalan, A. Sahai, and A. Tomkins. Minimizing

wirelength in zero and bounded skew clock trees. In Proc. 10th ACM-SIAM Ann. Symp.

Discret. Algorithms, pages 177–184, 1999.

[17] D. Chen, D.-Z. Du, X.-D. Hu, G.-H. Lin, L. Wang, and G. Xue. Approximations for Steiner

trees with minimum number of Steiner points. manuscript, 1999.

[18] J. Cong, A. Kahng, and G. Robins. Matching-based methods for high-performance clock

routing. IEEE Trans. CAD, 12:1157–1169, 1993.

[19] J. Cong, A.B. Kahng, C.K. Koh, and C.-W. Tsao. Bounded-skew clock and Steiner routing.

ACM Trans. Design Automation, 3:341–388, 1998.

[20] J. Cong, T. Kong, and D. Z. Pan. Buffer block planning for interconnect-driven floorplanning.

In Proc. IEEE Int. Conf. on CAD, pages 358–363, 1999.

[21] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms. MIT Press,

Cambridge, Massachusetts, 1990.

[22] F.F. Dragan, A.B. Kahng, I.I. Măndoiu, S. Muddu, and A.Z. Zelikovsky. Provably good global

buffering using an available buffer block plan. In Proc. IEEE Int. Conf. on CAD, 2000 (to

appear).

[23] F.F. Dragan, A.B. Kahng, I.I. Măndoiu, S. Muddu, and A.Z. Zelikovsky. Provably good global

buffering by multiterminal multicommodity flow approximation. Submitted.

[24] M. Edahiro. Minimum skew and minimum path length routing in VLSI layout design. NEC

Research and Development, 32:569–575, 1991.

85

[25] M. Edahiro. A clustering-based optimization algorithm in zero-skew routings. In Proc. 30th

ACM/IEEE Design Automation Conf., pages 612–616, 1993.

[26] D. Eppstein. Fast hierarchical clustering and other applications of dynamic closest pairs. ACM

J. Experimental Algorithmics, 5:1–23, 2000.

[27] U. Feige. A treshold of lnn for approximating set cover. In Proc. 28th ACM Symp. Theor.

Comput., pages 314–318, 1996.

[28] U. Feige. A treshold of lnn for approximating set cover. J. ACM, 45:634–652, 1998.

[29] L. Fleischer. Approximating fractional multicommodity flow independent of the number of

commodities. In Proc. 40th IEEE Ann. Symp. Found. Comput. Sci., pages 24–31, 1999.

[30] U. Fößmeier and M. Kaufmann. Solving rectilinear Steiner tree problems exactly in theory

and practice. In Proc. 5th Eur. Symp. Algorithms, volume 1284 of Lecture Notes in Computer

Science, Berlin, Germany, 1997. Springer-Verlag.

[31] U. Fößmeier, M. Kaufmann, and A. Z. Zelikovsky. Faster approximation algorithms for the

rectilinear Steiner tree problem. Discret. Comput. Geometry, 18:93–109, 1997.

[32] J. L. Ganley. Computing optimal rectilinear Steiner trees: A survey and experimental evalua-

tion. Discret. Appl. Math., 89:161–171, 1998.

[33] J. L. Ganley and J. P. Cohoon. Improved computation of optimal rectilinear Steiner minimal

trees. Int. J. Comput. Geometry and Appl., 7:457–472, 1997.

[34] M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM

J. Appl. Math., 32:826–834, 1977.

[35] N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow and other

fractional packing problems. In Proc. 39th IEEE Ann. Symp. Found. Comput. Sci., pages

300–309, 1998.

[36] M.X. Goemans and D.P. Williamson. A general approximation technique for constrained

forest problems. SIAM J. Comput., 24:296–317, 1995.

[37] J. Griffith, G. Robins, J.S. Salowe, and T. Zhang. Closing the gap: near-optimal Steiner trees

in polynomial time. IEEE Trans. CAD, 13:1351–1365, 1994.

[38] S. Guha and S. Khuller. Improved methods for approximating node weighted Steiner trees

and connected dominating sets. Inf. Comput., 150:57–74, 1999.

86

[39] R.-H. Güting, O. Nurmi, and T. Ottmann. Fast algorithms for direct enclosures and direct

dominances. J. Algorithms, 10:170–186, 1989.

[40] M. Hanan. On Steiner’s problem with rectilinear distance. SIAM J. Appl. Math., 14:255–265,

1966.

[41] J. Ho, G. Vijayan, and C. K. Wong. New algorithms for the rectilinear Steiner tree problem.

IEEE Trans. CAD, 9:185–193, 1990.

[42] M. Hollander and D.A. Wolfe. Nonparametric statistical methods. John Wiley & Sons, 2nd

edition, 1999.

[43] J. Huang, X.-L. Hong, C.-K. Cheng, and E.S. Kuh. An efficient timing-driven global routing

algorithm. In Proc. ACM/IEEE Design Automation Conf., pages 595–600, 1993.

[44] F. K. Hwang. On Steiner minimal trees with rectilinear distance. SIAM J. Appl. Math.,

30:104–114, 1976.

[45] F. K. Hwang. An O(n logn) algorithm for rectilinear minimal spanning trees. J. ACM,

26:177–182, 1979.

[46] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner tree problem, volume 53 of Annals of

Discrete Mathematics. North-Holland, Amsterdam, Netherlands, 1992.

[47] M.A.B. Jackson, A. Srinivasan, and E.S. Kuh. Clock routing for high-performance ICs. In

Proc. ACM/IEEE Design Automation Conf., pages 574–579, 1990.

[48] A. B. Kahng, J. Cong, and G. Robins. High-performance clock routing based on recursive

geometric matching. In Proc. ACM/IEEE Design Automation Conf., pages 574–579, 1990.

[49] A. B. Kahng and G. Robins. A new class of iterative Steiner tree heuristics with good

performance. IEEE Trans. CAD, 11:893–902, 1992.

[50] A. B. Kahng and G. Robins. On Optimal Interconnections for VLSI. Kluwer Academic

Publishers, Norwell, Massachusetts, 1995.

[51] P. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted

Steiner trees. J. Algorithms, 19:104–115, 1995.

[52] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta Inform.,

15:141–145, 1981.

87

[53] F. D. Lewis, W. C.-C. Pong, and N. Van Cleave. Local improvement in Steiner trees. In Proc.

3rd Great Lakes Symp. VLSI, pages 105–106, 1993.

[54] Y.M. Li and M.A. Jabri. A zero-skew clock routing scheme for VLSI circuits. In Proc. IEEE

Int. Conf. on CAD, pages 458–463, 1992.

[55] G.-H. Lin and G. Xue. Steiner tree problem with minimum number of Steiner points and

bounded edge-length. Inf. Process. Lett., 69:53–57, 1999.

[56] R. Motwani, J. Naor, and P. Raghavan. Randomized approximation algorithms in combinatorial

optimization. In D.S. Hochbaum, editor, Approximation algorithms for NP-hard problems,

pages 144–191, Boston, MA, 1997. PWS Publishing.

[57] I. I. Măndoiu, V.V. Vazirani, and J.L. Ganley. A new heuristic for rectilinear Steiner trees. In

Proc. IEEE Int. Conf. on CAD, pages 157–162, 1999.

[58] I. I. Măndoiu, V.V. Vazirani, and J.L. Ganley. A new heuristic for rectilinear Steiner trees.

IEEE Trans. CAD, 19, 2000 (to appear).

[59] I. I. Măndoiu and A.Z. Zelikovsky. A note on the MST heuristic for bounded edge-length

Steiner trees with minimumnumber of Steiner points. Information Processing Letters, 75:165–

167, to appear Oct. 2000.

[60] A.P.-C Ng, P. Raghavan, and C.D. Thomson. Experimental results for a linear program global

router. Computers and Artificial Intelligence, pages 229–242, 1987.

[61] H. J. Prömel and A. Steger. RNC-approximation algorithms for the Steiner problem. In

R. Reischuk and M. Morvan, editors, Proc. Symp.Theor. Aspect. Comput. Sci., volume 1200 of

Lecture Notes in Computer Science, pages 559–570. Springer-Verlag, Berlin, Germany, 1997.

[62] P. Raghavan and C.D. Thomson. Provably good routing in graphs: Regular arrays. In Proc.

17th ACM Symp. Theor. Comput., pages 79–87, 1985.

[63] P. Raghavan and C.D. Thomson. Randomized rounding. Combinatorica, pages 365–374,

1987.

[64] S. Rajagopalan and V.V. Vazirani. Primal-dual RNC approximation algorithms for set cover

and covering integer programs. SIAM J. Comput., 28:526–541, 1999.

[65] G. Robins. Batched Iterated 1-Steiner code available at

www.cs.virginia.edu/˜robins/steiner.tar.

88

[66] G. Robins and J. S. Salowe. Low-degree minimumspanning trees. Discret. Comput. Geometry,

14:151–165, 1995.

[67] G. Robins and A. Zelikovsky. Improved Steiner tree approximation in graphs. In Proc. 11th

ACM-SIAM Ann. Symp. Discret. Algorithms, pages 770–779, 2000.

[68] J. S. Salowe and D. M. Warme. Thirty-five-point rectilinear Steiner minimal trees in a day.

Networks, 25:69–87, 1995.

[69] M. Sarrafzadeh and C. K. Wong. Bottleneck Steiner trees in the plane. IEEE Trans. Comput.,

41:370–374, 1992.

[70] E. Shragowitz and S. Keel. A global router based on a multicommodity flow model. Integration,

5:3–16, 1987.

[71] X. Tang and D. F. Wong. Planning buffer locations by network flows. In Proc. ACM/SIGDA

Int. Symp. Phys. Design, 2000.

[72] V.V. Vazirani. Approximation algorithms. Springer-Verlag, Berlin, 2000.

[73] D. M. Warme, P. Winter, and M. Zacharisen. Exact algorithms for plane Steiner tree problems:

A computational study. Technical Report DIKU-TR-98/11, Department of Computer Science,

University of Copenhagen, Copenhagen, Denmark, 1998.

[74] D.M. Warme, P. Winter, and M. Zacharisen. The GeoSteiner 3.0 package, available at

ftp.diku.dk/diku/users/martinz/geosteiner-3.0.tar.gz.

[75] Y. F. Wu, P. Widmayer, and C. K. Wong. A faster approximation algorithm for the Steiner

problem in graphs. Algorithmica, 23:223–229, 1986.

[76] M. Zachariasen. Rectilinear full Steiner tree generation. Networks, 33:125–143, 1999.

[77] A. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem. Algorith-

mica, 9:463–470, 1993.

[78] A.Z. Zelikovsky and I. I. Măndoiu. Practical approximation algorithms for zero- and bounded-

skew clock trees. Submitted.

89

