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Preface

This thesis gives improved approximation algorithms and heuristics for several NP-hard
problems arising in the global routing phase of physical VLSI design. In each of these
problems interconnection topol ogies must be specified for nets consisting of a source and
multiple sink terminals. Different optimization objectives are used, depending on the
functionality of the nets. We address the single-net routing problem under three of the most
important objectives: minimizing length, skew, and number of buffers. We also address a
multi-net global buffered routing problem in which alarge number of nets must be routed
simultaneously using only bufferslocated in a given set of regions, each with prescribed
capacity.

The problem of finding a minimum-lengthinterconnection of anet using only horizontal
and vertical wires, the so called rectilinear Seiner tree (RST) problem, has long been one
of the fundamental problemsin thefield of electronic design automation. In thisthesiswe
give a new RST heuristic which has at its core a recent 3/2 approximation algorithm of
Rajagopalan and Vazirani for the metric Steiner tree problem on quasi-bipartite graphs—
theseare graphsthat do not contain edges connecting pairsof Steiner vertices. Our new RST
heuristic achieves an excellent running time by combining an efficient implementation of
the RV agorithm with ssimple, but powerful geometric reductions. Experiments conducted
on both random and real VL SI instances show that the new RST heuristic runs significantly
faster than the best existing RST heuristics and exact algorithms. Moreover, the new
heuristic typically gives higher-quality solutions than previoudy best heuristics.

The clock skew is the maximum difference in arrival times of the clock signal at
synchronizing elements. Obtaining zero- or bounded-skew clock routing is critical for

maximizing the clock rate of today’s deep-submicron VLS designs. At the same time, due



to power consumption, signal integrity, and area utilization considerations, it is necessary
to minimize the total wirelength used by the clock tree. The problems of finding zero- and
bounded-skew clock trees with minimum total wirelength have received much attention in
the VLSI CAD literature. However, the first strongly polynomial algorithms with proven
constant approximation factors have been proposed only recently: Charikar et a. [16] have
given 2e ~ 5.44 and 16.86-approximation algorithms for zero- and bounded-skew trees,
respectively. Inthisthesiswegive practical algorithmswith improved approximation factors
for both problems. For » pointsin the rectilinear plane, our algorithmsfind, in O(n logn)
time, zero- and bounded-skew trees of length at most 3 and 9 timesthe optimum. In general
metric spaces, the respective approximation factors are 4 and 14, and can be guaranteed in
O(n?) time.

As integrated circuit technology scales into the deep-submicron range, the effect of
interconnect on chip performance becomes increasingly dominant. An important step in
maintaining reasonable signal delay is to ensure that the length of each wire segment is
whithin prescribed bounds; this can be achieved by buffer insertion. Since buffers occupy
a significant area on the chip and introduce additional power requirements, the goal of
buffered routing is to meet the wire segment upper-bound using the minimum number of
buffers. In this thesis we consider two problems related to buffered routing. The first
problem is to find a routing with minimum number of buffers for a single net, subject to
upper-bounds on the length of each wire segment. We give a tight analysis of the MST
heuristic recently introduced by G.-H. Linand G. Xuefor this problem. The approximation
factor of the heuristicis shown to be one less than the MST number of the underlying space,
defined as the maximum possible degree of a minimum-degree MST spanning points from
the space. In particular, on instances drawn from the rectilinear plane, the MST heuristic
has a tight approximation factor of 3.

The second buffered routing problem addressed in this thesis is how to perform si-

multaneous buffering of a large number of nets, given an existing buffer block plan, i.e.,



using bufferslocated at a given set of buffer blocks, each with limited capacity. We give a
provably good algorithm based on a novel approach to multitermina multicommodity flow
approximation inspired by recent results of Garg and Konemann [35] and Fleischer [29].
Our algorithm routes the nets subject to both upper and lower bounds on the length of wire
segments, as well as path-length upper bounds and buffer parity constraints per connection.
The new algorithm outperforms existing algorithms for the problem [20], and has been

validated on top-level layouts extracted from arecent high-end microprocessor design.
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Chapter 1

Introduction

Physical VLSI design is the process of trandating the electrical description of a circuit
into a geometrical layout. Obtaining good solutions to the NP-hard problems arising in
thisprocessis crucial for the production of low-cost, high-performance integrated circuits.
In this thesis we explore, both theoretically and experimentally, several approximation
algorithms and heuristics for problems related to the global routing phase of physical
design.

In global routing, interconnection topologies must be specified for a large number of
signal nets, each consisting of a source and multiple sink terminals. Routing is typically
performed onenet at atime, afeasible solutionto asingle-net instance of therouting problem
being arectilinear Steiner treefor the set of terminals. Different optimization objectivesare
used, depending on the functionality of the nets. The most important objectives considered
inthe VLSI literature are [50]:

e Length. Minimizing length has long been the prevailing objective in VLSI routing,
since a minimum-length interconnection occupies the minimum amount of area and
has minimum overall capacitance and resistance. Although recent advances of inte-
grated circuit technology into the deep-submicron realm have introduced additional
routing objective functions, minimizing length remains the most important objective
for non-critical nets and in physically small instances. This objective is captured by
the the well-studied Rectilinear Steiner Tree (RST) problem.



e Delay. As VLS technology scales to smaller feature sizes and larger layout ar-
eas, propagation delay increasingly dominates delay through switching devices. In
performance-driven routing, one seeks to control the propagation delay between the
source and a specified set of sinks. A standard formulation of this objective is the
Rectilinear Steiner Arborescence (RSA) problem, that asks for a minimum length
“shortest-path” rectilinear Steiner tree rooted at the source, i.e., a minimum length

Steiner tree in which the length of each source-to-sink path isas small as possible.

e Skew. In order to maximize the clock rate it is necessary to minimize the skew
of the clock network, i.e., the maximum difference between source-to-sink delays.
Two formulations capturing this objective have received much attention in the VLSI
literature. The Zero-Skew Tree (ZST) problem is to find a minimum length rooted
rectilinear Steiner treeinwhich all root-to-leaf pathshaveequal length. The Bounded-
Skew Tree (BST) problemisdefined similarly, except that thelength of two root-to-leaf
paths may differ by at most a given number 6.

e Buffers. Buffer insertion is an increasingly popular solution for maintaining sig-
nal integrity and achieving reasonable signal delay in the global nets of today’s
interconnect-dominated deep-submicron designs. To minimize the increase in area
and power requirements, it is desirable to use the smallest number of buffers that
meets the given upper-bound on buffer—buffer and buffer—terminal wire lengths. The
Minimum number of Steiner Points Tree (MSPT) problem captures this objective by

modeling buffersas Steiner points, possibly of degree 2.

In Chapters 2—4 of thisthesiswe consider the single-net routing problem under three of
the above objectives: minimizing length, skew, and number of buffers. In thefinal chapter
we address a multi-net global buffered routing problem in which a large number of nets

must be routed simultaneously using only buffers located at a given set of buffer blocks,



each with limited capacity. In the remaining of this chapter we formally introduce these

problems and give a summary of our results.

1.1 Rectilinear Steiner trees

Since VLS fabrication technol ogy typically mandatesthe use of only horizontal and vertical
interconnect, the problem that captures the length-minimization objective in globa VLSI

routing is the following variant of the classical Steiner tree problem:

Rectilinear Steiner Tree Problem: Given a set of terminalsin the plane, find aminimum
length interconnection of the terminals, using only horizontal and vertical wires. Wires are
allowed to meet at points other than the terminals, these non-terminal meeting points are

referred to as Steiner points.

The RST problem was defined by Hanan in 1966 [40], and has been the subject of active
research ever since. Since the RST problem is NP-hard [34], most of the research effort
on the problem has been devoted to designing heuristics and approximation algorithms, see
eg. [1, 8,11, 31, 36, 41, 45, 50, 53, 61, 75, 77]. In an extensive survey of RST heuristics
up to 1992 [46], the Batched Iterated 1-Steiner (BI1S) heuristic of Kahng and Robins [49]
emerged as the clear winner, with an average improvement over the MST on terminals of
almost 11%.

After a steady, but relatively dow progress [30, 33, 68], exact RST algorithms have
recently witnessed spectacular progress [73], with the new release of the GeoSteiner
code by Warme, Winter, and Zachariasen matching in average running time the fast BI1S
implementation of Robins. We are thus faced with the paradoxical situation that an exact
algorithm for an NP-hard problem has the same average running time as a state-of -the-art
heuristic for the problem.

In Chapter 2 of this thesis we give a new RST heuristic that improves over the BI1S
heuristic of Kahng and Robinsin both speed (the new heuristicisfaster by afactor of 2-10,



depending on the instance size) and average solution quality. The new heuristic comes
within 0.5% of the optimum solution computed by GeoSteiner on the average, and runs
4-10 times faster than the exact code.

Our results are obtained by exploiting a number of recent algorithmic and implemen-
tation ideas. On the algorithmic side, we build on the recent 3/2 approximation agorithm
of Rajagopalan and Vazirani [64] for the metric Steiner tree problem on quasi-bipartite
graphs; these are graphs that do not contain edges connecting pairs of Steiner vertices.
This agorithm is based on the linear programming relaxation of a sophisticated integer
formulation of the metric Steiner tree problem, called the bidirected cut formulation. It is
well known that the RST problem can be reduced to the metric Steiner tree problem on
graphs [40], however, the graphs obtained from the reduction are not quasi-bipartite. We
give an RV-based heuristic for finding Steiner treesin arbitrary (non quasi-bipartite) metric
graphs. The heuristic, called Iterated RV (IRV), computes a Steiner tree of aquasi-bipartite
subgraph of the original graph using the RV algorithm, in order to select a set of candi-
date Steiner vertices. The process is repeated with the selected Steiner vertices treated
as terminals—thereby allowing the algorithm to pick larger quasi-bipartite subgraphs, and
seek additional Steiner vertices for inclusion in the tree—until no further improvement is
possible.

The efficient implementation of the IRV heuristic depends criticaly on the size of the
quasi-bipartite subgraphs considered in each iteration. We decrease the size of the graphs
that correspond to RST instances by applying reductions, which are deletions of edges and
vertices that do not affect the quality of the result. Our key edge reduction is based on
Robins and Salowe's result that bounds the maximum degree of a rectilinear MST [66],
and allows us to retain in the graph at most 4 edges incident to each vertex. Notably, the
same reduction is the basis of a significant speed-up in the running time of BI1S [37], and
is currently incorporated in Robins implementation. Our vertex reduction is based on a

simple empty rectangletest [8, 31, 76].



It is interesting to note that, due to poor performance and prohibitive running times,
none of the previous algorithms with proven guarantees for the Steiner tree problem in
graphs [1, 8, 36, 61, 77] was found suitable as the core algorithmic idea around which
heuristics can be built for use in the industry. Our adaptation of the RV agorithm fills
this void for the first time, and points to the importance of drawing on the powerful new
ideas developed recently in the emerging area of approximation algorithms for NP-hard

optimization problems.

1.2 Zero- and bounded-skew clock trees

Today’s high-performance VLSI circuits use ailmost exclusively synchronous designs. In
these circuits, a clock signal, distributed by means of a tree rooted at the clock source,
must be delivered periodically to a set of clock sinks. To achieve maximum clock rateit is
necessary to minimize the clock skew, i.e., the maximum difference in arrival times of the
clock signal at synchronizing elements.

Clock skew can be controlled in a number of ways, eg., by using wires with non-
uniform width or by inserting buffers. In this thesis we address the most popular approach
of controlling skew, whichisto control thelength of wiresintheclock tree. Inthisapproach,
afeasiblerouting for aset of sinks S isazero-skew tree (ZST), i.e., arooted Steiner treein
which al root-to-sink paths have equal length. Due to power consumption, signal integrity,
and area utilization considerations, the objective is to minimize the total length of the ZST.

Thus the clock tree construction problem has been formalized [5] as follows:

Rectilinear Zero-Skew Tree Problem: Given aset S of sinksin therectilinear plane, find

a zero-skew tree of minimum total length for 5.

As noted in [50], a more realistic design requirement is captured by bounded-skew
trees (BST). A rooted Steiner tree 7' for the set S’ of sinksis a b-bounded-skew tree if the

differencein length between any two root-to-sink pathsis at most b.



Rectilinear Bounded-Skew Tree Problem: Givenaset S of sinksin the plane and bound

b > 0, find a b-bounded-skew tree of minimum total length for S.

The rectilinear BST problem and the generalization of the ZST problem to arbitrary
metric spaces are NP-hard [16]. The complexity of the rectilinear ZST problem is not
known—for a fixed tree topology the problem can be solved in linear time by using the
Deferred-Merge Embedding (DME) algorithm independently introduced in [10, 13, 24].

Although the rectilinear zero- and bounded-skew tree problems have received much
attention in the VLSI CAD literature [6, 10, 13, 14, 19, 24, 25, 47, 18, 54] (see Chapter 4
of [50] for adetailed review), thefirst algorithms with constant approximation factors have
been proposed only recently, by Charikar et al. [16]. Charikar et a. generalize the ZST
and BST problemsto arbitrary metric spaces, and, for this general setting, give algorithms
with approximation factors of 2¢ ~ 5.44 and 16.86, respectively. The BST algorithmin
[16] relies on an approximation agorithm for the Steiner tree problem in graphs. Using
the currently best Steiner tree approximation of Robins and Zelikovsky [67] and Arora's
PTAS for computing rectilinear Steiner trees[3, 4], the BST boundsin [16] can be updated
to 16.11 for arbitrary metric spaces, and to 12.53 for the rectilinear plane.

In Chapter 3 of this thesis we give practical agorithms with improved approximation
factors for both problems. For » pointsin the rectilinear plane, our algorithms find zero-
and bounded-skew trees of length at most 3 and 9 times the optimum. In general metric
spaces, the respective approximation factorsare 4 and 14.

An important feature of our algorithmsis their practical running time: our algorithms
runin O(n logn) timefor therectilinear planeand in O(»?) timefor arbitrary metric spaces.
Thus, our algorithms can easily handle the clock nets with hundreds of thousands of sinks

that occur in large cell-based or multi-chip module designs.



1.3 Bounded edge-length Steiner trees with minimum number of Steiner

points

Bounded edge-length Steiner trees are a natural model for applications arising in VLSI
routing as well aswireless network design. In these applicationsterminalsare pointsin the
plane, and the underlying metricis either therectilinear metric, L1, asin buffer insertion for
clock delay and skew minimization, or the Euclidean metric, L,, as in the design of fixed
wireless networks. The goal isto minimize the number of Steiner points, which correspond

to buffers, respectively radio relays.

Minimum Number of Steiner Points Tree Problem: Given a set S of terminalsin an
arbitrary metric space and bound R > O, find a Steiner treefor .S with minimum number of

Steiner points among the trees with edges of length at most £.

The MSPT problem, which is a specia case of the node-weighted Steiner tree problem
[51], wasfirstintroduced by Sarrafzadeh and Wong [69]. The problemisNP-hard evenwhen
restricted to pointsin the rectilinear or Euclidean planes [69]. The results of [51] and [28]
imply that, for arbitrary metric spaces, the MSPT problem cannot be approximated within
afactor of (1 — ) Inn, where n is the number of terminals, unless NP C TIME(n'?9'097).
Thus, the Inn-approximation algorithm of Guhaand Kuller [38] is optimal in this case.

Optimal approximation results are not known for the rectilinear and Euclidean planes.
Recently, Lin and Xue [55] considered the following MST heuristic for the MSPT prob-
lem: Compute an MST on terminals, then subdivide each edge (u,v) of the MST via
[d(u,v)/R] — 1 equally spaced Steiner points, where d(u, v) stands for the distance be-
tween v and v. Lin and Xue proved that the MST heuristic has an approximation factor
not worse than 5 in the Euclidean plane, leaving open the problem of finding the exact
approximation factor.

In Chapter 4 of this thesis we give a tight analysis of the MST heuristic for any

L,, metric space, showing that its approximation factor is exactly one less than the MST



number, defined as the maximum possible degree of a minimum-degree MST spanning
points from the space. Sincethe MST numbersfor therectilinear and Euclidean planes are
4 and 5 [66], our analysis implies that for these two metric spaces the MST heuristic has
tight approximation factors of 3 and 4, respectively.

1.4 Multi-net global routing via buffer blocks

Process scaling leads to an increasingly dominant effect of interconnect on high-end chip
performance. Each top-level global net must undergo repeater insertion to maintain signa
integrity and reasonable signal delay. Estimates of the need for repeater insertion range up
to 10° repeaters for top-level on-chip interconnect for 50nm technology. These repeaters
occupy a significant area on the chip, affect global routing congestion, can entail non-
standard cell height and special power routing requirements, and can act as noise sources.
In a block- or reuse-based methodology, designers seek to isolate repeaters for global
interconnect from individual block implementations.

For these reasons, a buffer block methodology has become increasingly popular in
structured-custom and block-based ASIC methodologies.  In Chapter 5 of this thesis we
address the problem of how to perform buffering of global nets given an existing buffer
block plan.  We give a provably good algorithm based on a recent approach of Garg
and Konemann [35] and Fleischer [29]. Our method routes the nets using available buffer
blocks subject to both upper and lower bounds on repeater intervals, aswell as path-length
upper bounds and buffer parity constraints per connection. More formally, our problemis

defined as follows.

Given:
e aplanar region with rectangular obstacles;

e aset of netsin the region, each net has:



— asingle source and one or more sinks;
— anon-negative importance (criticality) coefficient;
e each sink has:
— aparity requirement, which specifiestherequired parity of the number of buffers
(inverters) on the path connecting it to the source;
— atiming-driven requirement, which specifies the maximum number of buffers
allowed on this path;
e aset of buffer blocks, each with given capacity; and

e aninterval [L, U] specifying lower and upper bounds on the distance between buffers.

The Global Routing via Buffer Blocks (GRBB) Problem is to route a subset of the

given nets, with maximum total importance, such that:

e the distance between the source of a route and its first repeater, between any two
consecutive repeaters, respectively between thelast repeater on aroute and theroute's

sink, areall between [ and U;

¢ the number of trees passing through any given buffer block does not exceed the

block’s capacity;

¢ the number of buffers on each source-sink path should not exceed the given upper
bound and should be of the given parity; to meet the parity constraint two buffers of

the same block can be used.

If possible, the optimum solution to the GRBB problem simultaneously routes al the nets.
Otherwise, it maximizes the sum of the importance coefficients over routed nets. The
importance coefficients can be used to model various practical objectives. For example, im-

portance coefficients of 1 for each net correspond to maximizing the number of routed nets,

9



and importance coefficients equal the number of sinks in the net correspond to maximizing
the number of connected sinks.

In Chapter 5 of this thesis we show that the GRBB problem can be formulated as
a generalized version of (vertex-capacitated) integer multitermina multicommodity flow
(MTMCEF). Exploiting this formulation, we give a new agorithm for the GRBB problem
based on randomized rounding of an approximate solution to the fractional relaxation of
the integer MTMCF program. Prior to our work, multicommodity flow based heuristics
have been applied [60, 70, 12, 43, 2] to unbuffered versions of VLSI globa routing in
which the main constraints are given by edge, not vertex, capacities. As noted in [56], the
applicability of these agorithms has often been limited to problem instances of relatively
small size by the prohibitive cost of solving exactly the fractional relaxation. Following
[2], we avoid this limitation by using an approximate MTMCF algorithm. This algorithm,
based on recent results of [35, 29], alows for asmooth trade-off between running time and
solution accuracy. Our experiments show that even MTMCEF solutions with low accuracy
give good final solutions for the GRBB problem.

An interesting feature of our algorithm isits ability to work with multiterminal nets—
previous work on the GRBB problem [20, 71] has considered only the case of 2-pin nets.
Experiments on top-level layouts extracted from a recent high-end microprocessor design
validate our MTMCF-based algorithm, and indicate that (1) the algorithm significantly
outperforms existing algorithms for the problem [20], even when applied to 2-pin net
decompositions, and (2) applying the MTMCF agorithm on multipin netsinstead of 2-pin
decompositions further increases the quality of the solution, even when the same time

budget is given to both algorithms.
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Chapter 2

A new heuristic for rectilinear Steiner trees*

2.1 Introduction

The rectilinear Steiner tree (RST) problem is that of finding a minimum-length intercon-
nection of a set of terminalsin the plane using only horizontal and vertical wires. The RST
problem was introduced by Hanan in 1966 [40], and has been the subject of active research
ever since, mostly because of its aplications in electronic design automation. Although
recent advances of integrated circuit technology into the deep-submicron realm have intro-
duced additional routing objectives besides length minimization, the Steiner tree problem
retainsits importance for non-critical nets and in physically small instances.

Since the RST problem is NP-hard [34], most of the research effort on the problem
has been devoted to designing heuristics and approximation algorithms, see e.g. [1, 8, 11,
31, 36, 41, 45, 49, 53, 61, 75, 77]. In an extensive survey of RST heuristics up to 1992
[46], the Batched Iterated 1-Steiner (BI1S) heuristic of Kahng and Robins [49] emerged
as the clear winner with an average improvement over the MST on terminals of almost
11%. Subsequently, two other heuristics [11, 53] have been reported to match the same
performance.

After a steady, but relatively sow progress [30, 33, 68], exact RST algorithms have
recently witnessed spectacular progress [73] (see aso [32]). The new release [74] of the
GeoSteiner code by Warme, Winter, and Zachariasen has average running time comparable

to the fast BI1S implementation of Robins [65] on random instances. We are thus faced

*This chapter is based on joint work with Vijay V. Vazirani and Joseph L. Ganley [57, 58].
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with the paradoxical situation that an exact algorithm for an NP-hard problem has the same
average running time as a state-of-the-art heuristic for the problem. It appears that, for the
RST problem, progress on heuristics has lagged behind that on exact algorithms.

Wetry to remedy thissituation by proposinganew RST heuristic. Our experimentsshow
that the new heuristic has better average running time than both Robins' implementation of
BI1S and the GeoSteiner code. Moreover, the new heuristic gives higher-quality solutions
than BI1S on the average; of course, it cannot beat GeoSteiner in solution quality.

Our results are obtained by exploiting a number of recent algorithmic and implemen-
tation ideas. On the algorithmic side, we build on the recent 3/2 approximation agorithm
of Rajagopalan and Vazirani [64] for the metric Steiner tree problem on quasi-bipartite
graphs; these are graphs that do not contain edges connecting pairs of Steiner vertices.
This algorithm is based on the linear programming relaxation of a sophisticated integer
formulation of the metric Steiner tree problem, called the bidirected cut formulation. It is
well known that the RST problem can be reduced to the metric Steiner tree problem on
graphs [40], however, the graphs obtained from the reduction are not quasi-bipartite. We
give an RV-based heuristic for finding Steiner treesin arbitrary (non quasi-bipartite) metric
graphs. The heuristic, called Iterated RV (IRV), computes a Steiner tree of aquasi-bipartite
subgraph of the original graph using the RV algorithm, in order to select a set of candi-
date Steiner vertices. The process is repeated with the selected Steiner vertices treated
as terminals—thereby allowing the algorithm to pick larger quasi-bipartite subgraphs, and
seek additional Steiner vertices for inclusion in the tree—until no further improvement is
possible.

The efficient implementation of the IRV heuristic depends criticaly on the size of the
quasi-bipartite subgraphs considered in each iteration. We decrease the size of the graphs
that correspond to RST instances by applying reductions, which are deletions of edges and
vertices that do not affect the quality of the result. Our key edge reduction is based on

Robins and Salowe's result that bounds the maximum degree of a rectilinear MST [66],
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and allows us to retain in the graph at most 4 edges incident to each vertex. Notably, the
same reduction is the basis of a significant speed-up in the running time of BI1S [37], and
iscurrently incorporated in Robins implementation [65]. Our vertex reductionis based on
a simple empty rectangle test that has its roots in the work of Berman and Ramaiyer [8]
(seedso[31, 76]).

We ran experiments to compare our implementation of IRV against Robins implemen-
tation of BI1S [65] and against the GeoSteiner code of Warme, Winter, and Zachariasen
[74]. Theresultsreportedin Section 2.4 show that, on both randomand real VLS instances,
our new heuristic produces on the average higher-quality solutionsthan BI1S. The quality
improvement is not spectacular, but we should note that solutions produced by BI1S are
already less than 0.5% away from optimum on the average.

More importantly, IRV’simprovement in solution quality is achieved with an excellent
running time. On random instances with up to 250 terminals, our IRV code runs 4-10
times faster than the Ip_solve based version of GeoSteiner used in our experiments, and
2-10 times faster than Robins implementation of BI1S—the speed-up increases with the
number of terminals. After noticing that BI1S can aso benefit from vertex reductions, we
incorporated the empty rectangle test into Robins BI1S code. The enhanced BI1S code
becomes about 30% faster than our IRV code on large random instances. However, this
does not necessarily mean that BI1S is the best heuristic in practice. Resultson real VLS
instances indicate a different hierarchy: On these instances both IRV and GeoSteiner are
faster than the enhanced BI1S.

It is interesting to note that, due to poor performance and prohibitive running times,
none of the previous algorithms with proven guarantees for the Steiner tree problem in
graphs [1, 8, 36, 61, 77] was found suitable as the core algorithmic idea around which
heuristics can be built for use in the industry. Our adaptation of the RV algorithm fills
this void for the first time, and points to the importance of drawing on the powerful new

ideas developed recently in the emerging area of approximation algorithms for NP-hard
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optimization problems[72].

The remainder of this chapter is structured as follows. Section 2.2 describes the RV
algorithm and its extension to non quasi-bipartite graphs. Section 2.3 describes how this
extension, IRV, is used to solve RST instances, and Section 2.4 presents experimental
results comparing IRV with BI1S and GeoSteiner on test cases both randomly generated

and extracted from real circuit designs.

2.2 Steiner trees in graphs

The metric Steiner treein graphs (GST) problemis: Given a connected graph & = (V, E)
whose vertices are partitioned in two sets, 7" and S, the terminal and Steiner vertices
respectively, and non-negative edge costs satisfying the triangle inequality, find aminimum
cost tree spanning all terminalsand any subset of the Steiner vertices. Recently, Ragjagopalan
and Vazirani [64] presented a 3/2 approximation algorithm (henceforth refered to as the
RV agorithm) for the GST problem when restricted to quasi-bipartite graphs, i.e., graphs
that have no edge connecting a pair of Steiner vertices. In this section we review the
RV algorithm, discuss its implementation, and present an RV-based heuristic for the GST

problem on arbitrary graphs.

2.2.1 The bidirected cut relaxation

The RV algorithm is based on a sophisticated integer programming (1P) formulation of the
GST problem. A related, but simpler formulation is given by the following observation: A
set of edges £’ C F connects terminalsin 7' if and only if every cut of G separating two
terminalscrossesat least oneedge of £’. ThelPformulationresulting fromthis observation
is called the undirected cut formulation. The IP formulation on which the RV algorithm is
based, called the bidirected cut formulation, is obtained by considering a directed version

of the above cut condition.
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Let £ be the set of arcs obtained by replacing each undirected edge (u,v) € F by two
directed arcsu — v and v — u. For aset C' of vertices, let 6(C') bethe set of arcsu — v
withu € C'andv € V'\ C. Findly, if ¢, isafixed terminal, let C containall setsC' C V' that
contain at least one terminal but do not contain ¢,. The bidirected cut formulation attempts
to pick a minimum cost collection of arcs from £ in such away that each set in C has at

least one outgoing arc:

minimize > cost(e)x. Q)
eEE
sit. Z x.>1 Ce’l
e:e€é(C)

1’56{071}, GEE

By allowing x.’sto assume non-negative fractional valueswe obtain alinear program (LP)
called the bidirected cut relaxation of the GST problem:

minimize > cost(e)x. (2
eEE
st. Z x.>1 Ce’l
e:e€é(C)
x. >0, ecE

The dual of the covering LP (2) isthe packing LP:

maximize > ye 3
ceC
st. > yo < cost(e), ec€ E
C:e€é(C)
Yo > 07 CecC

From LP-duality theory, the cost of any feasible solution to (3) is less than or equal to the
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cost of the optimum solution to (2), and hence, less than or equal to the cost of any feasible
solution to (1). The RV agorithm uses this observation to guarantee the quality of the
solution produced: The algorithm constructs feasible solutions to both IP (1) and LP (3),

in such away that the costs of the two solutions differ by at most a factor of 3/2.

2.2.2 The RV algorithm

The RV agorithm works on quasi-bipartite graphs . At acoarse level, the RV agorithm
is smilar to the Batched Iterated 1-Steiner agorithm of Kahng and Robins [49]: Both
algorithmswork in phases, and in each phase some Steiner vertices areiteratively added to
the set of terminals. While BI1S adds Steiner verticesto 1" greedily—based on the decrease
in the cost of the MST—the RV algorithm uses the bidirected cut relaxation to guide the
addition.

In each phase, the RV algorithm constructs feasible solutions to both IP (1) and LP
(3). The bidirected cut formulation and its relaxation are inherently asymmetric, since they
require a termina ¢, to be singled out. However, the RV-Phase algorithm works in a
symmetric manner: The information it computes can be used to derive feasible solutions
for any choice of ¢,.

A set ¢ C Viscaled proper if both C and V' \ C contain terminals; with respect
to the original set of terminals only setsin C and their complements are proper. During
its execution, the RV-Phase agorithm tentatively converts some Steiner vertices into
terminals, note that the only proper sets created by these conversions are singleton sets
containing new terminals, and their complements. The algorithm maintains a variable y.,
called dual, for every proper set, including the newly created ones. The amount of dual felt
by arc e iSXoc . ces(c) Yo, We say that e istight when 3= . .cs(c) yo = cost(e). A set C' of
verticesis unsatisfied if it is proper and §(C') does not contain any tight arc.

The RV-Phase agorithm (Algorithm 1) starts with y set to O for every proper set C,
and an empty list L of tight arcs. It then proceedsin aprimal-dual manner, by aternatively
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Input: Bidirected quasi-bipartite graph GG = (V, E), set 7' C V of terminals
Output: Augmented set 7'

1. L « §; For each proper set (', yc < 0
2. If all proper sets are satisfied by arcs in L, return 7' and exit

3. Otherwise, uniformly raise the y values of minimally unsatisfied sets until an arc
u — v goes tight

4. Ifu ¢ T, thenT « T U {u}; repeat from Step 1
5. Else, L + L U {u — v}; repeat from Step 2

Algorithm 1: The RV-Phase algorithm

raising dual variables as long as this does not violate the packing constraints of (3), and
picking tight edgesinto L, thus satisfying more and more proper sets. When the algorithm
stops, all proper sets are satisfied by tight arcsin L.

Theorem 1 [64] (a) If arc v — v, u ¢ T, goes tight then cost(MST(T' U {u})) <
cost(MST(T)).

(b) At the end of the RV-Phase algorithm, cost(MST(T U {u})) > cost(MST(1")) for
everyu ¢ T.

The RV agorithm (whose pseudo-code we omit) repeats the RV-Phase agorithm
followed by removal of unnecessary Steiner vertices, until no further improvement is made
in the cost of MST(7"). At the end of the algorithm, the duals raised around proper sets
are converted into a solution to (1) by picking ¢, and discarding ys's with S ¢ C. The
3/2 approximation guarantee follows by relating the cost of this solution to the cost of
MST(T).

1The tree produced by the RV agorithm is locally optimal, i.e., cannot be improved by the adition or
deletion of asingle Steiner vertex. Recently, Robinsand Zelikovsky [67] used a different argument to prove
that any locally optimal Steiner tree gives a 3/2-approximation for the metric Steiner tree in quasi-bipartite

graphs.
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2.2.3 Efficient implementation of the RV-Phase algorithm

Since our heuristic for general graphs uses the RV-Phase algorithm as a subroutine, we
describe here an efficient implementation of it. Several implementation ideas are derived

from the following key property maintained throughout the RV-Phase algorithm:

Lemma 2 [64] Let« and v betwoterminals. If all arcsalong some pathw — 21 — -+ - —

xp — v aretight, then so arethearcson thereverse path, v — x, — - -+ — 21 — u.

For implementation purposes we do not need to keep track of the duas raised; all that
mattersisthe order in which arcs get tight. The tightening time of an arc can be determined
by monitoring the number of minimally unsatisfied sets (henceforth called active sets) that
arefelt by that arc.

It is easy to see that the set of vertices reachable viatight arcs from aterminal « forms

an active set; Lemma 2 impliesthat no other active set can contain «. Thus, we get:

Corollary 3 For any terminal «, there is exactly one active set containing « at any time
during the algorithm. Hence, the tightening time of any arc u — v, u € T, is exactly

cost(u,v).

Unliketerminals, Steiner vertices may be contained in multiple active sets. Hence, arcs

out of Steiner verticeswill feel dual at varying rates during the algorithm.

Lemma 4 Let « be a Seiner vertex. If arc v — v goestight in the RV-Phase algorithm,
then arc v — w« goes tight at the same time or before « — v does. Moreover, each arc

u — w for which w — w isalready tight will go tight together with « — v.

Proof :  Inorder to get tight, v — v must feel some active set, i.e., there must exist a
tight path from aterminal v’ # v to v. After u — v getstight, thereis atight path from
v’ to v, and, by Lemma 2, the reverse path (hence the arc v — u) must also be tight. The

second claim follows similarly. O
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Since several arcsout of a Steiner vertex get tight smultaneously, we say that the vertex
crystallizes when this happens. Note that crystallization is precisely the moment when the
vertex isadded to 7', i.e., when it beginsto be treated as terminal. Lemma4 impliesthat, in
order to detect when a Steiner vertex crystallizes, it suffices to monitor the amount of dual
felt by the shortest arc out of that Steiner vertex, which we will call critical arc.

Our implementation of RV-Phase (Algorithm 2) is a discrete-event ssimulation of the
continuous-time Algorithm 1. The structure of the algorithm is reminiscent of the well-
known MST algorithm of Kruskal (see, e.g., [21]): Arcsout of terminals are sorted in non-
decreasing order, then marked astightened one by one (and active sets updated accordingly)
until a Steiner vertex crystallizes or all terminalsare connected. However, unlike Kruskal’s
algorithm, which visits each edge only once, the RV-Phase algorithm must restart the tree
construction from scratch after each vertex crystallization. Our implementation exploitsthe
fact that the two opposite arcs connecting a pair of terminals get tight at the same time, and
handles one of these arcs implicitly. The main advantage of thisimplicit representation is
that the list of arcs out of terminals does not have to be updated and re-sorted after vertex
crystallizations.

In order to determinethe crystallization times, we maintain for each terminal « itsactive
set, as(u), i.e, theset of vertices reachable from u by tight arcs. We also maintain for each
Steiner vertex s thecost ¢(s) of itscritical arc and the number na(s) of active sets containing
s. Whenever na(s) changesits value we update the amount df (s) of dual felt by the critical
arc of s. Noticethat, if na(s) > 1, the critical arc of s feelsonly na(s) — 1 of the active
sets, since one of the active sets contains both ends of the critical arc. Thus, if na(s) > 1,
the estimate for the crystallizationtimeof s isgiven by ut(s) + (¢(s) — df(s))/(na(s) — 1),
where ut(s) representsthe time of the last update of df (s). If na(s) < 1, thecritical arc of
s feelsno dual, so s has an estimated crystallization time of oc.
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Input: Bidirected quasi-bipartite graph GG = (V, E), set 7' C V of terminals
Output: Augmented set 7'

1.

2.

Let ay, ..., a,, be the arcs in {(u,v) € E|u,v € T,u < v}U
{(u,v) € E | w e T,v ¢ T}, sorted non-decreasingly by cost
S« VAT, time+ 0;i+ 1
Foreacht e T, as(t) « {t}
Foreach s € 5,
c(s)  min{cost(s,u) | (s,u) € E}
df(s) < 0; na(s) < 0; ut(s) «+ 0O
(u,v) < a;; time < cost(u,v)
C <+ {se S |na(s) > 1}
If C' # 0 then
et « min{ut(s) + (c(s) — df(s))/(na(s) — 1) | s € C'}
so ¢ argmin{ut(s) + (c(s) — df(s))/(na(s) = 1) | s € C}
Else, ct + >
If time > ¢t then T' « T U {so}; repeat from step 2
Else, ifv € S and v ¢ as(u) then
If na(v) > 1, df (v) < df (v) + (na(v) — 1)(time — ut(v))
as(u) < as(u)U{v}; na(v) < na(v) + 1; ut(v) < time
)

Else, if v € T'and v ¢ as(u) then

For each s € as(u) Nas(v) do
df(s) < df(s) + (na(s) — 1)(time — ut(s))
na(s) < na(s) — 1 ut(s) < time
as(u) < as(v) < as(u)Uas(v)
If 7' C as(u) then return 7" and exit
Else, : «+ ¢ + 1; repeat from Step 3

Algorithm 2: Implementation of the RV-Phase algorithm

20




Input: Arbitrary graph G = (V, E), set T' C V of terminals
Output: Steiner tree on terminals

=

. Tbest — Tm T

. Remove from  all edges (u, v) with «, v ¢ T', bidirect remaining edges, then
run the RV-Phase algorithm on the resulting graph. This will add some Steiner
verticesto 7'

3. Construct an MST on 7', then prune from 7'\ 7}, all vertices with tree degree
<2

N cost(MST(T)) < cost(MST(Ty.s:)) then

N

AN

Tyes: < T'; repeat from Step 2

ol

. Return MST(T}est)-

Algorithm 3: The IRV algorithm

Maintaining active sets using an augmented digoint-set data-structure leads to a worst
caserunningtimeof O(k-|T|-|S]|), wherek isthe number of crystallized Steiner vertices—

all other operations are performedin O(k - |E| - log|V|).

2.2.4 The iterated RV heuristic

A simple way of dealing with non-quasi-bipartite graphs is to remove all Steiner-Steiner
edges and then run the RV algorithm. To allow Steiner-Steiner edges to comeinto play, we
iterate this process. If a Steiner vertex is added to 7" during some run of the RV algorithm,
for subsequent runs we extend the graph by adding all edges incident to it, not just those
leading to terminals.

Preliminary experiments have shown that it is better—in both running time and solution
guality—to extend the graph after running just one RV-Phase, not the full RV algorithm,
on the quasi-bipartite graph. This gives Algorithm 3.
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2.3 Rectilinear Steiner trees

Therectilinear Seiner tree (RST) problemisdefined asfollows: Givenaset 7' of terminals
in the plane, find a shortest interconnection of the terminals using only horizontal and
vertical lines. Lines are alowed to meet at points other than the terminals; as usual,
non-terminal meeting points are called Steiner points.

By aclassical result of Hanan [40], there exists an optimal rectilinear Steiner tree that
uses only Steiner points located at intersections of vertical and horizontal lines passing
through terminals. Thus, finding a minimum rectilinear Steiner tree on a set of terminals
reduces to finding a minimum Steiner tree in the Hanan grid, with edge costs given by the
Ly (or Manhattan) metric, d(u,v) = |z, — | + |yu — Yul-

The IRV agorithm yields good results when applied to a graph for which the cost and
structure of the minimum Steiner tree does not change much after the removal of Steiner-
Steiner edges. For the RST problem, the best choice with respect to solution quality isto
run IRV on the complete graph induced by the Hanan grid. We obtain a practical running
time by applying afew simple, yet very effective, reductionsto this graph.

2.3.1 Edge reductions

By aresult of Robins and Salowe [66], for any set of pointsthere exists arectilinear MST
in which each point p has a most one neighbor in each of the four diagonal quadrants,
—r<y<z, —y<zc<yr<y<-—axzady <z < —y, trandated at p. Hence,
the optimum Steiner tree in the quasi-bipartite graph is not affected if we remove al edges
incident to a Steiner vertex except those connecting it to the closest terminals from each
quadrant. We can also discard all edges connecting pairs of terminalsexcept for the |7'| — 1
edges in MST(7')—this merely amounts to a particular choice of breaking ties between
terminal-terminal edges during RV-Phase. Combined, these two edge reductions leave a

quasi-bipartite graph with O(|T'| + |.S) edges, as opposed to O(|T'| - (|7'| + |S])) without
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Figure 1. The empty rectangle test

edge reductions.

2.3.2 Vertex reductions

Zachariasen [76] noted that reductions based on structural properties of full Steiner com-
ponents, which play a crucial role for exact algorithms such as [30] and [73], can aso be
used to remove from the Hanan grid a large number of Steiner vertices without affecting
the optimum Steiner tree. Simpler versions of these reductions sufficein our case, sincewe
only want to leave unaffected the optimum Steiner tree in the graph that results after the
removal of Steiner-Steiner edges.

We incorporated in our code a version of the empty rectangle test [76], originally due
to Berman and Ramaiyer [8]. Consider a grid point found, say, at the intersection of
the vertical line through a terminal « and the horizontal line through a termina v (see
Figure 1). The empty rectangle test says that the point must be retained in the graph only
if (1) therectangle determined by terminals « and v is empty, i.e., contains no terminalsin
its interior, and (2) the shaded quadrant contains at least one terminal. We used a smple
O(|T|?) implementation of thistest; an O(|T|log|T| + k) implementation, where k isthe

number of empty rectangles, is also possible [39].
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As noted in [31, 76], a stronger version of the empty rectangle test is guaranteed to
remove all but a set of O(|T'|) Steiner points, still with no increase in the cost of the
optimum RST with no Steiner-Steiner edges. By using this stronger test the overall running
time of IRV as applied to RST reducesto O(k - |T'|?), where k isthe number of crystallized

Steiner vertices (usually asmall fraction of |7']).

2.4  Experimental results

We compared our algorithm against Robins implementation [65] of BI1S [49, 37], and
against the recent release [74] of the exact GeoSteiner agorithm of Warme, Winter, and

Zachariasen [73].

2.4.1 Experimental setup

All experiments were conducted on a SGI Origin 2000 with 16 195MHz MIPS R10000
processors—only one of which isactually used by the sequential implementationsincluded
in our comparison—and 4 G-Bytes of interna memory, running under IRIX 6.4 IP27.
Timing was performed using low-level Unix interval timers, under smilar load conditions
for al experiments.

We coded our heuristicin C; Robins BI1S implementation and GeoSteiner are coded
in C aswell. The three programs were compiled using the same compiler (gcc version
€gcs-2.90.27) and optimization options (-O4). Whenever we had a choice in the configu-
ration of BI1S or GeoSteiner, we optimized for speed. The only exception to this rule
was the choice of LP-solver in GeoSteiner: Since CPLEX was not available on our test
machine, we configured GeoSteiner to use Warme's customized version of the public-
domain package Ip_solve. In order to assess the loss in speed induced by this choice, we
ran both versions of GeoSteiner on adifferent machine that had alicensed copy of CPLEX

6.5.1. Although CPLEX is generally considered to be significantly faster than Ip_solve,
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the CPLEX version of GeoSteiner was only 30% faster than the Ip_solve version on ex-
perimentsinvolving 1000 random instances. Thelp_solve version of GeoSteiner contains
some optimizations—made possible by intimate access to the internals of Ip_solve—not
included in the CPLEX version. However, since the optimized portions of the code were
infrequently executed in our experiments, these optimizations do not fully explain the un-
expectedly small speed advantage of CPLEX. As suggested by David Warme, the most
plausible explanation is the expensive CPLEX preprocessing, that pays off handsomely on
large and difficult instances but not as well on the L Ps occurring in our computational study.

The test bed for our experiments consisted of two categories of instances:

¢ Randominstances. For each instance size between 10 and 250, in increments of 10,
we generated uniformly at random 1,000 instances’ consisting of points in general
position® drawn from a 10000 x 10000 grid.

e Real VLS instances. To further validate our results, we ran the three competing

algorithmson a set of 9 large instances extracted from two different VLSI designs.

2.4.2 Solution quality

Following the standard practice [46], we use the percent improvement over the MST on

terminals,

cost(MST) — cost(Algo. RST)
cost(MST)

x 100,

to compare the quality of the RSTs produced by the three algorithms.

20f thetotal of 25,000 random instances, the Ip_solve based GeoSteiner exhibited numerical instability
on 18. Theseinstances could only be solved by turning on a perturbation scheme that hasthe effect of owing
down GeoSteiner. Inthesolutionquality resultsreported below for GeoSteiner weuse al 25,000 instances,
since all of them could be solved to optimality in one way or another. However, in the running time results
we omit these 18 instances to avoid pendizing GeoSteiner for the increased running time caused by turning
on perturbations.

3A set of pointsisin general positionif no two points share acommon z- or y-coordinate.
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Figure 2: Average improvement over MST

Figure 2 shows the average percent improvement over MST for BIL1S, IRV, and
GeoSteiner on random instances. Both IRV and BI1S come on the average within 0.5%
of the optimum solution found by GeoSteiner. Moreover, IRV has avery small advantage
over BI1S for almost all instance sizes. Although this advantage is small—Ilessthan 0.05%
on the average—it is dtatistically very significant, i.e., likely to be observed with high
probability on any set of instances. Figure 3 shows the 95% confidence intervals for the
expected difference between the percent improvement over MST of IRV and the percent
improvement over MST of BI1S. For all but three instance sizes the confidence interval
does not contain the origin. Wilcoxon's signed-rank sum test [42] also confirms—with a
one-sided p-value lower than 0.001 for instances of size 100 or more—the small advantage
that IRV has over BI1S.

For amoredetailed comparison, Figure4 gives ascatter plot of the percent improvement

over MST of IRV versusthat of BI1S for the 1000 random instances with 250 terminals. On
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Figure 3: 95% confidenceintervalsfor the differencein percent improvement over MST of
IRV and BI1S

61% of these instances IRV finds a better solution than BI1S. The quality of the solutions
produced by IRV is further illustrated by the scatter plot in Figure 5, which shows the
percent improvement over MST of IRV versus the maximum possible improvement. On
the same 1000 random instances, IRV is rarely more than 1% away from optimum, and on
the average is less than 0.5% away.

Solution quality results on VLS| instances are presented in Table 1. These results are
consistent with the findings on random instances: IRV gives solutions of the same quality
asBI1S on 3instances, of better quality on 5 instances, and of worse quality on 1 instance.
Both heuristics come very close to optimum; in fact, BI1S finds an optimum solution on

oneinstance and IRV finds optimum solutions twice.

2.4.3 Running time

We noted in Section 2.3 that our IRV implementation uses edge and vertex reductions in
order to speed-up the computation. Figure 6 shows the speed-up obtained by using the
empty rectangle test described in section 2.3.2; edge reductions described in Section 2.3.1
lead to an even more significant speed-up, similar to the one reported in [37] for BI1S.
Despite its smplicity, the empty rectangle test reduces the number of Steiner points by a
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Figure5: IRV vs. GeoSteiner on 1000 250-terminal instances
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| Design.Net No. term. No. Stnr. | BI1S IRV GeoStnr |
16BSHREG.CLK 185 1375 1.757 1.757 1.757
16BSHREG.RESET 406 4730 3.666 3.666 3.810
16BSHREG.VDD 573 5089 8.079 8.079 8.118
16BSHREG.VSS 556 6058 7854 8.131 8.192
MAR.BRANCH 188 2034 9.007 9.158 9.221
MAR.CLK 264 3355 7.637 7.748 7.957
MAR.GND 245 3264 6.300 6.321 6.476
MAR.RESET 109 1021 11.206 11.246 11.246
MAR.VDD 340 3681 6.038 6.003 6.181

Table 1: Average percent improvement over MST on VLS| instances

| Design.Net No. term. No. Stnr. | BI1S IRV GeoStnr |
16BSHREG.CLK 185 1375 1.31 0.25 2.80
16BSHREG.RESET 406 4730 10.07 1.65 4.37
16BSHREG.VDD 573 5089 3029 294 1.73
16BSHREG.VSS 556 6058 36.71 3.29 7.90
MAR.BRANCH 188 2034 126 0.62 521
MAR.CLK 264 3355 234 157 13.16
MAR.GND 245 3264 196 1.26 1.03
MAR.RESET 109 1021 0.24 0.16 0.65
MAR.VDD 340 3681 769 159 8.19

Table 2: Running time on VLSI instances
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factor of over 15for 250 terminal instances. This speedsup the IRV agorithm by essentially
the same factor. Dueto the direct correspondence between the reduction in Steiner vertices
and the speed-up of the algorithm, it seems worthwhile to explore further reduction ideas,
in particular those suggested in [31, 76].

After noticing that BI1S can also benefit from vertex reductions, we incorporated the
empty rectangletest into Robins' code. Asshownin Figure 6, we obtained again a speed-up
roughly equal to the decrease in the number of Steiner vertices. All running times reported
below for BI1S refer to this sped-up version of Robins' code.

Figure 7 compares the average running time of BI1S, IRV, and GeoSteiner on random
instances. On these instances IRV is 4-10 times faster than GeoSteiner and BI1S is
30% faster than IRV. Surprisingly, the results on VLSI instances presented in Table 2
indicate different trends than results on random instances. On theseinstances, both IRV and
GeoSteiner run significantly faster than predicted by experiments on random instances.
In particular, IRV is aways faster than BI1S, sometimes by as much as a factor of 10.
Although IRV is ill faster than GeoSteiner, the differencein speed is not as impressive

on these instances as it is on random instances.

2.4.4 Convergence rate

Figures 8 and 9 display the rate of convergence to the final solution for BI1S, IRV, and
GeoSteiner, when run on 16BSHREG.RESET and on arandom instance of the same size,
respectively. Each point on the IRV and BI1S curves corresponds to the addition/deletion
of asingle Steiner point to/from the solution; the points defining the GeoSteiner curve
represent moments when better feasible solutions are found during the branch-and-cut
search. A logarithmictime-scaleisused in both figuresto better put in perspective the early
rate of convergence for each algorithm.

Although Figures8 and 9 don’t give much insight on GeoSteiner, they do capture many
of the fundamental featuresof BI1S and IRV. For example, it isimmediately apparent that
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BI1S uses agreedy strategy, selecting in each step the point whose addition to the solution
gives the largest immediate gain. By contrast, due to the different nature of its selection
rules, IRV may select some pointswith very large gain only latein the process. IRV differs
from BI1S not only with respect to the order in which Steiner points are selected, the
two agorithms end up making different selections as well. For example, athough the two
algorithms obtain solutions of the same cost on 16BSHREG.RESET, the two solutions are
not identical. Out of 68 Steiner points selected by IRV and 67 selected by BI1S, only 51
are shared—42 of which are also selected by GeoSteiner.

The phase structure of IRV and BI1S is also clearly visible in Figures 8 and 9. Both
algorithms need 3 phases on 16BSHREG.RESET, and 5 on the random instance. The
first phase adds most Steiner vertices to the solution, also giving the bulk of the overall
improvement in solution quality. The following phases add fewer and fewer points, with
the last phase merely verifying that aloca optimum has been reached.

Although Steiner point selection is slower in IRV than in BI1S (compare the slopes),
IRV appears to have a smaller phase—setup cost compared to BI1S. Indeed, IRV’s phase
initialization consists of sorting the edgesin the quasi-bipartite graph, while BI1S needsto
start a phase by computing the gain corresponding to each Steiner point—thisisdoneby an
MST computation for each Steiner point. Surprisingly, Robins MST algorithm seems to
work better on random sets of points: the phase—setup timein Figure 9islessthan athird of
the phase-setup time in Figure 8, despite the fact that the random instance has more Steiner
points (7366 versus 4730 in 16BSHREG.RESET). This explains why BI1S is faster than

IRV on random instances but not on VLS instances.

2.4.5 Running time predictability

Figure 10 gives histograms for the running times of GeoSteiner, BI1S, and IRV on 1000
instances of size 250. Most striking is the heavy-tailed distribution for the running time

of GeoSteiner (note the logarithmic scale dlong GeoSteiner’'s time axis). The running
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timeof BI1S hasamulti-spikedistribution, determined by the number of phases—typically
between 2 and 4. The running time of the IRV algorithm depends in a much smoother
way on the number of phases (again between 2 and 4 most of the time) due to its reduced
phase—setup cost.

2.5 Conclusions

The experimental data presented in Section 2.4 shows that IRV produces high-quality
rectilinear Steiner trees, typically better than those produced by the Batched Iterated 1-
Steiner heuristic. The same data showsthat BI1S is significantly sped up by the addition of
the empty rectangletest. With thisenhancement, BI1S runs30% faster than IRV on random
instances, but not on large VLS| instances as those considered in our experiments. It should
be interesting to perform extensive testson full VLS| designs to see how the running times
of the two heuristics compare when applied to a mix of both small and large nets.

Our experimental data also confirms the excellent average running time of the exact
GeoSteiner algorithm of Warme, Winter, and Zachariasen [73]. When exact algorithms
achieve practical running times, one isimmediately prompted to ask if any interest remains
in suboptimal heuristics. We think that this interest will not disappear, at least not in those
RST applications where speed is moreimportant than asmall lossin solution accuracy, e.g.,
in wire-length estimation during placement.

Compared to GeoSteiner, heuristics such as BI1S and IRV have the advantage of a
more predictable and worst-case bounded running time.* Moreover, BI1S and IRV hold
more promise than the GeoSteiner algorithm for giving efficient solutions to objective
functions other than length minimization. Since both BI1S and IRV are essentially solving

the Steiner tree problem in graphs, they can be adapted without much loss in efficiency to

40f course, GeoSteiner takes exponential time in the worst case. For example, Berman, Fossmeier,
Karpinski, Kaufmann and Zelikovsky [7] (see @ so [50], pp. 39-40) give an infinitefamily of RST instances
on which GeoSteiner provably needs exponentia time.
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almost any edge-cost function—IRV does rely on costs satisfying triangle inequality. In
contrast, the efficiency of acritical phaseinthe GeoSteiner agorithm, the Full Steiner Tree
(FST) generation phase, heavily depends on structural properties specific to the underlying
metric space. Even when well-understood, these structural properties may not lead to the
same efficiency asin the rectilinear case. For example, FST generation is more than 100
times dower on Euclidean instances than it is on rectilinear ones, and becomes in this case
the bottleneck of the whole algorithm [73].
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Chapter 3

Practical approximation algorithms for zero- and bounded-skew

clock trees*

3.1 Introduction

Today’s high-performance VLSI circuits use ailmost exclusively synchronous designs. In
these circuits, aclock signal, distributed by means of a tree rooted at the clock source, must
be delivered periodicaly to a set of synchronizing elements, or clock sinks. To achieve
maximum clock rateit isnecessary to minimizethe clock skew, i.e., themaximumdifference
in arrival times of the clock signal at synchronizing el ements.

In the typical VLSI physical design cycle, clock routing is done after the placement
phase has determined positions for all clock sinks. At this stage the clock skew can be
controlled in anumber of ways, e.g., by using wireswith non-uniformwidth or by inserting
buffers. We address the most popular approach, which is to control the wirelength in the
clock tree. In this approach, a feasible routing for a set of sinks S’ is a zero-skew tree
(ZST), i.e., a rooted Steiner tree in which al root-to-sink paths have equal length. Due to
power consumption, signal integrity, and area utilization considerations, the objective isto
minimize the total length of the ZST. Thus the clock tree construction problem has been

formalized [5] asfollows:

Rectilinear Zero-Skew Tree Problem: Given aset S of sinksin therectilinear plane, find

a zero-skew tree of minimum total length for 5.

*This chapter is based on joint work with Alexander Z. Zelikovsky [78].
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As noted in [50], a more realistic design requirement is captured by bounded-skew
trees (BST). A rooted Steiner tree 7' for the set S of sinks is a b-bounded-skew tree if the

differencein length between any two root-to-sink pathsis at most b.

Rectilinear Bounded-Skew Tree Problem: Givenaset S of sinksin the plane and bound

b > 0, find a b-bounded-skew tree of minimum total length for S.

The rectilinear BST problem and the generalization of the ZST problem to arbitrary
metric spaces are NP-hard [16]. The complexity of the rectilinear ZST problem is not
known—for a fixed tree topology the problem can be solved in linear time by using the
Deferred-Merge Embedding (DME) algorithm independently introduced in [10, 13, 24].

Although the rectilinear zero- and bounded-skew tree problems have received much
attention in the VLSI CAD literature [6, 10, 13, 14, 19, 24, 25, 47, 48, 54] (see Chapter 4
of [50] for adetailed review), thefirst algorithms with constant approximation factors have
been proposed only recently, by Charikar et al. [16]. Charikar et a. generalize the ZST
and BST problems to arbitrary metric spaces, and, in this genera setting, give algorithms
with approximation factors of 2¢ ~ 5.44 and 16.86, respectively. The BST algorithmin
[16] relies on an approximation agorithm for the Steiner tree problem in graphs. Using
the currently best Steiner tree approximation of Robins and Zelikovsky [67] and Arora's
PTAS for computing rectilinear Steiner trees[3, 4], the BST boundsin [16] can be updated
to 16.11 for arbitrary metric spaces, and to 12.53 for the rectilinear plane (see Table 3).

In this chapter we introduce a new approach to these problems, based on zero-skew
“stretching” of spanning trees. The new approach leadsto ssmple algorithmswith improved
approximation guaranteesfor therectilinear ZST and BST problems, and for their extensions

to arbitrary metric spaces introduced in [16]. Our contributions include:

e constructive lower bounds on the cost of the optimum ZST and BST in arbitrary

metric spaces;
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e improved approximation for the ZST problem in arbitrary metric spaces, based on a

reduction to the zero-skew spanning tree problem;

e improved approximation for the ZST problem in metrically convex metric spaces,!

based on skew elimination using Steiner points;

e improved approximation for the BST problem in arbitrary and metrically convex
metric spaces, based on combining an approximate ZST with a minimum spanning

tree for the sinks.

An important feature of our algorithms is their practical running time, which is asymp-
toticaly the same as the time needed for computing the minimum spanning tree. Thus,
our algorithms can easily handle the clock nets with hundreds of thousands of sinks that
occur in large cell-based or multi-chip module designs. For asummary of our resultsand a
comparison to the results of Charikar et al. [16] we refer the reader to Table 3.

The rest of the chapter is organized as follows. In next section we start with aformal
definition of the ZST and BST problems in general metric spaces and prove new lower
bounds on the length of the optimal ZST and BST. Then, in Section 3.3, we show how to
convert (or “stretch”) arooted tree 7" spanning the set S of sinks into a zero-skew tree for
S. We show that such “stretching” increases the length by the sum of sink delays, where
thedelay in 7" of asink s isthe length of the path connecting s to its furthest descendant.
We also show that, for metrically convex metric spaces such as the Euclidean or rectilinear
planes, it is possible to reduce the “ stretching” length to half the sum of delays.

In Section 3.4 we give a Kruskal-like algorithm that builds a rooted spanning tree T’
whose total delay does not exceed its length, and whose length is at most twice longer than
that of the optima ZST. These two facts yield an approximation factor of 4 for the ZST

problem in arbitrary metric spaces and an approximation factor of 3 for metrically convex

LA metric space (M, d) is caled metrically convex if, for every u,v € M and 0 < X < 1, thereexists a
pointw € M such that d(u, w) = Ad(u, v) and d(w,v) = (1 — A)d(u, v).
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Problem Zero-Skew Tree Bounded-Skew Tree
Metric General ‘Convex‘ Rectilinear | General ‘Convex‘ Rectilinear
Approximation [16] 2e == 5.44 16.11* 12.53*
factor | Thisthess | 4 | 3 4 | 1 9
Running [16] strongly polynomial strongly polynomial
time Thisthesis O(n?) | O(nlogn) O(n?) | O(nlogn)

Table 3: Summary of results on the zero- and bounded-skew tree problems and comparison
to the results of Charikar et al.

metric spaces. In Section 3.5 we discuss the implications of combining our ZST heuristics
with the DME algorithm.

Finally, in Section 3.6, we describe a construction of approximate bounded-skew trees
based on combining an approximate zero-skew tree for a subset of the sinks with subtrees
of a minimum spanning tree (MST) or approximate minimum Steiner tree for the sinks.
Combination with the MST gives a 14-approximation algorithm for the bounded-skew tree
problemin arbitrary metric spaces; thefactor isreducedto 11 for arbitrary metrically convex

metric spaces, and to 9 for the rectilinear plane.

3.2 Constructive lower bounds

In this section, we establish new lower bounds for the ZST and BST problems in an
arbitrary metric space; in contrast to the lower bounds of Charikar et a. [16] these bounds
are congtructive. We start by formalizing the “ stretching” alluded to in theintroduction and
defining the ZST and BST problemsin an arbitrary metric space.

Let (M, d) be an arbitrary metric space. A stretched tree T' = (V, £, m, cost) for aset
of sinks S C M isarooted tree with node set V' and edge set £, together with a pair of

*Va ues updated with respect to [16] by taking into account the currently best Steiner tree approximation
of Robinsand Zelikovsky [67], respectively Arora's PTAS for computing rectilinear Steiner trees[3, 4].
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mappings, 7 : V' — M and cost : £ — IR, such that
(1) = isal-1 mapping between the leavesof 7" and S, and
(2) forevery edge (u,v) € E, cost(u,v) > d(m(u), m(v)).

We refer to m(u) as the embedding of . A stretched tree 7' is a zero-skew tree if all
root-to-leaf pathsin 7" have equal cost; 7' isab-bounded-skew treeif the difference between
the cost of any two root-to-leaf pathsis at most b.

Zero-Skew Tree Problem: Given aset of sinks S in metric space (M, d), find aminimum

cost zero-skew treefor 5.

Bounded-Skew Tree Problem: Given a set of sinks S in metric space (M, ) and bound

b > 0, find aminimum cost b-bounded-skew treefor S.

The minimum cost of a ZST (BST) for S will be denoted by Z.ST™(5), respectively

BST*(S). Inour analysiswewill usethefollowing constructivelower boundon Z ST*(.5):

Lemmab5 Let S be a set of n sinks. Then, for any enumeration s, s, . . ., s, of the sinks
ins,

1n—l
ZST*(S) > MinDist{s1,s2} + 5 Z MinDist{sy,..., 841}

=2

where MinDist{A} = min, ,ea, uzo d(u,v).

Proof :  Forany r > O, let N(r) denote the minimum number of closed balls of (M, d)
needed to cover al sinksin S. Theradius R of S isthe smallest r for which N(r) = 1.
Charikar et al. [16] established that

Z8T(8) > /0 "N

41



Let r;, = MinDist{sy,...,s;1}/2forevery : = 1,...,n — 1, and r, = 0. Clearly,
R>ri>rp>--->r,_1>r, Notethat N(r) > i+ 1forr < r;, Since no two points
intheset {s;,...,s,41} canbe covered by the same ball of radius . Hence,

n—1 P n—1 n—1

S [+ 0dr = Y+ i) =2+ 3o

i=1v"i+l =1 =2

R
/ N(r)dr >
0
and the lemmafollows. 0O

It can be shown that the greedy enumeration (e.g. start from adiametrical pair of points
and add each timethe point maximizing minimum distanceto previously enumerated points)
may not deliver the maximum to the lower bound established in Lemma5. The complexity
of finding the best enumeration is an open question.

Below we bound the cost of the optimum BST by comparing it with the optimum ZST.

Lemma 6 Let S bea set of sinks. Then, for any W C S and skew bound 6 > 0,

BST*(S) > ZST*(W) — b~ (|[W| — 1)

Proof :  Let T be a b-bounded-skew tree for 5. We use 7' to construct a ZST for W
of cost no larger than cost(T) + b - (|[W| — 1) as follows. Firgt, notice that 7' contains
a b-bounded-skew tree for W, say 1", as subtree. Let P, denote the unique path in 7"
connecting « to the root, and let uo be aleaf of 7" for which cost(P,,) is maximum. We
get a zero-skew tree for W by adding to 77 aloop, i.e., an edge whose ends are embedded
at the same point, of cost cost(P,,) — cost(P,) for each leaf u # wo. Since 7" has skew at
most b, each of the |W| — 1 added loops has cost a most 5. Thus, the resulting ZST has
cost at most cost(1") +b- (|W|—1) < BST*(S) +b- (|W] - 1). O
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3.3 Zero-skew stretching of spanning trees

Let T = (5, I) bearooted tree spanning thesinksin S C M. For any sink «, let 7', denote
the subtree of 7" rooted at «. The delay in 7" of « is defined by

delayy(u) = max{length(P,,) | vieaf inT,}

where P, denotestheuniquepathin7’ connectingu andv, andlength(Pu,) = Y.cp, , d(e).

Letlength(T) =Y .cp d(e) anddelay(T) = 3, c5 delayp(u). Inthis section we show
that, for an arbitrary metric space (M, d), T' can be stretched to a zero-skew tree of cost
length(T') 4+ delay(T). The stretched zero-skew tree uses no Steiner points, i.e., has all
nodes embedded at the sinks. We also show that, by using Steiner points, the amount of
stretching can be reduced to half the delay of 7" in case the underlying space is metrically

COonvex.

3.3.1 Zero-skew stretching in arbitrary metric spaces

The stretching algorithm for arbitrary metric spaces (Algorithm 4) replaces each node « of
T by by k£ + 1 nodes, wug, us, . .., u, al embedded at «, where & is the degree of v in 7.
Each child v of « in T" isattached to adistinct copy of « (see Figure 11) by an edge of cost
equal to d(u,v), which is the length of the edge (u,v) in T'. The k + 1 copies of « are
connected by loopsin apath of total cost delay, (), and the cost of each loop isset so that
all paths connecting ;. to leaves of the stretched subtree have the same cost. For clarity, in
Algorithm 4 we omit curly braces for single element sets and use “—" and “+" instead of
“\" and “U", respectively.

Lemma 7 The stretched tree produced by Algorithm 4 has zero-skew and total cost equal
to length(T) + delay(T).

Proof :  Itiseasy to seethat the algorithm produces azero-skew tree. Sincethe algorithm

assignsacost of d(u, v;) + delayy(vy) = delayy(u) tothe path (ug, wg—1, .. ., u1, uo), the
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path cost = delay(u)

U U Ug-1 Uy Uo
/\ |
o [
Vg Vp_1 . v1 V Vk—1 - U1

Figure 11: The basic step of the stretching algorithm for arbitrary metric spaces

Input: Rooted spanning tree 7' = (5, ) in a metric space (M, d)
Output: Zero-skew tree 71 = (V1, E1, m, cost) for S

1. Vi1« S, m(v)«vforanyv e Vp
2. By« FE, cost(u,v) < d(u,v) forany (u,v) € Fq
3. For each sink « € S, do:
Sort u’s children, say vy, v, .. ., v, such that
d(u,v1) + delayp(v1) < d(u,v) + delayp(v) < - < d(u,vy) + delayp(vy)
I Replace each node v with £ 4 1 nodes embedded at «
VieVi—u+{uo,...,up},
m(ug) = m(ug) ¢ -+ m(ug) ¢+ u
/I Replace edges (u, v;) with edges through copies of «
FE1+ F1— (u,vg) + (ug, vg);  cost(ug, vg) < d(u,vg)
For:=1,...,k—1do
E1 + E1— (u,v) + (wigr, wi) + (g, v:);
cost(u;,v;)  d(u,v;);
cost(wipr, u;) < [ d(u,viqy1) + delayp(vip1) | — [ d(u,v;) + delayp(v;) ]
E1 + FE1+ (ug,u1); cost(ug,ur) < d(u,v1) + delayp(vg)
4. Output Ty = (V4, E1, m, cost)

Algorithm 4: The zero-skew stretching algorithm for arbitrary metric spaces
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cost of 73 increases by

(Z; d(u, vi)) + delayy(u)

when processing node « of 7" in Step 3 of the algorithm. Hence, the total cost of 7} is
length(T) + delay(T). O

3.3.2 Zero-skew stretching in metrically convex metric spaces

Before stating the algorithm, we need to introduce some more notations. A path P =
(p1,p2,.-.,pr) inTyiscaled critical if p, isaleaf of Ty and costy,(P) = length(P). By
construction, it followsthat thetree 77 produced by Algorithm 4 hasat |east one critical path
gtartingfromeachnode. Let P = (p1, p2, ..., pr) beacritica pathin 7;. Forevery 0 < § <
length(P), there exist ¢ such that length(pi, p2,...,pi) < & < length(pi,p2, ..., pit1)-
We denote the edge (pi, pi+1) by e(P,d). Since (M,d) is metrically convex, there
is a point v(P,§) € M such that such that the length(ps,...,p;,v(P,§)) = & and
length(v(P,d), pit1, - .., pr) = length(P) — 4.

The improved stretching in metrically convex metric spaces (Algorithm 5) is based on
the following observation: any loop in the stretched tree 73 produced by Algorithm 4 can
be “folded” along a critical path of 77, thus saving half of the cost of the loop (see Figure
12).

Lemma 8 The stretched tree 75, produced by Algorithm 5 has zero-skew and total cost
equal to length(T) + delay(T)/2.

Proof :  Thetotal cost of the loops in the stretched tree 73 is equal to delay(T'). Step
3 of the algorithm folds all these loops, saving half from the cost of each (see Figure 12).
Therefore, cost(1%) = length(1') + delay(1)/2. The tree T5 has zero-skew since T3 has

zero-skew and loop folding preserves al root-to-leaf path costs. O
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Uit ) uj Uit u;

Figure 12: Loop folding in metrically convex metric spaces

Input: Rooted spanning tree 7' = (5, ) in a metric space (M, d)
Output: Zero-skew tree T, = (V5, o, 7, cost) for S

1. Find Ty = (W4, E1, m, cost) using Algorithm 4
2. (Vo, Ep,m,cost) « (Va, Eq, m, cost)
3. For each loop (u;41,u;) € E, do
/I Add the attachment point to the critical path from w;,;

Find edge (z,y) = e(P, 4/2) on the critical path P from w;;1, where
§ = cost(uiy1, u;)

Vo < Vo 4 w;, where w; = v(P,§/2)
Ey — Ey—(x,y)+ (2, w;)+(w;, y); cost(x,w;) < d(x,w;); cost(w;,y) < d(w;,y)
Il Replace theloop (w;41, u;) with the edge (w;, u;)
FEy — Fy — (wig1,w;) + (Wi, u;);  cost(wi,u;) < /2
4. Output T, = (Va, Ea, m, cost)

Algorithm 5: The zero-skew stretching algorithm for metrically convex metric spaces
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3.4 ZST approximation via spanning trees

In the previous section we have shown that one can stretch any rooted spanning tree into a
zero-skew tree whose cost is equal to the length of the spanning tree plusits delay (half the

delay, for metrically convex metric spaces). This motivates the following:

Zero-Skew Spanning TreeProblem: Givenaset of points.S ina(metrically convex) metric
space (M, d), findarooted spanning tree 7" on S such that cost(1') = length(1')+delay(T)
(respectively, length(T') + delay(T')/2) is minimized.

Note that the minimum spanning tree (MST) on S has the shortest possible length but
may have very large delay—if the MST is asimple path, then its delay may be as much as
O(n) times larger than its length. On the other hand, a star having the least delay may be
O(n) times longer than the MST.

In this section we give an algorithm for finding a rooted spanning tree which has both
delay and length at most two times the minimum ZST cost. Therefore, our algorithm gives
factor 4 and 3 approximationsfor the ZST problem in genera and metrically convex metric
spaces, respectively. Simultaneously, our algorithm gives factor 4 and 3 approximationsfor
the zero-skew spanning tree problem in the respective metric spaces, since cost(7") cannot
be smaller than the cost of the minimum ZST.

The algorithm (Algorithm 6) can be thought of as a rooted version of the well-known
Kruskal MST algorithm. At all times, the algorithm maintains a collection of rooted trees
spanning the sinks, initially each sink isatree by itself. In each step, the algorithm chooses
two trees that have the smallest distance between their roots and merges them by linking
the root of one tree as child of the other. In order to keep the delay of the resulting tree

small, the child root is always chosen to be the root with smaller delay.

Lemma9 delay(T) < length(T)

a7



Input: Finite set S C M
Output: Rooted spanning tree 7" on S

1. Initialization:

ROOTS + S, E + 0
Foreachv € 5, h(v) < 0

2. While |[ROOTS| > 1 do:

Find the closest two sinks r, 7" € ROOT S with respect to metric d
If h(r) < h(r") then swap r and r’
E «— E+(r,1)
h(r) < max{h(r), d(r,r")+ h(r")}
ROOTS + ROOTS — 1’
3. Output the tree T' = (S, F), rooted at the only remaining sink in ROOT'S

Algorithm 6: The Rooted-Kruskal algorithm

Proof :  Note that, at the end of the Rooted-Kruskal algorithm, ~(u) represents exactly
the delay of node « in T'. In any iteration the algorithm adds edge (r, ') to F(T'), thus
increasing length(T') by d(r,r’). On the other hand, since i(r) > h(r') when h(r) is
updated, the iteration contributes at most d(r, ') + h(r') — h(r) < d(r,7") 103, cs h(u),
hence, to the total delay of 7. O

Let » bethe number of sinksin S.

Lemma 10 length(T) < 2(1—1/n)ZST*(S)

Proof : Let s; be theroot of 7', and let s,, ..., s, bethe remaining n — 1 nodes of

T, indexed in reverse order of their deletion from ROOTS. Sincein each iteration the
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algorithm adds to 7" the edge joining a closest pair of pointsin ROOT'S,
n—1
length(T) =>_ MinDist{s1,...,si}1}

=1

Thus, by Lemma5,
length(T) <2 ZST*(S) — MinDist{s1,s2} =2 ZST*(S) — d(s1, s2)
Since (s1, s2) isthe longest edge in 7', d(s1,s2) > length(T)/(n — 1), and the lemma
follows. H
Lemmas7, 9, and 10 give:
Theorem 11 For any metric space and any set of » sinks, running Algorithm 4 on the tree

T produced by the Rooted-Kruskal algorithm gives a zero-skew tree whose cost is at most
4(1— 1/n) timeslarger than ZST™(.5).

Proof : By Lemma7, the cost of the embedding isequal to length(T') + delay(T). But
delay(T') < length(1) by Lemma9, and the approximationfactor followsfrom Lemma 10.

a

Similarly, Lemmas 8, 9, and 10 give:

Theorem 12 For any metrically convex metric space and any set of » sinks, running
Algorithm 5 on thetree 7" produced by the Rooted-Kruskal algorithm gives a zero-skew tree
whose cost isat most 3(1 — 1/n) timeslarger than ZST*(5).

Proof : By Lemma 8, the cost of the embedding is now equal to length(T) + (1/2) -

delay(T'), and the theorem follows again from Lemmas 9 and 10. 0

The following example shows that the algorithm in Theorem 11 can produce zero-skew
trees which are 4(1 — 1/n) times larger than optimal. A similar example shows that the

algorithmin Theorem 12 has atight approximation factor of 3(1 — 1/n).
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Example13 Consider adiscrete metric spaceon 2% + 1 points, » = 2* of which aresinks.
We label the sinks with 0-1 sequences of length &, i.e., S = {a = by_1bp_2...bo | b; €
{0,1}}. All sink-to-sink distances are equal to 1 and the distance from the single Steiner
point to each of the sinks is 1/2. In this space, the optima ZST is a star rooted at the
Steiner point, and has cost equal to /2. The Rooted-Kruskal algorithm may construct the
spanning tree T with root (11. .. 1) and edges («, o'), such that o’ isidentical to o except
that the rightmost 0 in o’ isreplaced with 1 in «. Indeed, at each iteration of Step 2, the
algorithm may choose to merge trees rooted at « and o’ as above. It may choose « to be
the root of the merged tree since h(a) = h(</).

Clearly, length(T) = n — 1. On the other hand, since we aways merge two roots
with the same /-value, each merge contributes exactly 1 to the total delay of 7. Thus,

delay(T) = n — 1. By Lemma7, the cost of the ZST produced by the algorithm is

length(T) + delay(T) =2(n —1) =4(1—1/n) -

NS

a

Running time.  The running time of the stretching algorithms given in Section 3.3
is dominated by the time needed to sort the children of each node; this can be done in
O(nlogn) overal. For arbitrary metricsthe Rooted-Kruskal agorithm can beimplemented
in O(n?) time using Eppstein’s dynamic closest-pair data structure [26]. In the rectilinear
plane (in fact, in any fixed dimensional L, space), the running time can be reduced to
O(nlogn) time by using the dynamic closest-pair data structure of Bespamyatnikh [9].
These implementations of the Rooted-Kruskal algorithm are asymptotically optimal, since
the running times match known lower bounds for computing the first closest pair.

Finally, thetotal time for running the Rooted-Kruskal algorithm followed by one of the
stretching algorithms given in Section 3.3 is O(n?) in arbitrary metric spaces, respectively
O(nlogn) intherectilinear plane. Noticethat this matches asymptotically the time needed

for computing a minimum spanning tree.
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3.5 Practical considerations for approximating the rectilinear ZST

In the previous two sections it has been shown how to approximate ZST in metrically
convex metric spaces within afactor of 3. In order to obtain shorter ZSTs in the rectilinear
plane, we may combine the stretched spanning tree with the DME algorithm [10, 13, 24].
The DME algorithm gives the optimal rectilinear ZST for any given topology, which is
an unweighted binary tree with the leaves labeled by the sinks. Therefore, we may only
shorten the rectilinear ZST if we feed the topology of the stretched spanning tree into the
DME algorithm.

In Section 3.3 we suggested two different ways of stretching a spanning tree. One
may expect that the topology produced by Algorithm 5 (the loop folding agorithm) is
superior to the topology produced by Algorithm 4. Surprisingly, when stretching the
spanning tree produced by the Rooted-Kruskal algorithm, both algorithmslead to the same
topology. As proven below, in every loop folding step the attachment point for vertex w;,
w; = v( P, cost(u41,u;)/2), belongs to the edge (uiy1, vi+1) (See Figures 11 and 12), i.e,
folding loops does not change the topology of the stretched tree produced by Algorithm 4.

Theorem 14 Let T bearooted spanning tree constructed by the Rooted-Kruskal algorithm.
In any metrically convex metric space, the topologies produced by running Algorithms 4

and5on 7 areidentical.

Proof :  Let the children {v4,...,v;} of a node « be sorted as in Algorithm 4, i.e,
in non-decreasing order of d(u,v;) + delayr(v;). For brevity, denote d; = d(u,v;) and
D; = delayr(v;). We will show that § = cost(uiq1,u;) iSno greater than d; 1. Thiswill
ensurethat thepointv( P, §/2) liesontheedge (u;+1, v;4+1) and, therefore, thetreetopol ogies
produced by thetwo stretching algorithmsarethesame. Sinced = (diy1+Diy1)—(di+D;),

it suffices to prove that
Dija <di+ D (4)
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We say that index & precedes index [ if the node v, has been attached to « before v; in
the Rooted-Kruskal algorithm. Let p; be the maximum index preceding : + 1, p, be the
maximum index preceding p;, and so on, until we arrive at an index p,,, with D, = 0.
Then d1 + D, representsthelength of the critical path from « at thetimewhen v, 1 islinked

to u by the Rooted-Kruskal agorithm, and d,,,, + D,,., isthe length of the critical path

Pit1
from v at the time when v,,, islinked to w.
Noticethat, since d; > d, if k precedes/,

diyr > dp, > -+ > dp,, ©)
Moreover,

Diy1 < dp, + Dy, (6)
and

Dy, <dy, + Dy, 7

forevery j = 2,...,m — 1, since through all attachments node « remains the root.
Assume, for a contradiction, that (4) does not hold. We will show by induction on j
that p; >+ 1and D;y1 < D, forevery j = 1,...,m. Since D,,, = 0, the above claim
impliesthat D,;, = 0, making (4) trivially true.
To prove the claim, consider first j = 1. If p1 <, thend,, + D,, < d;, + D;, and (6)
implies (4). So, it must bethecasethat : + 1 < p1. Thend; 41+ Diy1 < d,, + D,,, and (5)
impliesthat D;11 < D,,.

Assume now that D1 < D,,_, forsome; > 2. If p; <, using (7) we get
Diy1 <Dy, <dp, + D, <di + D;

So, it must bethecasethat: 41 < p;. Thend;y 1+ D1 < d,, + D, and, sinced;;1 > d,,
by (5), thisimpliesthat D; 1 < D,,. O
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Corollary 15 Combination of the Rooted-Kruskal algorithm with the stretching algo-
rithm for arbitrary metric spaces (Algorithm 4) and with the DME algorithm gives a

3-approximation for the rectilinear ZST problem.

3.6 Approximate bounded-skew trees

In this section we give two approximation algorithms for the BST problem, both built
around a black-box ZST approximation algorithm. In both cases we construct a ZST for
an appropriately chosen subset of the sinks, then extend this ZST to a b-bounded-skew tree
for al sinks. In first algorithm (Algorithm 7) the extension is done by adding subtrees of
an MST on the sinks; in second (Algorithm 8) subtrees are extracted from an approximate

Steiner tree.

3.6.1 The MST based algorithm

Thefirst agorithm (Algorithm 7) uses asmple iterative construction to cover the sinks by
digoint b-skew subtrees of an MST Tp of S. The algorithm then outputs the union of these
subtreeswith aZST T3 on their roots. Clearly theresultingtree7” isab-bounded-skew tree
for S. Moreover, cost(T") < cost(11) + length(1p), since the subtrees are digoint pieces
of To. Hence, if the ZST algorithm used in Step 3 has an approximation factor of r s, by
Lemma 6 we get that

cost(T") <rzsr ZST*(W) + length(To)
<rzst(BST*(S) +b- ([W]|—1)) + length(Tp)

Noticethat apath of length b or moreisdeleted from 7" for each node—except, possibly,
the last one—added to W in Step 2 of Algorithm 7. Hence, b - (|W| — 1) < length(Tp),

and so

cost(T") < rzsy BST*(S) + (rzsr + 1)length(Tp)
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Input: Finite set S C M, boundb > 0
Output: b-bounded-skew tree for S

1. Find an MST 75 on S, with respect to the metric 4, and root it at an arbitrary
node

2. Find a set W of sinks and a collection of subtrees of Ty, ( B,).cw, as follows:

W« 0; T < Ty
While 7' # () do:

Find a leaf v of 7" which is furthest from the root
Find the highest ancestor, say u, of v that still has delay;(u) < b
W« Wufu}; B, T, T+ T\B,

3. Find an approximate zero-skew tree, 73, for W
4. Output thetree 7" = T1 U (U,ew Bu)

Algorithm 7: The MST based bounded-skew tree algorithm

Let ryrs7 be the Steiner ratio for the metric space (M, d), i.e., the supremum, over all
sets of points S in (M, d), of the ratio between the length of an MST and the length of
a minimum Steiner tree for S. Since the length of the minimum Steiner tree for S is a
lower bound on BST™*(S), we get that length(To) < rarsr BST*(S). Hence, we have the

following:
Theorem 16 Algorithm 7 has an approximation factor of rzs7 + rarst + rzsrrarsT-

Since the Steiner ratio is at most 2 for any metric space [52], and 3/2 for the rectilinear

plane[44], by using theresultsin Theorems 11 and 12 we get:

Corollary 17 The approximation factor of Algorithm7is14in arbitrary metric spaces, 11

in arbitrary metrically convex metric spaces, and 9 in the rectilinear plane.

Notice that the running time of Algorithm 7 is still O(n logn) for the rectilinear plane
and O(n?) for arbitrary metric spaces: The MST in Step 1 can be computed whithin
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Input: Finite set S C M, boundb > 0
Output: b-bounded-skew tree for S

1. Find an approximate Steiner tree 1, on S, with respect to the metric d
2. Find a set W of sinks and a collection of subtrees of Ty, ( B,).cw, as follows:

W« 0;T < Ty
While 7' # () do:

Pick an arbitrary sink « in 7', and let B, be the subtree of 7" induced by
vertices within tree distance of at most b from «

W Wu{ul; T+ T\B,

3. Find an approximate zero-skew tree, 73, for W
4. Output the tree 7" = T1 U (Upew Bu)

Algorithm 8: The approximate Steiner tree based bounded-skew tree algorithm

these time bounds using Hwang's [45] rectilinear MST algorithm and Kruskal’s algorithm
respectively, while Step 2 can be implemented in linear time.

3.6.2 The approximate Steiner tree based algorithm

The second BST algorithm combinesaZST for asubset W of the sinkswith b-skew subtrees
of an approximate Steiner tree Ty (Algorithm 8).

Theorem 18 The BST problem can be approximated within a factor of rzsr 4+ rsyr +
2 TZSTTSMT, glven T7ST, reSpeCtlver TSMT, approximation algorlthms for the ZST and

minimum Seiner tree problems.

Proof : By construction, the distance in Ty between any two sinks in W is at least b.
Consider the set of open balls of radius b/2 centered at the sinks in W/, with the balls

considered in the metric space induced by 7. Since any two such balls are digoint, and
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each of them must cover at least /2 worth of edges of 7, we get that
bW | < 2 length(Tp) (8

To estimate the cost of the BST produced by the algorithm, notice that U,y B, has
total cost of at most length(Tp). By Lemma6 and (8), we get:

cost(T") <rzsr ZST*(W) + length(T))
<rzst(BST*(S) +b- ([W]|—1)) + length(Tp)
<rzsr(BST*(S) + 2 length(1p)) + length(To)

and the theorem follows by observing that length(To) < rsprBST*(S) since, as noted

above, the length of the minimum Steiner treefor S isalower bound on BST™(.S). O

With the currently known approximation factors for Steiner trees and zero-skew trees,
Theorem 16 gives better BST approximations than Theorem 18 for the rectilinear plane, as
well as arbitrary (metrically-convex) metric spaces. However, Theorem 18 may improve
upon Theorem 16 for metric spaces with good Steiner tree approximation (rsy;7 close to

1) and large Steiner rétio (ryss7 closeto 2), e.g., for high-dimensional ., spaces.

3.7 Conclusions and open problems

We have given approximation agorithms for the ZST and BST problems with improved
approximation factors for general and metrically convex metric spaces, as well as the
rectilinear plane. Our algorithmshave apractical runningtime: O(n logn) intherectilinear
plane, and O(n?) in general metric spaces. Preliminary experiments also show that, when
combined with the linear time DME algorithm of [10, 13, 24], our rectilinear ZST agorithm
gives results competitive to those obtained by the Greedy DME heuristic of Edahiro [25],
whichisregarded inthe VLSI CAD community asthe best ZST heuristic to date (see [50]).

An interesting open question is to determine the limitations of the spanning-tree based

ZST construction introduced in this thesis. One can define the zero-skew Seiner ratio of
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a metric space as the supremum, over all sets of sinks, of the ratio between the minimum
zero-skew cost (i.e., length + delay) of a spanning tree and the minimum ZST cost. The
resultsin Section 3.4 imply that the zero-skew Steiner ratio is at most 4 in arbitrary metric
gpaces, and at most 3 in metrically convex metric spaces. On the other hand, we have
constructed instances showing that the zero-skew Steiner ratio can be as large as 3 for
arbitrary metric spaces; we conjecture that the ratio is never larger than 3. Determining the
complexity of the zero-skew spanning tree problem is another interesting open question.
In the planar versions of the rectilinear ZST and BST problems, one seeks zero,
respectively bounded-skew trees in the rectilinear plane with no self-intersecting edges.
Charikar et a. [16] have given thefirst constant approximation factors for these versions,

it would be interesting to find algorithms with improved approximation factors.
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Chapter 4

Minimizing the number of Steiner points in bounded

edge-length Steiner trees*

4.1 Introduction

As integrated circuit technology scales into the deep-submicron range, the effect of in-
terconnect on chip performance becomes increasingly dominant. An important step in
maintaining reasonable signal delay is to ensure that no wire segment exceeds a certain
length; this can be achieved by using buffersto help interconnect global nets. Since buffers
occupy asignificant area on the chip and introduce additional power requirements, the goal
of buffered routing is to meet the wire segment upper-bound using the minimum number
of buffers. In thischapter, we concentrate on a*“ single-net routing” version of the problem,
which is of interest when buffering is applied only to a very small number of nets. In next
chapter wewill giveagorithmsfor buffered routing of alarge number of nets, all competing
for alimited amount of space at which buffers can be inserted.

The Minimum number of Steiner PointsTree (M SPT) Problem isdefined asfollows:
given aset of terminalsand aprescribed upper-bound R > 0, find a Steiner tree spanning the
terminals and a minimum number of Steiner points such that the length of each edgein the
treeisat most k. Notethat, unlikethe minimum length Steiner tree, the optimal MSPT may
contain Steiner points of degree two. It is easy to see that the MSPT problem is equivalent

to the variant in which we distinguish asource among theterminals, allow “passive” Steiner

*This chapter is based on joint work with Alexander Z. Zelikovsky [59].
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points, i.e., branching points that do not count as buffers, and the objective is to minimize
the number of buffers subject to the constraint that, on each tree path connecting the source
to one of the remaining terminals, the distance between two consecutive buffersterminals
isat most .

The MSPT problem was introduced by Sarraf zadeh and Wong [69], who considered its
rectilinear and Euclidean versions, in which terminals are pointsin the plane and distances
aremeasuredinthe 1, respectively L, metrics. Therectilinear MSPT problemisof interest
in VLS, as explained above, while the Euclidean version has important applicationsin the
design of fixed wirelessnetworks. Unfortunately, even theserestricted versionsof theM SPT
problem remain NP-hard [69]. While for arbitrary metric spaces the In k-approximation
agorithm of Guha and Kuller [38] is best possible unless NP C TIME(n'99'%97) (cf.
combined results of [50] and [27]), optimal approximation results are not yet known for the
rectilinear and Euclidean planes.

Recently, Lin and Xue [55] considered the following MST heuristic for the MSPT
problem: Compute an MST on terminals, then subdivide each edge (u, v) of the MST via
[d(u,v)/R]—1equally spaced Steiner points, where d(u, v) standsfor thedistance between
v and v, and R > 0 isthe prescribed edge-length upper-bound. Lin and Xue proved that
the MST heuristic has an approximation factor not worse than 5 in the Euclidean plane,
leaving open the problem of finding the exact approximation factor.

We give atight analysis of the MST heuristic for any L, metric space, showing that its
approximation factor is exactly one less than the MST number, defined as the maximum
possible degree of a minimum-degreeM ST spanning pointsfrom the space. Sincethe MST
numbers for the rectilinear and Euclidean planesare 4 and 5 [66], our analysisimplies that
for these two metric spaces the MST heuristic has tight approximation factors of 3 and 4,
respectively.

The factor of 4 for the Euclidean plane has been obtained independently by the authors

of [17]. Theanalysisin [17] reliesheavily on properties specific to the Euclidean plane and
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does not seem to extend to other metric spaces. In contrast, our analysis comes closer to
the simplicity of the original argument of Lin and Xue [55], using only triangle inequality
and the fact that every set of points from the space has an MST with maximum degree no

larger than the MST number.

4.2  Analysis of the MST heuristic

Let (X, d) beametric space, and let 7( P) denote the set of all d-weighted MSTs spanning
P C X. Following Robins and Salowe [66], the MST number of X', D(X), isdefined by

D(X) = sup min maxdeg,(v), 9

p Ter(P) veP

where the supremum in (9) is taken over al finite subsets P of X. Note that, if D(X) is
finite, then every set of pointsin X" admits an MST with maximum degree at most D(X).

Theorem 19 The MST heuristic has an approximation factor of ) — 1 in every metric

space whose MST number is D < oo.

Proof :  Let P beaset of terminal points, andlet 7., bean MSPT for P. Let sy, ..., s; be
the Steiner points spanned by 7',,.;, numbered in the order in which a breadth-first traversal
(started from an arbitrarily terminal ¢, € P) encounters them. Since al edges of 7, have
length at most R, it followsthat, for every 1 < < k, s; iswithinadistance of R of at least
onepoint from P U {s1,...,8;_1}.

For atree T, let beads(T') = 3 (,.)enr)([d(v,v)/R] — 1) denote the number of
subdivision points, or beads, that need to be added on 7”s edges in order to satisfy the
edge-length condition. It iseasy to seethat any MST has minimum number of beads among

trees spanning the same set of points; we will use this fact below.
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Figure 13: The basic eimination step in the proof of the MST ratio

Forl<:<k,letT,beanMST on P U {s1,...,s;} with maximum degree at most D.
We claim that, for every 1 < i < k,

Let vo,v1,...,v, bethep + 1 < D nodes adjacent to s; in 7;, one of which, say vy,
must be aclosest neighbor of s; in P U {s1,...,s;_1}. Let T be the tree obtained from 7;
by removing s; and connnecting to v thenodesv;,: = 1, ..., p.

Note that d(s;,v9) < R, since the BFS numbering ensures that s; is within a distance
of R of at least one point from P U {s1,...,s;_1} and v is the point from this set closest
to s;. By triangle inequality, any edge (v;, vo) needs at most one more bead than the edge
(v;, ;). Hence,

beads(T!) < beads(T}) + p < beads(T}) + (D — 1).

Inequality (10) follows by noting that beads(7;_1) < beads(7/), since T;_; is an MST

spanning the same set of pointsas 7.

61



Adding inequalities (10) for 0 < ¢ < k and using the fact that beads(7) = O gives
beads(7o) < k- (D — 1). Thus, the MST on P uses at most D — 1 times more Steiner

pointsthan 7,,;. 0

Theorem 20 The approximation guarantee given in Theorem 19 is tight for any fixed-

dimensional L, metric space.

Proof :  Robinsand Salowe [66] show that in L, metric spacesthe MST number isfinite,
being equal to the maximum number of pointsthat can be placed on the surface of aunit ball
such that each pair of pointsis strictly more than one unit apart. When the MST heuristic
isrunwith R = 1 onaset of D pointsrealizing the above configuration, the result isatree
with D — 1 Steiner points, all of degree 2. On the other hand, the MSPT uses only one
Steiner point, of degree D, namely the center of the ball. 0

Since the MST number is 4 (resp. 5) for the rectilinear (resp. Euclidean) planes [66],

Theorems 19 and 20 give:

Corollary 21 The MST heuristic has a tight approximation factor of 3 in the rectilinear

plane, and of 4 in the Euclidean plane.

4.3  Conclusion and open problems

The obvious open problem is to find approximation agorithms that achieve better factors
than the MST heurigtic in the rectilinear plane. We believe this could be done by an
adaptation of the techniques in [77, 8], based on restricted Steiner trees. Recently, [17]
proposed a 3-approximation algorithm for the MSPT problem in the Euclidean plane based

on these techniques.
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Chapter 5

Provably good global buffering by multiterminal

multicommodity flow approximation*

5.1 Introduction

Process scaling leads to an increasingly dominant effect of interconnect on high-end chip
performance. Each top-level global net must undergo repeater! insertion to maintain signal
integrity and reasonable signal delay. Estimates of the need for repeater insertion range up
to 10° repeaters for top-level on-chip interconnect for 50nm technology. These repeaters
occupy a significant area on the chip, affect global routing congestion, can entail non-
standard cell height and special power routing requirements, and can act as noise sources.
In a block- or reuse-based methodology, designers seek to isolate repeaters for global
interconnect from individual block implementations.

For these reasons, a buffer block methodology has become increasingly popular in
structured-custom and block-based ASIC methodologies. Two recent works by Tang and
Wong [ 71] and Cong, Kong and Pan [20] give algorithmsto solve the buffer block planning
problem. Their formulation is roughly stated as follows: Given a placement of circuit

blocks, and a set of two-pin connections with feasible regions for buffer insertion,? plan

*This chapter is based on joint work with F.F. Dragan, A.B. Kahng, S. Muddu, and A.Z. Zdikovsky
[22, 23].

Following the literature, we will use the terms buffer and repeater fairly interchangesbly. When we need
to be more precise: a repeater can be implemented as either an inverter or as a buffer (= two co-located
inverters).

2In[71] only asingle buffer per connection is allowed.
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the location of buffer blocks within available free space so as to route maximum number of
connections.

In this chapter, we address the problem of how to perform buffering of global nets given
an existing buffer block plan. (Hence, our work is compatible with and complements the
methods in [20, 71].) We give a provably good algorithm based on a recent approach of
Garg and Konemann [35] and Fleischer [29]. Our method routes the nets using available
buffer blocks, such that required upper and lower bounds on repesater interval—as well as
length upper bounds per connection—are satisfied. In addition, our algorithm observes
repeater parity constraints, i.e., it will choose to use an inverter or a buffer (= co-located
pair of inverters) according to source and destination signal parity. Previousworks on the
problem[20, 71] assumed that global nets have been decomposed into two-pin connections.
Unlike these works, our model takes into account multiterminal nets and allows more than
one buffer to be inserted into any given connection.

Informally, our problem is defined as follows.

Given:
e aplanar region with rectangular obstacles;
e aset of netsin the region, each net has:

— asingle source and one or more sinks;

— anon-negative importance (criticality) coefficient;
e each sink has:

— aparity requirement, which specifiestherequired parity of the number of buffers

(inverters) on the path connecting it to the source;

— atiming-driven requirement, which specifies the maximum number of buffers

allowed on this path;



e aset of buffer blocks, each with given capacity; and
e aninterval [L, U] specifying lower and upper bounds on the distance between buffers.

The Global Routing via Buffer Blocks (GRBB) Problem is to route a subset of the

given nets, with maximum total importance, such that:

e the distance between the source of a route and its first repeater, between any two
consecutive repeaters, respectively between thelast repeater on aroute and theroute's

sink, areall between [ and U;

¢ the number of trees passing through any given buffer block does not exceed the

block’s capacity;

¢ the number of buffers on each source-sink path should not exceed the given upper
bound and should be of the given parity; to meet the parity constraint two buffers of

the same block can be used.

If possible, the optimum solution to the GRBB problem simultaneously routes all the nets.
Otherwise, it maximizes the sum of the importance coefficients over routed nets. The
importance coefficients can be used to model various practical objectives. For example, im-
portance coefficients of 1 for each net correspond to maximizing the number of routed nets,
and importance coefficients equal the number of sinks in the net correspond to maximizing
the number of connected sinks.

If al nets have exactly two terminal s (the source and a single sink), the GRBB problem
can be formulated as a generalized version of (vertex-capacitated) integer multicommodity
flow (MTMCEF), see [22] for details. In this chapter we show that the GRBB problem
for arbitrary sized nets can be formulated as a generalized version of (vertex-capacitated)
integer multiterminal multicommaodity flow (MTMCF). Exploiting thisformulation, wegive
anew algorithm for the GRBB problem based on randomized rounding of an approximate

solution to the fractional relaxation of the integer MTMCF program. Prior to our work,
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multicommodity flow based heuristics have been applied [60, 70, 12, 43, 2] to unbuffered
versions of VL SI global routing in which the main constraints are given by edge, not vertex,
capacities. As noted in [56], the applicability of these algorithms has often been limited
to problem instances of relatively small size by the prohibitive cost of solving exactly the
fractiona relaxation. Following [2], we avoid this limitation by using an approximate
MTMCEF agorithm. Thisalgorithm, based on recent results of [35, 29], alowsfor asmooth
trade-off between running time and solution accuracy. Our experiments show that even
MTMCEF solutions with low accuracy give good final solutions for the GRBB problem.

An interesting feature of our algorithm isits ability to work with multiterminal nets—
previous work on the GRBB problem [20, 71] has considered only the case of 2-pin nets.
Experiments on top-level layouts extracted from a recent high-end microprocessor design
validate our MTMCF-based algorithm, and indicate that (1) the algorithm significantly
outperforms existing algorithms for the problem [20], even when applied to 2-pin net
decompositions, and (2) applying the MTMCF agorithm on multipin netsinstead of 2-pin
decompositions further increases the quality of the solution, even when the same time
budget is given to both algorithms.

The rest of the chapter is organized as follows. In Section 5.2, we reduce the Global
Buffering Problem to a generalized version of integer multiterminal multicommodity flow.
The fractional relaxation of this problem is a special case of packing LP, and can thus
be approximated within any desired accuracy using the algorithm of Garg and Konemann
[35]. In Section 5.3 we present a faster approximation algorithm, obtained by extending
the ideas of Fleischer [29] to this specia type of packing LPs. In Section 5.4 we describe
the randomized rounding process used to convert near-optimal fractional MCF solutions
into near-optimal integral solutions. In Section 5.5 we describe a number of implemented
global buffering heuristics, some based on the MTMCF approach, and some based on less
sophisticated greedy ideas. Finally, in Section 5.6 we give the results of an experimental
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comparison of these heuristics on test cases extracted from the top-level layout of a re-
cent high-end microprocessor, and conclude in Section 5.7 with a list of future research

directions.

5.2 Integer program formulation of the GRBB problem

Given K nets Ny, = (s;t3,...,t1), k = 1,..., K, and n buffer blocks {r1,...,7,},
denote S = {s1,...,sx}, T = {t1,..., 13 ...t} .. 55}, R ={re,...,7,}. Letdso
c(r) € N denote the capacity of the buffer block r € R, ai, € {even, odd} be the parity
requirement for pair (sy, t.,), and [}, be the prescribed upper bound on the number of buffers
on path between source s;, and sink ¢

Let p,,, bearectilinear path connecting points = and y of aplanar region that avoids all
rectangular obstacles given in the region. Denote by d(z, y) the length of a shortest such
path. Let G = (V, E') beagraph with vertex set V = S U T U R. The edge set £ contains
all edges of type vv, v € R (such an edgeiscaled aloop). Two different vertices = and y
areadjacent (i.e,, xy € F)ifandonly if L < d(x,y) < U.

A path p = (sy,v1,v,...,v;, 1) in G between source s, and sink ¢4, (k = 1,..., K,
i =1,...,q% isarestricted (s, t\)-pathif

e v, c Rforeach:=1,...,[,
o the parity of /isai,
o [ <[,

e there can be some pairsof differentindices:, j € {1,...,[} suchthat v; = v;; inthis

case we must have |: — j| = 1.

A feasible Steiner treefor net N, isaSteiner tree T}, in G connecting terminalssy,, 1, . . ., ¢4*
such that, for every i = 1,.. ., g, the path of 7} connecting s, to ¢%, isarestricted (s, t%)-
path as defined above.
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Define capacities on all vertices of & by

1, ifoeSuT
c(v) =
capacity of buffer block v, if v € R

Let 7, be the set of all feasible Steiner trees for net N, and let 7 = JX_, 7. For each
TeTk=1,...,K,defineg(T) := gi, where g, istheimportance of V.

The GRBB problem is then equivalent to the following integer linear program:

maximize > ¢(T)fr

TeT

st. Z mr(v)fr <e(v), veV
TeT
fr € {0,1} TeT

where fr = 1if thetree T isused in the solution and f; = O otherwise, and 7 (v) isthe

number of occurrencesof v inT,i.e,

0,ifvégT,
mr(v) =19 1,ifv e T,butvvisnot alooponT,

2,ifve T, andvvisalooponT.

Our approach will be to solve the relaxation of the above integer program obtained by
replacing the integrality constraint with fr > 0 for 7' € 7, we will then use randomized
rounding to obtain an integer solution. We will refer to this relaxation as the Multiterminal
Multicommodity Flow (MTMCEF) LP.

Although the MTMCEF LP is solvable in polynomial time (using, e.g., the elipsoid
algorithm), exact algorithms are highly impractical. On the other hand, the MTMCF LPis
a special case of packing LP, and can thus be efficiently approximated within any desired
accuracy using the recent combinatorial algorithm of Garg and Konemann [35]. In next

section we give asignificantly faster approximation algorithm based on a speed-up ideadue
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to Fleischer [29]. Fleischer's idea, originally proposed for approximating the maximum
edge-capacitated MCF, has been recently extended [2] to edge-capacitated multiterminal
multicommodity flow. Here we take this approach further and show how to use it for

efficient approximation of vertex-capacitated multiterminal multicommodity flow.

5.3 Approximation of vertex-capacitated MTMCF

Our approximation algorithm for MTMCF simultaneously solves both the primal and the
dual LPs; the dual solutionisused in proving the approximation guarantee of the algorithm.
The dual of the MTMCF LPis:

minimize Z w(v)e(v)

veV

st. iZ:UJ(U)Zl,TET
g( )UET
w(v) =0, veV

The dual LP can be viewed as an assignment of non-negative weights, w(-), to the vertices
of & such that the weight of any tree 7" € T isat least 1; the objective is to minimize the
sum 3, oy w(v)e(v). Here, the weight, weight(T'), of thetreeT is the sum of the weights
of vertices forming this tree (if the tree uses aloop vv then vertex v contributes twice to
this sum) divided by the importance g(7') of thistree.

Denote D(w) = Y, ¢y w(v)e(v) and let a(w) be the weight of a minimum weight tree
from T (with respect to w(-)). The dual problem is equivaent to finding aweight function
w:V — Rt such that 5 = %(;”—1) is minimized. In the following we will assume that
min{gr 1 k=1,..., K'} = 1—thiscan be easily achieved by scaling—and will denote by
" the maximum g;.

In our algorithm for approximating MTMCEF (Algorithm 9), fi(v) denotes how many
times vertex v was used by all feasible Steiner trees found for the net N, so far, and f

denotes the total number of minimum weight feasible Steiner trees used by algorithm. The
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Input: Graph GG with K" nets Ni,..., Ng, vertex capacities c¢(v)
Output: Variables f.(v) € [0,1],k=1,..., K, v € V(G)

Set f = 0.
Setw(v)=4¢dforallve V.
Set fy(v)=0forallve Vandk=1,... K.

Fori = 1to log,,,, = do

Fork=1to K do

Find a minimum weight tree 7" in 7.
While weight(T) < min{1/I,§/T (14 2¢)'} do
f=r+13
Forallv € T', if T uses a loop vv then set fi(v) = fx(v)+ 2 and
w(v) = w(v)(1+ c({j)); else set fy(v) = fr(v)+ 1 and
w(v) = w(v)(1+ ﬁ)
Find a minimum weight tree 7" in 7.

End while
End for
End for
Output 57—, and ZIngk(“)Hk foreachve Vandk=1,....K.
142¢ — 5 1+2c ~ 5§

Algorithm 9: The MTMCF approximation algorithm

algorithm associates a weight with each vertex, and every time it uses a minimum weight

tree T from 7, (k = 1,..., K) to connect the pins of net /V; it multiplies the weight of

every vertex on thistreeby 1 + c@) for afixed ¢ (if thistree uses aloop vv, then the weight

(25)). Initially, every vertex v has weight § for some constant §.

of v is multiplied by 1 + -
Thus, the more often is a vertex used, the larger isits weight. Hence, an often used vertex
islesslikely to be a part of future minimum weight trees.

According to Garg and Kdnemann's approximation algorithm [35], we must use a
lightest (with respect to current weight function w(-)) treefrom 7, if the weight of thistree

islessthan 1/I". We also must stop after ¢ iterationswhere ¢ is the smallest number such
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that «(w), computed with respect to vertex weights w(-) of thisiteration, is at least 1/T".
We extend the Fleischer’s ideas [29] to our generalized fractiona MTMCF problem and
reduce the number of minimum weight tree computations during the algorithm. Instead of
finding the lightest tree in 7 to connect the pins of a net, we settle for some tree within
afactor of (1 + 2¢) of the lightest, and show that one can obtain a similar approximation
guarantee.

Let w;_1(-) be the weight function at the beginning of the :th iteration. We have
wo(v) = ¢ for each v € V. For brevity denote a(w;), D(w;) by (1), D(:) respectively.
Following Fleischer, we cycle through the nets, sticking with anet until the lightest feasible
Steiner tree for that net is above a1 + 2¢ factor times alower bound estimate of the overall
lightest tree. Let o(i) be alower bound on o(7). To start, we set «(0) = §/I'. Aslong as
thereissome 7' € T with weight(T) < min{1/T,(1+ 2¢)a(i)}, we use tree T. When
this no longer holds, we know that the weight of the lightest tree is at least (1 + 2¢)a(1),
and sowe set a(i + 1) = (14 2¢)a(i). Thus, throughout the course of the algorithm, o
takes on values in the set {6/ (1 + 2¢)'}ien. Since a(0) > 6/F and ot — 1) < 1T,
a(t) < (142¢)/T. Thus, whenwestop, o(t) isbetween 1/ and (1+2¢)/I". Eachincrease
of a’isby al+ 2¢ factor, hence the number of increases of a islog,, ,, 2% (and thefinal
valueof 7 is [log,,,, 2 ]).

Between updates to «, the algorithm proceeds by considering each net one by one. As
long as the lightest feasible Steiner tree " for net N, has weight less than the minimum of
1 + 2¢ times the current value of o and 1/T, thislightest tree 7" is used to connect the pins
of the net N,. When mingperweight(T) > (14 2¢)a, net Ny4q is considered. After al

K nets are considered, o is updated. A total of at most A log, ,. £ minimum weight

feasible Steiner tree computations are used to update « over the course of the agorithm.

Theorem 22 Algorithm 9 isa (1 + w)-approximation algorithm for the MTMCF LP by

choosing § = (1 + 2¢)((1+ 2¢)LT)~% and e < min{.07, =11}, where L is the number

of vertices in the longest feasible Steiner tree of (¢ connecting any net.
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Proof :  Our proof is an adaptation of the proof of Garg and Konemann [35] (see aso

Fleischer [29]). First we show that thevaluesfﬁi% (weV,k=1,...,K),computed
by the algorithm, are feasible, i.e, Ziog, TE SR fe(v) < e(v) and hence we do not
exceed the capacity of any vertex v of G. Consder an arbitrary vertex v of G and let
M = Y} | fi(v) denotes how many times the vertex v was used by all feasible Steiner
trees found by algorithm. For every two timesthat the vertex v was used by feasible Steiner

trees, theweight of v increased by afactor ofatleast(1+ 2 ) Sincewp(v) = 4, it follows

that w,(v) > §(1+ c({j))? Simplifying this expression, we get

2¢ m 2¢ M
5 = ez
ZE < s )

The last time we increased the weight of v, it was on a feasible Steiner tree of weight

wi(v) = 6(1+ > 5(1+ 26)23{”)

lessthan 1/T". Hence, the weight of v waslessthan 1. Sincein each iteration we increase
the vertex weight by factor of at most (1 + 2¢), the final weight of v isat most (1 + 2¢).
Consequently,

1+ 2¢
)

(14 26)707 <

wi(v) <14 2¢, i.e, M < c(v)210g,,,,

Now we show that the ratio of the values of the dual and the primal solutions, v =
22log,,, M=, isat most (14 w).

For each iteration: > 1 we have

D(i)= Z w;(v)e(v) = Z wi—1(v)e(v) + € Z w;—1(v)

veV veV veT

<D —1)4 e(1426)Ta(i — 1)

Notethat, if 7" used aloop vv, then v contributesto the sum >~ . w;_1(v) twice (since
wi(v) = wi—a(v)(1+ 5)).
Then,




Consider theweight function w;(-) — wo(-). We have a(w; — wg) > a(w;) — § L, where
L isthe number of verticesin the longest feasible Steiner tree of G connecting any net.
Consequently, if a(w;) — §L > 0, then
D(wi — wo)

a(w; —wo)

D(i) = D(0) _ (142975 40(j = 1)
a(t)—46L — a(t) — 0L

<

B <
Thus, in any case (for the case o(w;) — § L < 0, itistrivial) we have

(14 2¢)l :

Yoai-1)

=1

a(t) <L+

e(1+ 2¢)F
g

e(1+ 2¢)F
g

:5L(1_|_M

1§ e(1+ 2¢)F
) L-I-iﬁ

e(1+ 26)F5
i Y

. 1e(142e)0
) <dLe 7

<(1+ a(0))

<(1+ )L+

For the last inequality thefact 1 + = < ¢” for > Oisused.
Sincewe stop at iterationt with «(¢) > 1/I',and t = f, we get

te(1426)0 fe(1426)0

1T <a(t)<dLe” 7 =48Le 7

Hence,

é - €14 2¢)l
f ~ In(6Lr)-1

Now, for theratio v we obtain

3 1+ 2¢
= 2log,,, 15X
2¢(14 2¢)l log,, . 1"';25 B 2¢(14 2¢)l In%
- In(6 L)1 ~In(1+2¢)In(6LM)-1
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Since we have chosen § = (1 + 2¢)((1+ 2¢)LIN) =, we get

In 2 _ 1
In(6LT)-* ~ 1—2¢

and hence,

2¢(14 2¢)l - 2¢(14 2¢)l
T=1120)In(1+ 26) = (1— 20)(2c — 4¢2/2)

< (14 26)(1—2¢)77T

Herewe usethat In(1+ =) > = — x2/2 (by Taylor series expansion of In(1 + z)).
Since (1 + 2¢)(1 — 2¢)~? isat most (1 + 8¢), for ¢ < .07, and (1 + 8¢)I" should be no

more than our approximation ratio (1 + w), we are done. O

In Algorithm 9 we need to solve the following problem. Let G, (k =1,...,K) bea
subgraph of the graph & induced by vertices {s;, ¢+, ..., t%} U R (recal that each vertex
v € Rhasaloopvv € E). Let also each vertex v of (), have a non-negative weight w(v).
Find a minimum weight tree 7}, in (), connecting s, with ¢1. ..., ¢!* such that, for each
i = 1,...,qx, the path of T}, between s, and ¢ passes through even (odd, depending on
a’) number of vertices, and that number of vertices should not exceed /;. This path may
contain aloop. So, the vertex weight will contribute either once or twice (in case of loop)
to the weight of thetree 7}..

Let Ly, = max{l},...,[}*}. We reduce this problem to the usual shortest directed
rooted Steiner tree problem on an edge-weighted directed acyclic graph (dag) ;. with
V(D) = {siU{ri; |1<i<n, 1<j < L ju{tt,.. .t} and E(Dy) = E1U E,U Es,
where

Er={(sg,m:1) |1 <i<n,(s,m) € E(G)}
Ey=A(rijrijr1) | 1<4,0 <n, 1 <5< Li,(ri,re) € E(G)}

Es={(ri;,t1)11<i<n,1<h<q,1<j<I}j=al(mod2), (r;,th) € B(G)}
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If the cost of each arc (x,y) in Dy, is given by w(x), it is easy to see that finding the
minimum weight treein 7 reduces to finding a minimum cost directed rooted Steiner tree
(DRST) in Dy.. Generally, the directed rooted Steiner tree problemasks, for agiven directed
edge-weighted graph H = (X, U), aspecifiedroot r € X, and aset of terminalsY” C X, to
find the minimum cost arborescence rooted at » and spanning all the verticesin Y (in other
wordsr should have apath to every vertex in Y'). Unfortunately, the fact that D isacyclic
doesnot help. Thereisasimplereduction for thisproblem from arbitrary directed graphsto
acyclic graphs. Asfar aswe know, the best result for the DRST problem is due to Charikar
et al. [15] which says that an O(log? ¢;)-approximate solution can be found in quasi-
polynomial time O(n3'%9%). Sincethisisvery inefficient, we need to find some other ways
to compute such trees. Oneway isto compute (exactly or approximately) aDRST once, and
thenin al next iterations (with new edgelengths) using the found Steiner points p1, . . ., ps
find a minimum directed spanning tree of the graph induced by {s, 1, ..., % p1,....ps}
(this approach was used in [2]). To find a minimum spanning directed tree in directed
acyclic graphs, one can use a very simple procedure: for each vertex choose a shortest
incoming arc. After running this procedure one can recursively delete al leaves of the

gpanning tree, that are not sinks of the net V.

5.4 Rounding the fractional MTMCF

In the previous section we presented an algorithm for approximating the optimum mul-
titerminal multicommodity flow (MTMCF) within any desired accuracy. The optimum
MTMCEF gives an upper-bound on the maximum number of routable nets (connections).
In this section we show how to use the approximate MTMCEF to route an ailmost optimal
number of nets (resp. connections). Our construction is based on the randomized round-
ing technique of Raghavan and Thomson [63], in particular, on the random-walk based

algorithm for rounding multicommodity flow [62] (see also [56]).
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Input: Multiterminal flows fi(e) € [0,1],k=1,..., K, e € E(G)
Output: Set of trees 7}, € Ty

Foreach k = 1,..., K, with probability f;, do

Ty < {s1}
For each sink ¢, in N}, do
P« 0; vt
While v ¢ T} do
Pick arc (u,v) with probability fi(u,v)/ fi(v)
P+ PU{(u,v)}; v+ u
End while
T, < T, UP
End for

End for

Algorithm 10: The randomized MTMCF rounding algorithm

The MCF rounding algorithm in [62] chooses a set of source-sink pairs by including
each pair (s, t) with a probability equal to the flow from s to ¢. Then, for each chosen pair,
(s,t), the agorithm performs a random-walk from s to ¢, based on probabilities given by
edge-flows. Inour M TMCF rounding algorithm (Algorithm 10), anet Ny, = (sg;t5, ..., %)
is also routed with probability equal to the net’stotal flow, fi. = >"7c7 fr. Since we need
to construct a tree connecting all sinks ¢i to the source s, we route the net by performing
backward random walksfrom each sink until reaching either s, or avertex on apath already
included in the tree. Thus, if the net has only one sink, our rounding agorithm becomes
identical to the algorithm in [62], except for the direction of the random walk.

Ensuring that no vertex capacities are exceeded can be accomplished in two ways.
Following [56], one way isto solve the MTM CF LP with capacities scaled down by asmall
factor that guarantees that the rounded solution will meet the original capacities with very
high probability. A simpler approach, the so-called greedy-deletion algorithm [22], is to
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repeatedly drop routed nets that visit over-used vertices until feasibility is achieved. We
implement a modification of the second approach: instead of dropping an entire tree, we

drop only the sinks which use paths through over-used vertices.

5.5 Implemented algorithms

In this section we describe the implemented algorithms for the Global Routing via Buffer

Blocks problem.

5.5.1 Greedy routing algorithms

We have implemented 3 greedy algorithms for the GRBB problem. The first algorithm,
similar to oneproposedin[20], startsby decomposing each multiterminal net into 2-terminal
nets. Then, the algorithm attemptsto route the 2-terminal nets one by one, using for routing
ashortest avail able path from the net’s source to its sink, if such a path exists. We will refer
to this algorithm as the forward 2-terminal greedy (F-2TG) algorithm.

The second greedy agorithm (Algorithm 11), referred to as the multiterminal Greedy
(MTG) agorithm, handles multiterminal nets, and thus does not have to resort to net
decomposition. For each multiterminal net we attempt to route the sinks one by one. For
each sink we use a shortest available path to one of the vertices already connected to the
source, if any such path exists.

The third algorithm, the backward 2-terminal greedy (B-2TG), worksas F-2TG, except
for the fact that shortest paths are computed backward, from sinks toward sources and not
from sources toward sinks. Notice that B-2TG isthe special case of MTG when applied to

2-terminal nets.
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Input: Graph GG with K" nets Ni,..., Ng, vertex capacities c¢(v)
Output: Set of trees 7}, € Ty

Foreachk =1,...,K,do

Tk — {Sk}
For each sink ¢, in N}, do

Using a backward BFS search, find a shortest path P from ¢ to 7}, in G
using only vertices v with ¢(v) > 0; if no such path exists let P = ()

Tk — Tk U~

For each vertex v in P, ¢(v) < ¢(v) — 1

End for

End for

Algorithm 11: The multiterminal greedy (MTG) routing agorithm

5.5.2 Flow rounding algorithms

We have implemented two flow rounding algorithms. The first algorithm (Algorithm 12)
is based on MTMCEF rounding. Our current implementation decomposes larger nets into
3-terminal nets before applying the MTM CF routing algorithm, we will refer to thisimple-
mentation as STMCF. For 3-terminal nets we can find the optimum directed routed Steiner
tree efficiently, and we do not need to resort to the approximations suggested at the end of
Section 5.3.

In order to assess the benefit of using multiterminal nets, we includein our comparison
a second flow rounding algorithm, which starts by decomposing each multiterminal net
into 2-terminal nets and then solves approximately the fractional relaxation of the resulting
integer multicommodity flow program and applies randomized rounding. This algorithm
will bereferred to as 2TMCF.
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Input: Graph GG with K" nets Ni,..., Ng, vertex capacities c¢(v)
Output: Set of trees 7}, € Ty

Find an approximate MTMCF using Algorithm 9.

Round the approximate MTMCF using Algorithm 10.

Use greedy deletion to find a feasible integer solution.

Use the MTG Algorithm 11 on the unrouted nets to find a maximal routing.

Algorithm 12: The MTMCEF routing algorithm
5.6 Implementation experience

All experiments were conducted on a SGI Origin 2000 with 16 195MHz MIPS R10000
processors—only one of which isactually used by the sequential implementationsincluded
in our comparison—and 4 G-Bytes of interna memory, running under IRIX 6.4 IP27.
Timing was performed using low-level Unix interval timers, under smilar load conditions
for al experiments. All agorithms were coded in C and compiled using gcc version
€gcs-2.91.66 with -O4 optimization.

The three test cases used in our experiments were extracted from the next-generation
microprocessor chip at SGI. We used an optimized floorplan of the circuit blocks and also
optimized the location of the source/sink pin locations based on coarse timing budgets. We
used /' = 4000um, and varied 1. between 500 m and 2000:m. Path-length upper-bounds
were computed with the formula /, = dist(sy,#;)/1000. In al test cases considered the
number of nets was large (over 6000), and the number of buffer blocks small (50), with
relatively large capacity (400 buffers per block); such values are typical for this application
[22].

Tables 4-6 give the number of routed sinks and the running time on the three instances
by each of the agorithms included in our comparison. Figure 5.6 plots, for one of the
instances, the solution quality versus CPU time (in seconds, excluding I/O and memory

allocation) for each of the considered algorithms.
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Instance GREEDY
ID [ Nets Sinks N/S | F-2TG B-2TG  MTG
1| 4764 oo 207| 95 %6 95
i2 | 4925 6296 2.28 g_géi g_lég 3_352
3 |4038 6321 228 OO0 Do %S

Table 4: Percent of sinks connected and CPU time for the greedy algorithms

Instance STMCF
ID ‘ Nets Sinks N/S||£=064 =032 =016 =008 <=0.04 e =0.02
i1 | 4764 6038 227 3_453 13.512 33%3 133%2 ] Og%g 2323%5;
i2 | 4925 6296 228 3%2 12.7; 43752 15222 69373_2 2503_7 3_3
i3 | 4938 6321 228 2%27 12%2 437; 162.792 73379_)2 2632.7 63

Table 5: Percent of sinks connected and CPU time for the 2TMCF algorithm

Instance 3TMCF
ID‘ Nets Sinks N/S||£¢=064 =032 =016 =008 =004 ¢ =0.02
L\ ared 038 227 | o 0 e sivee siee08 127800
) P S . .
IR e

Table 6: Percent of sinks connected and CPU time for the 3TMCF algorithm
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The first surprising thing to notice is that B-2TG gives noticeably better results than
F-2TG, despite the fact that the two algorithms are nearly identical (they both add paths
of the same length until some of the vertices use up the full capacity).> Perhaps not so
surprising isthe fact that the multiterminal greedy algorithm is better than both F-2TG and
B-2TG. Notice that the running time of all three greedy algorithmsisvirtually the same, so
MTG isthe clear choice among them.

Our experiments clearly demonstrate the high quality of the solutions obtained by
flow rounding methods. Significant improvement over the best of the greedy methods
is possible even with a very small increase in running time, proof that even very coarse
MCF/MTMCEF approximations give helpful hints to the randomized rounding procedure.
Since randomized rounding is very fast, faster in fact than any of the greedy algorithms,
the MCF/MTMCEF algorithms can be further improved by running randomized rounding
with the same fractional flow a large number of times and taking the best of the rounded
solutions; our current implementation does not exploit thisidea.

Finally, our experiments show that even a limited use of multiterminal nets (decom-
position into nets of size 3) gives improvements over the already very high-quality MCF
algorithm of Dragan et a. [22]. In fact, the STMCF agorithm outperforms the MCF

algorithm in [22] even when the same time budget is given to both agorithms.

5.7 Conclusions and future research directions

In this chapter, we addressed the problem of how to perform buffering of global nets
given an existing buffer block plan. We gave a provably good algorithm based on a novel
approach to MTM CF approximation inspired by recent results of Garg and Kdnemann [35]

3The advantage in computing backward shortest paths, as opposed to forward shortest paths, appears to
liein the fact that the former gives a set of paths that are better spread out in the vicinity of the source of a
large net. If the sinks of such a net are grouped in a small number of clusters, which istypically the case in
rea designs, the forward greedy algorithmislikely to use a small number of neighbors of the source for dl
these paths, thus leading to the faster exhaustion of the available capacity in these vertices.
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and Fleischer [29] on edge-capacitated MCF. Our MTMCF a gorithm outperformsexisting
algorithmsfor the problem [20], and has been validated on top-level layouts extracted from
arecent high-end microprocessor design.

As presented here, our work targets the very early global wireplanning activities, i.e.,
pre-synthesis chip planning. It should be interesting to extend the class of methodologies
to which the MTMCF approach applies. Possible directionsin which the approach can be
extended are: (1) handling routing congestion, e.g., by introducing capacitated “virtual”
nodesin the flow graph; (2)handling timing criticality and budgets, e.g., by better use of net
ordering and weighting; (3)improved decomposition heuristics, perhapsbased on clustering
techniques; and (4) more accurate treatement of multiterminal nets, by decomposition into

nets with more than 3 terminals.
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