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Why Single Cell RNA-Seq?

• New, first publication by [Tang et al. 2009], increased 
popularity by ~2014

• Measures distribution of expression levels for each gene 
across a population of cells (bulk RNA-seq measures average 
expression levels)

• Bulk useful for comparative transcriptomics, e.g. comparing 

samples of the same tissue from different species or quantifying expression 
signatures from ensembles, e.g. in disease studies.

• SC biological questions in which cell-specific changes in 
transcriptome are important (Applications?)



Droplet-based scRNA-seq technology

Macosko, Cell. 2015



Challenges

• Noisy data: Low RT efficiency & sequencing depth 
causes ‘zero-inflated’ data, cell quality, stochastic 
effects, cell capture bias, gene ‘dropouts’ (a gene 
is observed at a moderate expression level in one 
cell but is not detected in another cell).

• Number of cells (thousands – million(s))

requires adaptation of the existing methods or 
development of new ones.



Applications

Studying heterogeneous systems:

• Cell Differentiation, e.g. early development 
studies, complex tissues (brain)

• Tumor Heterogeneity

• Cell Type Identification

• Stochasticity of gene expression

• Inference of gene regulatory networks across 
the cells.

<



Typical scRNA-Seq Analysis Pipeline
• Primary analysis

– Reads QC
– Read mapping
– Gene expression quantification

• Secondary analysis
– Cells QC
– Normalization
– Clustering
– Differential expression

• Tertiary analysis
– Functional annotation

Reads QC Read mapping Quantification Cells QC Normalization Clustering
Differential 
expression

Functional 
annotation



• Many methods available
– K-means

– Hierarchical clustering

– Expectation-Maximization (GMM)

– Graph based

– …

• Active area of research
– Reducing effect of confounders such as cell quality, 

detection rate & cell cycle phase

– Discriminative similarity metrics

– Scalability to millions of cells…

scRNA-Seq Clustering Algorithms
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TF-IDF Transformation

• Term Frequency x Inverse Document 
Frequency
– Successfully employed in information retrieval 

field to prioritize search terms in documents

– Considers term frequency (how many times a term 
occurs in a document)

– Considers document/collection frequency (term 
specificity: rare terms in a collection are more 
informative than frequent terms; stop-words vs. 
keywords)



TF-IDF Transformation

• Term Frequency x Inverse Document 
Frequency for scRNA-Seq data:

– For gene i in cell j with count f:
𝑇𝐹𝑖𝑗 = 𝑓𝑖𝑗/max

𝑘
𝑓𝑘𝑗

– If gene i is detected in ni out of N cells:
𝐼𝐷𝐹𝑖 = log2(𝑁/𝑛𝑖)

– TF-IDF score:
𝑇𝐹𝑖𝑗 ∗ 𝐼𝐷𝐹𝑖
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scRNA-Seq Clustering Methods
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Existing scRNA-Seq clustering methods

• Seurat: DOKMeans()
• Seurat_SNN: FindClusters() shared nearest neighbor (SNN) clustering 

algorithm (SNN assigns objects to a cluster, which share a large number of 
their nearest neighbors).

• Log_PCA_GMM (Gaussian Mixture Model based clustering using mclust R 
package).

• K-means clustering variants:
– Log_Kmeans (motivated by Granatum pipeline)
– Log_PCA_Kmeans (motivated by CellRanger pipeline)
– tSNE_Kmeans (Granatum).

• Log_PCA_sKmeans (Spherical K-means with log transform and PCA 
variants)

• Hierarchical Clustering variants:
– Log_PCA_HC_E, Log_PCA_HC_P, tSNE_HC_E, tSNE_HC_P

• Log_Louvain_E (Graph based Louvain modularity optimization clustering 
algorithm, CellRanger)
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TF-IDF based gene selection

• genes with highest TF-IDF 
average (Top): 
1. fitted a 2-mixture GMM 

model to the distribution 
of TF-IDF gene averages

2. selected the genes 
assigned to the mixture 
component with highest 
mean

3. If more than k (3,000) 
genes , then rank by 
number of detecting cells. Avg. Gene TF-IDF score for regulatory, memory cells mix

Density Plot



TF-IDF based gene selection

• genes with highest variability (Var) in 
TF-IDF values:
– Variability decided by the 

relationship between the coefficient 
of variation (CV) and average 
expression levels.

– CV (Dispersion) : ratio of the 
standard deviation to the mean. 
𝐶𝑉 =

𝜎

|𝜇|
(∗ 100%)

– Useful in comparison between data 
sets with different units or widely 
different means.

– We pick the genes above the fitted 
line (fitted by linear regression) of 
CV vs. mean plot.
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TF-IDF Binarization

• per-cell cutoff
• set the expression signature of 

all genes with a TF-IDF above 
the cutoff (‘informative’) to 1, 
and all remaining signatures to 
0 (removing unnecessary 
‘noise’ ). 

• choice of TF-IDF cutoff can 
affect the clustering accuracy, 

• near maximum accuracy is 
achieved by using a cutoff 
value equal to 0.1  the mean of 
the per-cell non-zero TF-IDF 
values. (plotted for a mix of 1,000 memory and 

1,000 regulatory T cells)



Graph based clustering

1. Undirected graph 
– cells : vertices, 
– edges: connecting pairs of cells for which the binarized TF-

IDF transformed expression signature vectors have 
Euclidean, Pearson, Cosine, or Jaccard similarity above a 
certain cutoff value (low cutoff for dense graph)

– Weights: edges weighted by the corresponding pairwise 
similarity measures 

2. Clustering by greedy/Louvain modularity optimization 
(igraph R). 

3. Keep on partitioning based on silhouette score for 
homogeneity and to force a minimum number of 
clusters when required. 

>



Jaccard Similarity

𝐽 𝐴, 𝐵 =
𝐴 ∩ 𝐵

|𝐴 ∪ 𝐵|

• For scRNA-seq: 𝐽 =
𝑁11

𝑁01+𝑁10+𝑁11

– 𝑁11 represents the total number of genes where cell A and cell B both express the gene.

– 𝑁10 represents the total number of genes where cell A and expresses the gene and cell B 
not…etc.

– 0 means no similarity, 1 means identical

• Generalized 𝐽 𝑥, 𝑦 =
σ𝑖min 𝑥𝑖,𝑦𝑖

σ𝑖max(𝑥𝑖,𝑦𝑖)

<



Cosine Similarity

• Given two vectors of attributes, A and B, the 
cosine similarity, cos(θ):

cos 𝜃 =
σ𝑖=1
𝑛 𝐴𝑖𝐵𝑖

σ𝑖=1
𝑛 𝐴𝑖

2 σ𝑖=1
𝑛 𝐵𝑖

2

• −1 meaning exactly opposite, to 1 meaning exactly the same, 
with 0 indicating decorrelation; 0 to 1 range for tf-idf.

<



Modularity Optimization

• Modularity to optimize : value between -1 and 1 that measures the 
density of links inside communities compared to links between 
communities. For a weighted graph, modularity is defined as:

𝑄 =
1

2𝑚
෍

𝑖𝑗

[𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗

2𝑚
] 𝛿(𝑐𝑖 , 𝑐𝑗)

• where
– 𝐴𝑖𝑗represents the edge weight between nodes i and j;

– 𝑘𝑖 and 𝑘𝑗 are the sum of the weights of the edges attached to nodes i 
and j respectively;

– m is the sum of all of the edge weights in the graph;

– 𝑐𝑖and 𝑐𝑗are the communities of the nodes; and
– 𝛿 is a simple Kronecker delta

<



Louvain Method

• first small communities are found by optimizing modularity locally on all 
nodes (evaluates the change of modularity by removing i from its 
community and then by moving it into a neighboring community), 

• then each small community is grouped into one node and the first step is 
repeated.

<



Silhouette Score

• s(i) score between -1 & 1, average s(i) 
measures how well the data points are 
clustered.

𝑠 𝑖 =
𝑏 𝑖 − 𝑎 𝑖

max{𝑎 𝑖 , 𝑏(𝑖)}

• a(i) be the average dissimilarity of i with all 
other data within the same cluster

• b(i) be the lowest average dissimilarity of i to 
any other cluster, of which i is not a member.

<
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Experimental Setup: PBMC data set

• FACS sorted blood cells of 7 types [Zheng et al. 2017] using the 10x 
Genomics platform
– CD14+ Monocytes
– CD19+ B Cells
– CD4+/CD25+ Regulatory T Cells
– CD4+/CD45RA+/CD25- Naive T cells
– CD4+/CD45RO+ Memory T Cells
– CD56+ Natural Killer Cells
– CD8+/CD45RA+ Naive Cytotoxic T Cells

• 7:1, 3:1, 1:1, 1:3, and 1:7 mixtures of cell type pairs of varying dissimilarity, 
bootstrapping (5x sampling, 1000 cells/pair)
– highly dissimilar: (b cells and cd14 monocytes) and (b cells and cd56 nk)
– highly similar : (memory t and naive cytotoxic) and (regulatory t and naive t)
– intermediate similarity: (memory t and naive t) and (regulatory t and naive cytotoxic) 

• 7-way mixture, equal proportions (5x sampling, 7000 cells/mix)

https://support.10xgenomics.com/single-cell-gene-expression/datasets
http://cnv1.engr.uconn.edu:3838/SCA/



Experimental Setup: PBMC data set



Experimental Setup: PBMC data set



Experimental Setup: Pancreatic cells 

• 2045 Pancreatic cells of 7 types 
[Segerstolpe et al. 2016]
– Annotated based on known 

markers
– Capture proportions: (185 acinar 

cells, 886 alpha cells, 270 beta cells, 
197 gamma cells, 114 delta cells, 
386 ductal cells, and 7 epsilon cells)



Cells’ & Genes’ QC

• For all 10x Genomics datasets:
– filtered cells based on number of detected genes and total UMI count 

per cell.
– removed outliers based on the median-absolute-deviation (MAD) of cell 

distances from the centroid of the corresponding cell type.
𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛 𝑥 |)

– basic gene quality control by applying a cutoff on the minimum total 
UMI count per gene across all cells and removing outliers based on 
MAD. (outlier>5MAD)

• For Pancreatic cells: 
– No cell QC
– marker genes with unusually high expression levels (INS for beta cells, 

GCG for alpha cells, SST for delta cells, PPY for PP/gamma cells, and 
GHRL for epsilon cells) were removed prior to clustering to eliminate 
thepossibility that they drive the clustering by themselves.



‘Optimal’ number of clusters

• the optimal number of clusters is selected as
𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝐺𝑎𝑝𝑛(𝑘)

• where the Gap Statistic [Tibshirani, 2001] for 
clustering n points into k clusters is given by

𝐺𝑎𝑝𝑛 𝑘 = 𝐸𝑛
∗ log Wk

∗ − log(Wk)

• 𝑊𝑘 is the normalized sum of pairwise 
distances in the k clusters

• 𝑊𝑘
∗ its expectation under a suitable null 

reference distribution (Monte Carlo sampling).



Example: Regulatory_t and naïve_t data set

Clockwise from top left: 
Gap statistics for log-
transformed, log-
transformed PCA, tSNE,
and TF-IDF transformed 
and binarized 
expression levels of a 
7:1 mixture of 
regulatory t and
naive t cells. 

The x-axis gives the 
number of clusters K 
and the y-axis gives the 
gap statistic.



Accuracy measures

• Overall Accuracy:

෍

𝑖=1

𝐾

𝐶𝑖 /෍

𝑖=1

𝐾

𝑁𝑖

• Average Cluster Accuracy:

1

𝐾
෍

𝑖=1

𝐾
𝐶𝑖
𝑁𝑖

– where 𝐾 is the number of classes, 
– 𝑁𝑖 is the number of samples in class i, 
– and 𝐶𝑖 is the number of correctly labeled samples in class i. 

• Note that both are identical for 1:1 mixtures, but may differ significantly 
for imbalanced datasets, as macro-averaging gives equal weight to the 
accuracy of each class, whereas micro-averaging gives equal weight to 
each cell classification decision.
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t-SNE TF-IDF transformation

Raw PBMC data t-SNE plot TF-IDF transformed data t-SNE plot



t-SNE TF-IDF transformation

Raw Pancreas data t-SNE plot TF-IDF transformed data t-SNE plot



Pairs: Existing Methods

Box-and-whiskers plots for results of 150 sets/method. 
Median: horizontal line; mean: connected middle points; whiskers: extreme non-outlier; outliers: data points > 1.5 interquartile



Pairs: Algorithms using TF-IDF gene selection



Pairs: Algorithms using TF-IDF binarization.



Pairs: 1:1 mixtures



Pairs: 1:3/3:1 mixtures



Pairs: 1:7/7:1 mixtures



Pairs by ‘difficulty’

highly dissimilar: (b cells and cd14 monocytes) and (b cells and cd56 nk)
highly similar : (memory t and naive cytotoxic) and (regulatory t and naive t)

intermediate similarity: (memory t and naive t) and (regulatory t and naive cytotoxic) 



Accuracy for 
PBMC Cells, 
7-way 
mixture



Accuracy for 
Pancreatic 
mixture



Average ranks based on 
overall accuracy. 

The lowest five 
average ranks 
(including ties) for 
each dataset are 
typeset in bold, 
and the best 
overall average 
rank is shown in 
red.



Average ranks based on 
average cluster accuracy. 

The lowest five 
average ranks 
(including ties) for 
each dataset are 
typeset in bold, 
and the best 
overall average 
rank is shown in 
red.
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Conclusion & Ongoing Work 
• The range of single-cell applications continues to expand, fueled 

by advances in technology

• New algorithms for scRNA-Seq clustering still needed
- Preliminary results using TF-IDF transformation promising

- Scalable to millions of cells in conjunction with graph-based clustering

• Ongoing work
- Modified TF-IDF definition

- Study effect of cell cycle analysis/removal on clustering

- Imputation effect on dropout events and clustering accuracy.

- Clustering based on chromosomal copy number variations (CNVs) as first tier 
for tumor/normal data.

>



Modified TF-IDF Transformation

• Term Frequency x Inverse Document Frequency 
for scRNA-Seq data:

𝑓′ = log(𝑓 + 1)

– For gene i in cell j with count f:
𝑇𝐹𝑖𝑗 = 𝑓𝑖𝑗

′ /max
𝑘

𝑓𝑘𝑗
′

– If gene i is detected with 𝑓𝑖 ≥ t in ni out of N cells:
𝐼𝐷𝐹𝑖 = log2(𝑁/𝑛𝑖)

Possible choice for 𝑡 = 𝑚𝑒𝑎𝑛 𝑇𝐹

– TF-IDF score:
𝑇𝐹𝑖𝑗 ∗ 𝐼𝐷𝐹𝑖



Breast Cancer data [Chung 
et al., 2017]

11 patients representing the four 
subtypes of BC: luminal A; luminal 
B; HER2; and triple negative breast

cancer (TNBC). 

Markers: 

• ER-positive (BC01 and BC02; 
luminal A), 

• ER/HER2-positive (BC03; 
luminal B),

• HER2-positive (BC04, BC05 and 
BC06; HER2) 

• and triple negative (BC07–BC11; 
TNBC) invasive ductal 
carcinoma.

• Regional metastatic lymph 
nodes were collected from the 
luminal B (BC03LN) sample 

• and a triple negative breast 
cancer (BC07LN) sample.

T-SNE of modified-TF-IDF-transformed dataT-SNE of imputed, modified-TF-IDF-transformed data



Microscopic findings indicated carcinoma and non-carcinoma cells, including tumor-infiltrating lymphocytes9

(TIL, 1–60%). Most of the TNBC tumors except BC10 were heavily infiltrated with lymphocytes, whereas luminal 
A tumors showed enrichment with carcinoma cells.



Chromosomal copy number variations based clustering

• sorted genes by their genomic locations (chromosome 
number, then gene start position)

• moving average of 100 analyzed genes
• estimate of chromosomal CNVs in each cell and at each 

analyzed gene:

𝐶𝑁𝑉𝑘 𝑖 =
σ𝑗=𝑖 −50
𝑖+50 𝐸𝑘 𝑜𝑗

101
– 𝐶𝑁𝑉(𝑖) is the estimated relative copy number of cell k at the i’th

gene in the genomically-ordered list of genes,

– 𝑜𝑗 is the j’th gene in the genomically-ordered list of genes,

– and 𝐸𝑘 𝑜𝑗 is the relative normalized expression of that gene in 
cell k



Hierarchical clustering of the chromosomal gene expression pattern separating the patient-
specific carcinoma cell groups from the non-carcinoma cell cluster. For each chromosome, the 
chromosomal gene expression pattern was estimated from the moving average of 150 genes. 
These patterns implicate chromosomal amplification and deletion.[Chung, 2017]



t-SNE of CNV matrix

• ER-positive (BC01 and 
BC02; luminal A) < 2% TIL

• ER/HER2-positive (BC03; 
luminal B) ~ 30% TIL

• HER2-positive (BC04 ~ 30% 
TIL, BC05 and BC06 ~ 2% 
TIL; HER2) 

• and triple negative (BC07 
~40% – BC11 ~ 70% TIL; 
TNBC) invasive ductal 
carcinoma.

<
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Thank You.

Questions?


