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Abstract.
For fighting cancer, earlier detection is crucial. Circulating auto-antibodies
produced by the patient’s own immune system after exposure to cancer
proteins are promising bio-markers for the early detection of cancer. Since
an antibody recognizes not the whole antigen but 4-7 critical amino acids
within the antigenic determinant (epitope),the whole proteome can be
represented by a random peptide phage display library (RPPDL). This
opens the possibility to develop an early cancer detection test based on
a set of peptide sequences identified by comparing cancer patients’ and
healthy donors’ global peptide profiles of antibody specificities.
Due to the enormously large number of peptide sequences contained
in global peptide profiles generated by next generation sequencing, the
large number of cancer and control sera is required to identify cancer-
specific peptides with high degree of statistical significance. To decrease
the number of peptides in profiles generated by nextgen sequencing with-
out losing cancer-specific sequences we used for generation of profiles the
phage library enriched by panning on the pool of cancer sera. To further
decrease the complexity of profiles we used computational methods for
transforming a list of peptides constituting the mimotope profiles to the
list motifs formed by similar peptide sequences.
We have shown that the amino-acid order is meaningful in mimotope
motifs since they contain significantly more peptides then motifs among
peptides where amino-acids are randomly permuted. Also the single sam-
ple motifs significantly differ from motifs in peptides drawn from multiple
samples. Finally, multiple cancer-specific motifs have been identified.

Keywords: random peptide phage display library, early cancer detec-
tion, immune response, peptide motifs, mimotope profile

1 Introduction

Circulating autoantibodies produced by the patient’s own immune system
after exposure to cancer proteins are promising biomarkers for the early detection

ISBRA 2015 Short Abstracts

28



of cancer. It has been demonstrated, that panels of antibody reactivities can be
used for detecting cancer with high sensitivity and specificity [5].

The whole proteome can be represented by random peptide phage display
libraries (RPPDL). For any antibody the peptide motif representing the best
binder can be selected from the RPPDL. The next generation (next-gen) se-
quencing technology makes possible to identify all the epitopes recognized by
all antibodies contained in the human serum using one run of the sequencing
machine.

Recent studies tested whether immunosignatures correspond to clinical clas-
sifications of disease using samples from people with brain tumors [2]. The im-
munosignaturing platform distinguished not only brain cancer from controls, but
also pathologically important features about the tumor including type and grade.
These results clearly demonstrate that random peptide arrays can be applied to
profiling serum antibody repertoires for detection of cancer

The profiles generated by next-gen sequencing following several iterative
round of affinity selection and amplification in bacteria can consist of millions
of peptide sequences. A significant fraction of these sequences is not related to
the repertoires of antibody specificities, but produced by nonspecific binding
and preferential amplification in bacteria. The presence of high amounts of these
unspecific, quickly growing “parasitic” sequences can complicate the analysis of
serum antibody specificities.

Considering that the affinity selected sequences can be clustered into the
groups of similar sequences with shared consensus motifs, while the parasitic
sequences are usually represented by single copies, we propose a novel motif
identification method (CMIM) based on CAST clustering [1].

We have shown that the amino-acid order is meaningful in mimotope motifs
found by CMIM – the CMIM motifs identified in observed samples contain signif-
icantly more peptides then motifs among the same peptides but with amino-acids
randomly permuted. Also the single sample motifs are shown to be significantly
different from motifs in peptides drawn from multiple samples.

CMIM was applied to case-control data and identified numerous cancer-
specific motifs. Although no motif is statistically significant after adjusting to
multiple testing, we have shown that the number of found motifs is much larger
than expected and may therefore contain useful cancer markers.

2 Generating Mimotope Profiles of Serum Antibody
Repertoire

The experiment for generating mimotope profiles of serum antibody repertoire
is outlined in the flowchart in figure 1. The first step of the experiment was
library enrichment, the second step was directly generating of mimotipe profiles
and next-gen sequencing.

Library enrichment. Pooled serum from eight stage 0 breast cancer patients
were used for enrichment of the library. The enrichment was performed as fol-
lows. Twenty µl of pooled serum and 10 µl of the Ph.D.7 random peptide library
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Fig. 1: A scheme for generating mimotope profiles of serum antibody repertoire.

(NEB) were diluted in 200 µl of the Tris Buffered Saline (TBST) buffer contain-
ing 0.1% Tween 20 and 1% BSA and incubated overnight at room temperature.
The phages bound to antibodies were isolated by adding 20 µl of protein G
agarose beads (Santa Cruz) to the phage –antibody mixture and incubating for
1 hour. To eliminate the unbound phage the mixture with beads was transferred
to the well of 96-well MultiScreen-Mesh Filter plate (Millipore) containing 20
µm pore size nylon mesh at the bottom. The unbound phage was removed by
applying vacuum to the outside of the nylon mesh using micropipette tip. The
beads were washed 4 times by adding to the well 100 µl of TBST buffer and
removing the liquid by applying vacuum to the outside of the nylon mesh using
micropipette tip. The phage bound to the antibodies was eluted by adding to
the beads of 100 µl of 100 mM Tris-glycine buffer pH 2.2 followed by neutral-
ization using 20 µl 1 M Tris buffer pH 9.1. The eluted phages were amplified in
bacteria by infecting 3 ml of an early log-phase culture . The amplified phages
were isolated by precipitating phage with 1/6 volume of 20% PEG, 05.M NaCl
precipitation buffer. The cycle of incubation-bound phage isolation-amplification
was repeated two more times and the isolated after the 3rd amplification library
was used for analyzing antibody repertoires.
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Generating peptide profiles Twenty µl of serum and 10 µl of the enriched li-
brary were diluted in 200 µl of the Tris Buffered Saline (TBST) buffer containing
0.1% Tween 20 and 1% BSA and incubated overnight at room temperature. The
phages bound to antibodies were isolated using low pH buffer as described above
for the enrichment of the library and the phage DNA was isolated using phenol-
chloroform extraction and ethanol precipitation. The 21 nt long DNA fragments
coding for random peptides were PCR-amplified using primers containing a se-
quence for annealing to the Illumina flow cell, the sequence complementary to
the Illumina sequencing primer and the 4 nt barcode sequence for multiplex-
ing. The PCR-amplified DNA library was purified on agarose gemultiplexed and
sequenced by 50 cycle HiSeq 2500 platform.

The sequences were de-multiplexed to determine its source sample. The 21-
base nucleotides were extracted between base position 29 and 49 and translated
to 7-amino-acid peptide using the first frame. Any peptide containing stop codon
was discarded.

3 CAST-based motif identification method

A motif was defined as a group of peptides having common sequence pattern.
If we consider a motif as a cluster formed by peptides with a center represented
by a consensus sequence then construction of a motif corresponds to a difficult
clustering problem with many closely located centers. The radius of a cluster may
exceed the distance from one cluster to another one. The standard clustering
techniques (for example, k-means clustering [4]) are not applicable to current
problem. Thence, for our purpose we modified more suitable CAST algorithm
[1].

For motif finding we defined similarity measurement based on Hamming
distance. The Hamming distance HD(a, b) between sequences a and b of equal
length is defined as the number of positions where the corresponding symbols
are different. We extended the concept of Hamming distance to considering also
shifts of sequences relative to each other. Thus the distance was computed on
all sufficiently long overlaps between sequences a and b. We define similarity as
following:

similarity(a, b) = l −minimum{HD(a, b), HD(a1, b1), ...HD(an, bn)}, (1)

where l - the length of a peptide, HD(a1, b1),. . ., HD(an, bn) - Hamming dis-
tances on all possible shifts between a and b.

Since the minimal length of a peptide sequence that can mimic the epitope
recognized by antibody is usually in the range from 4 to 6 amino acids, we
assigned similarity threshold equal 4. So any two peptides in a motif should
have approximately 4 common amino acids (diameter of a motif). As well as no
more than 3 shifts between peptides to the right or left sides were allowed.

The Algorithm 1 describes the CAST-based motif identification method (CMIM).
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Algorithm 1 CAST-based motif identification (CMIM)
Input: Set of peptides P , similarity matrix D, threshold θ
Set of seed peptides S ← P
while S > ∅ do

Cluster set M ← {s1, s2}, s1, s2 - the two most similar peptides in S
Set of petides outside the cluster R← P \M
affinity(p)← D(p, s1) +D(p, p2), for all p ∈M ∪R
while (affinity(r)/size(M) ≥ θ, r ∈ R) OR

(affinity(m)/(size(M)− 1) < θ, m ∈M) do
while affinity(r)/size(M) ≥ θ for some r ∈ R do

M ←M ∪ {r′}, r′ ∈ R - peptide with the highest affinity
affinity(p)← affinity(p) +D(p, r′), for all p ∈ C ∪R

end while
while affinity(m)/(size(M)− 1) < θ for some m ∈M do

M ← C \ {m′}, m′ ∈M - peptide with the lowest affinity
affinity(p)← affinity(p)−D(p,m′), for all p ∈ C ∪R

end while
S ← S \M
Add M to set of clusters M

end while
end while
for M1 ∈ M do

for M2 ∈ M do
if (intersection(M1,M2)/size(M1) > 0.5) OR
OR (intersection(M1,M2)/size(M2) > 0.5) then
Collapse M1 and M2

end if
end for

end for
for M ∈ M do

align peptides in M
count entropy in every position i of aligned M
find consensus K for 7-mer window with the min entropy

end for
Output: Set of motifs M, represented by clusters Mi and consensus sequences Ki

The input for the algorithm was a list of distinct peptides from a serum
sample, threshold and similarity matrix which stored similarity values between
any pair of peptides. On every iteration of the algorithm two peptides with the
highest similarity were chosen as the initial center of a cluster. Next the process
of adding and removing of peptides from the cluster was performed while the
similarity between every pair of petides in a final set were not less than the
threshold. During that step initially assigned central peptides could be removed.
Obtained cluster was saved removing its peptides from further consideration as
initial centers. Then the procedure was repeated to find remaining motifs. Unlike
CAST our algorithm allows intersection between clusters. As result some consen-
sus sequences of motifs could be too close to each other. So the obtained clusters
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were collapsed if they had more than 50% common peptides. The last step was
to align all peptides in the cluster and compute entropy in every position. Seven
positions with the smallest cumulative entropy (the most conserved part) were
chosen, and the consensus amino acid sequence was found. The output of the
algorithm was a set of finding motifs in a serum sample, each represented by a
cluster and its consensus 7-mer sequence.

4 Results

Data set. We analyzed the profiles generated for the 15 serum samples of the
stage 0 and 1 breast cancer patients and for the 15 serum samples of the healthy
donors. For each serum sample the experiment was performed separately using
the same enriched library on all samples. In average, for the experimental con-
dition selected, the total number of distinct peptide sequences generated in one
sample was 18450, and standard deviation σ was 6205. The average count value
(expression) of a sample was 407335(σ = 252393).

After applying the motifs search separately to every sample, we obtained
in average 3000(1073) motifs per a control sample and 3490(1315) motifs per
a case sample. The average size of a motif in a case was 7.1(1.8) peptides, in
a control it was 6.8(1.3) peptides. Every sample contained significant amount
of large motifs. Thus, the average number of motifs consisting of 20 and more
peptides was 154(71) and 131(53) for cases and controls respectively.

Motif validation. To validate found motifs we generated pseudo mimotope
profiles using two strategies. The first strategy was random permutation of amino
acides in a sample peptides. As result, we received 30 samples consisting of
random 7-mer peptides. We ran our motif search method on the samples and
obtained about 6639(1967) motifs with the average size 4.2(0.7). Although, the
largest motif among all samples contained only 17 peptides. More than 95% of
motifs in all samples had size no more than 4 peptides.The obtained motifs were
significantly different from those found in real serum samples. This result proves
the amino-acid order is meaningful in mimotope motifs found by CMIM.

The second strategy was random selection of peptides from existing samples
and generating random samples. We collapse all original serum samples together
assigning count value to each peptide. The more abundant and popular a peptide
was among samples the more probable it would be selected to a new random
sample. We generated 30 samples with 20k peptides each. We also applied motif
search method to the random samples. In average we obtained 3890(34) motifs
with the size of 5.71(0.04) peptides. To compare the group of random samples
with the group of real serum samples we applied Kruskal–Wallis test [3]. This
non-parametric method determines whether samples originate from the same
distribution. The result p-value was 7.5 ∗ 10−5 rejecting the null hypothesis that
the population medians of both groups were equal. Thus, the single sample motifs
are significantly different from motifs in peptides drawn from multiple samples.

Cancer-specific motifs. The cancer-specific motifs were defined as motifs sig-
nificantly prevalent in cases. We compared motifs based on their consensus 7-
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probability observed expected FDR
<0.05 67 51.9 0.77
<0.04 27 20.5 0.76
<0.03 24 16.6 0.69
<0.02 10 8.1 0.81
<0.01 4 4.2 1.06

Despite the fact that no motif is statistically significant after FDR adjusting
to multiple testing, we can see that their number is still larger than expected.

5 Conclusions

In current work we identified cancer-specific motifs by analyzing peptide profiles
of serum samples from cancer patients and from healthy donors. These profiles
were generated using a phage DNA sequencing following single selection without
amplification on the serum samples with the library enriched by the cycles of
affinity selection-amplification using a pool of serum samples from additional
cancer patients.

A novel motif identification method based on CAST clustering (CMIM) was
proposed. We found that for any real serum sample the number of peptides per a
motif is significantly greater comparing with pseudo epitope repertoire consisting
of a randomly permuted peptides. Also the single sample motifs are shown to be
significantly different from motifs in peptides drawn from multiple samples.

Running on case-control data CMIM identified cancer-specific motifs. Al-
though no motif is statistically significant after adjusting to multiple testing,
the number of found motifs is larger than expected and may therefore contain
useful cancer markers.
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