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vaccines are emerging
as one of the most
promising approaches
to immunotherapy of
advanced cancers.
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» This approach harnesses the power of the patient’s own immune system to attack
tumor cells that express specific neoepitopes generated by somatic mutations

»Somatic variant calling from matched tumor-normal next generation sequencing (NGS)
data is a key step in the identification of neoepitopes that can be included in a vaccine to
stimulate T-cell activation against cancer cells.
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remains challenging.

»Key impediments to achieving consistently high accuracy with model-based methods
include the large patient-to-patient variation in sample attributes such as purity, tumor
heterogeneity, sequencing library preparation artifacts, sequencing errors, and errors in
NGS data processing such as incorrect read alignment.

OBJECTIVE

»In this work, we use a novel machine learning method to increase
sensitivity of any existing somatic variant calling pipeline while
maintaining high positive predictive value (PPV).

»To reliably handle patient-to-patient variation in sample attributes we
take an unsupervised approach that learns these properties from the
data itself, without a need for prior training data.
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»We used cancer sequencing data from two ovarian cancer patients
enrolled in a Phase | clinical trial at UConn health. Matched tumor-
normal exome sequencing data was generated using both Illumina
HiSeq and lon Torrent Proton sequencers. All somatic mutation
predictions were validated by targeted amplicon sequencing using the
AccessArray microfluidics platform.
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PU-CALLER METHOD

» Two-step approach to somatic variant calling:

»Available using easy-to-use Galaxy-based web
https://neo.engr.uconn.edu

»Why PU learning?

»Step 1 pipeline provides small number of high confidence positive
calls and large number of unlabeled datapoints that fail to pass
pipeline filters (unlabeled:positive ratios as large as 1000:1).

»Step 1) Generate a list of confident somatic variant calls by
applying an existing model-based pipeline.

»Step 2) Extend the list of somatic variant calls using a novel
Positive-Unlabeled (PU) learning approach.

»In this work we use the Consensus Caller Cross-Platform (CCCP)
o pipeline in Step 1. Advantages of CCCP include:

° » Multi-technology support (can take as input Illumina and/or lon
Torrent sequencing data).

»Incorporates two state-of-the-art somatic mutation callers, Strelka
and SNVQ, combined using a consensus filter.

» Previously shown to have high positive predictive value (>80%).
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»PU learning methods are designed for such asymmetric training
data that (a) does not include negative examples, and (b) includes a
very large number of unlabeled datapoints.
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»PU-Caller yields higher sensitivity than the CCCP pipeline, with only
small increase in false positive rate

»Number of validated variants increases by 9-17% compared to
CCCP, leading to additional candidate neoepitopes for vaccination

»PU-Caller’s sensitivity is similar to that of model-based callers
SNVQ and Strelka but is achieved with lower false positive rate

»Dealing with data imbalance using informed undersampling
instead of random undersampling. PU-caller partitions unlabeled
data into 10 random subsets and then selects as negatives from
each subset a balanced number of points that are furthest from
the positive set according to the Gower distance.

»Uses Random Forest as classifier to avoid overfitting.

»Maintains low false positive rate by using “spy” approach in
which a tenth of positive datapoints are not used for training but
added to unlabeled data to determine classification threshold.
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